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INFINITESIMAL LIOUVILLE CURRENTS, CROSS-RATIOS

AND INTERSECTION NUMBERS

FRANCIS BONAHON AND DRAGOMIR ŠARIĆ

Abstract. Many classical objects on a surface S can be interpreted as

cross-ratio functions on the circle at infinity of the universal covering S̃.
This includes closed curves considered up to homotopy, metrics of nega-
tive curvature considered up to isotopy and, in the case of interest here,
tangent vectors to the Teichmüller space of complex structures on S.
When two cross-ratio functions are sufficiently regular, they have a geo-
metric intersection number, which generalizes the intersection number
of two closed curves. In the case of the cross-ratio functions associated
to tangent vectors to the Teichmüller space, we show that two such
cross-ratio functions have a well-defined geometric intersection number,
and that this intersection number is equal to the Weil-Petersson scalar
product of the corresponding vectors.

Let S be a compact orientable surface of negative Euler characteristic.

Its universal cover S̃ has a well-defined circle at infinity ∂∞S̃, which can be
described uniquely in terms of the topology of S, or even in terms of the
fundamental group π1(S) [Gr, GhHa, CDP, BrHae]. The action of π1(S) on

the universal cover continuously extends to S̃ ∪ ∂∞S̃.
A cross-ratio function (or cross-ratio for short) is a function α that asso-

ciates a real number α(I1, I2) ∈ R to each pair of two intervals I, J ⊂ ∂∞S
with disjoint closures, and that satisfies the following two conditions:

(1) (Finite Additivity) α(I, J) = α(I1, J) +α(I2, J) whenever the inter-
val I is split as the union of two disjoint intervals I1 and I2; similarly,
α(I, J) = α(I, J1) + α(I, J2) whenever the interval J is split as the
union of two disjoint intervals J1 and J2.

(2) (Invariance) α is invariant under the action of the fundamental group,
in the sense that α

(
γ(I), γ(J)

)
= α(I, J) for every γ ∈ π1(S) and

every intervals I, J ⊂ ∂∞S̃.

Here an interval is allowed to be closed, semi-open of open according to
whether it includes all, some, or none of its end points, respectively. We let
X (S) denote the space of all cross-ratio functions.
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Most of the cross-ratio functions that we will consider in this article will
be, in addition, symmetric in the sense that α(I, J) = α(J, I) for every I
and J . However, this property is not crucial.

If, in addition, a cross-ratio α ∈ X (S) takes only non-negative values, then
it is countably additive and consequently defines a π1(S)–invariant Radon

measure on the space ∂∞S̃×∂∞S̃−∆, where ∆ denotes the diagonal of the
product. Such a measure is a measure geodesic current.

A fundamental example of cross-ratio function is associated to a complex

structure m on the surface S. Then, the universal covering S̃ is biholo-
morphically equivalent to the open unit disk H

2 ⊂ C, which provides an

identification of ∂∞S̃ with the circle S
1 bounding this disk, well-defined up

to a linear fractional map preserving H
2. We can then consider the Liouville

geodesic current Lm, defined by the property that

Lm(I, J) =

∣∣∣∣log
(a− c)(b− d)

(a− d)(b− c)

∣∣∣∣

if a, b and c, d are the end points of I and J , respectively. This example
explains the terminology, and the connection with the classical cross-ratios.
See [Bo2, Theorem 13] for a characterization of which cross-ratios occur
in this way. See also [Bo1, Ot1, Ot2, Bo3, La1, La2, LaMc] for various
incarnations of cross-ratio functions.

This article is devoted to infinitesimal versions of these Liouville cross-
ratios. Let T (S) be the Teichmüller space of S, considered as the space of
isotopy classes of complex structures on S, and let V ∈ Tm0T (S) be a vector
tangent to T (S) at m0. If t 7→ mt is a curve in T (S) passing through m0

and tangent to V at t = 0, we can consider the derivative

LV (I, J) =
∂

∂t
Lmt

(I, J)|t=0

for every pair I, J ⊂ ∂∞S̃ of intervals with disjoint closures. It is fairly
well-known that the derivative exists, and depends only on V ∈ Tm0T (S),
and not on the curve t 7→ mt tangent to V . This LV is the infinitesimal
Liouville cross-ratio associated to V ∈ Tm0T (S).

Such an infinitesimal Liouville cross-ratio does not induce a measure on
∂∞S̃× ∂∞S̃−∆ any more. It has a weaker regularity property, in the sense
that it only defines a Hölder geodesic current, namely a π1(S)–invariant
linear functional on the space of Hölder continuous functions with compact

support on ∂∞S̃ × ∂∞S̃ −∆. See [BoSö, Ša1, Ot3].
The space C(S) of measure geodesic currents on S was introduced in [Bo1]

to construct a completion of the space of homotopy classes of weighted closed
curves in S. A fundamental feature of this space is a continuous function

i: C(S)× C(S) → R,
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which extends the geometric intersection function for closed curves. The
proof that this geometric intersection function i is finite and continuous
heavily depends on the regularity of measure geodesic currents.

For general cross-ratio functions α, β ∈ X (S), it is formally possible to
copy the above construction and attempt to define a geometric intersection
number i(α, β). However, making sense of this intersection number amounts
to proving the convergence of a certain infinite sum, and requires additional
regularity hypotheses on the cross-ratios.

The main contribution of this article is the rigorous construction of in-
tersection numbers for a class of cross-ratios which includes infinitesimal
Liouville cross-ratios.

Given ν > 0, a cross-ratio function α ∈ X (S) is said to be ν–Hölder regular
with respect to a complex structure m0 ∈ T (S) if there exist constants c0,
c1 > 0 such that

|α(I, J)| 6 c0Lm0(I, J)
ν

for all intervals I, J ⊂ ∂∞S̃ with disjoint closure and such that Lm0(I, J) 6
c1; recall that Lm0 denotes the Liouville geodesic current associated to the
complex structurem0. A Hölder regular cross-ratio function defines a Hölder
geodesic current (compare [Ša1]), but the converse is not true; for instance,
a measure geodesic current with an atom (such as the one associated to a
homotopy class of closed curves) is a Hölder geodesic current, but is not
Hölder regular in the above sense.

Theorem 1. If the cross-ratios α, β ∈ X (S) are ν–Hölder regular with
respect to some complex structure m0 ∈ T (S) and for some ν > 3

4 , then it is
possible to define a geometric intersection number i(α, β), in a sense made
precise by Theorem 13 below.

The construction is based on a certain bundle over S with fiber the open
annulus, it uses a covering of this bundle by “double boxes”, and it heavily
relies on a relatively subtle growth estimate on the sizes of these double
boxes. See §2–3.

A much easier property is that Theorem 1 can be applied to infinitesimal
Liouville currents:

Proposition 2. If V ∈ Tm0T (S) is a vector tangent to the Teichmüller
space at m0 ∈ T (S), then the associated infinitesimal Liouville cross-ratio
LV ∈ X (S) is ν–Hölder regular with respect to m0 for every ν < 1.

As a consequence, given two such tangent vectors V , W ∈ Tm0T (S),
we can make sense of the geometric intersection number i(LV , LW ) of their
infinitesimal Liouville cross-ratios.

Theorem 3. Let t 7→ mt and u 7→ nu be two differentiable curves in T (S),
respectively tangent to the vectors V and W ∈ Tmo

T (S) at m0 = n0 ∈ T (S).
Then,

∂

∂t

∂

∂u
i(Lmt

, Lnu
)|(t,u)=(0,0) = i(LV , LW ),
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where i(LV , LW ) is the geometric intersection number provided by Theorem 1
and Proposition 2, and where i(Lmt

, Lnu
) is the classical intersection number

of measure geodesic currents as in [Bo1].

If we combine Theorem 3 with earlier work of Thurston and Wolpert
[Wo2], we automatically obtain:

Theorem 4. Under the hypotheses of Theorem 1, the geometric intersection
number i(LV , LW ) is equal, up to multiplication by a constant, to the scalar
product ωWP(V,W ) of the tangent vectors V , W ∈ Tm0T (S) under the Weil-
Petersson metric of T (S). �

The constant depends on the topological type of the surface and on the
conventions in the definition of the Weil-Petersson metric; see [Wo2].

To a large extent, Theorems 1 and 3 complete the analogy between geo-
metric intersection numbers and Weil-Petersson metric that was proposed
in [Bo2] (see also [Wo3]). In particular, they provide a much more satisfac-
tory framework than the clumsy construction of [Bo2, §4], which had been
designed to bypass the analytic subtleties caused by the lack of regularity
of infinitesimal Liouville cross-ratios.

1. Geometric intersection numbers

This section is mostly heuristic, and summarizes the definition of geomet-
ric intersection numbers in the case of measure geodesic currents.

It is conceptually convenient to endow the surface S with a complex struc-

ture m0. Then, the space ∂∞S̃ × ∂∞S̃ −∆ has a natural identification with

the space G(S̃) of oriented complete geodesics for the Poincaré metric of S̃,

since such a geodesic joins two distinct points of the circle at infinity ∂∞S̃.

Let DG(S̃) be the double geodesic space, consisting of all pairs (g, h) of

geodesics g, h ∈ G(S̃) which transversely meet at some point. Considering
this intersection point g ∩ h and the tangent vectors of g and h at this

point, we see that DG(S̃) can also be identified to the set of triples (x̃, v, w)

consisting of a point x̃ ∈ S̃ and of two distinct unit tangent vectors v,

w ∈ Tx̃S̃ at x̃. This description makes it clear that the action of π1(S)

on DG(S̃) is free and discontinuous, so that we can consider the quotient

DG(S) = DG(S̃)/π1(S).
Again, DG(S) can be interpreted as the set of triples (x, v, w) consisting

of a point x ∈ S and of two distinct unit tangent vectors v, w ∈ TxS at x.
In particular, it is a manifold of dimension 4. Note that it is non-compact,
which is the major cause of the analytic problems that we will encounter.

Let a box in G(S̃) ⊂ ∂∞S̃ × ∂∞S̃ be a subset of the form I × J , where I

and J are intervals with disjoint closures in ∂∞S̃. A double box in DG(S̃) ⊂

G(S̃) × G(S̃) is a subset of the form B = B1 × B2 where B1 and B2 are

two boxes of G(S̃) such that every geodesic g ∈ B1 crosses every geodesic
h ∈ B2.
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Finally, let a double box in the quotient DG(S) = DG(S̃)/π1(S) be a

subset B which is the image of a double box B̃ in DG(S̃) small enough that

DG(S̃) → DG(S) is injective on the closure of B̃, and consequently restricts

to a homeomorphism B̃ → B.
Although the consideration of geodesics is convenient and more intuitive,

the reader will notice that the spaces G(S̃), DG(S̃) and DG(S), as well
as the notions of boxes and double boxes, can be described without any
reference to a complex structure m0 on S.

For future reference, we note the following immediate property.

Lemma 5. If B1 and B2 are two double boxes in DG(S), their intersection
B1 ∩B2 is a double box, and the complement B1 −B2 can be decomposed as
the union of finitely many disjoint double boxes. �

Lemma 6. The space DG(S) can be decomposed as the union of a locally
finite family of disjoint double boxes {Bi}i∈I .

Proof. It should be clear from definitions that every element of DG(S) is
contained in the interior of some double box. We can therefore write DG(S)
as the union of a locally finite family of double boxes. We can then arrange
that these double boxes are disjoint by successive applications of Lemma 5.

�

A cross-ratio function α ∈ X (S) associates a number α(B) = α(I1, I2) to

each box B = I1 × I2 in G(S̃).
Two cross-ratio functions α, β ∈ X (S) associate a number α × β(B) =

α(B1)β(B2) to each double box B = B1 × B2 in DG(S̃). Finally, if B is a

double box in DG(S) image of a double box B̃ ⊂ DG(S̃), define α×β(B) =

α× β(B̃). The invariance of α and β under the action of π1(S) guarantees

that α × β(B) depends only on α, β and B, and not on the double box B̃

lifting B to DG(S̃).
We would like to define the geometric intersection number i(α, β) of the

cross-ratios α, β ∈ X (S) as the infinite sum

i(α, β) =
∑

i∈I

α× β(Bi)

for some decomposition DG(S) =
⋃

i∈I Bi as in Lemma 6.
When α and β are measure geodesic currents, this sum is proved to be

(absolutely) convergent in [Bo1, §4.2], and this for any decomposition of
DG(S) into disjoint double boxes.

However, for cross-ratio functions α, β ∈ X (S), we need to find a scheme
that provides a decomposition DG(S) =

⋃
i∈I Bi for which the above sum

converges, and is independent of the decomposition of DG(S) into double
boxes provided by that scheme.
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We actually will not quite carry out this program, and our construction
will only use a locally finite decomposition into double boxes of a suitable
open dense subset of DG(S).

2. Good coverings by double boxes

In many of the estimates of the article, we say that the quantity X is
of order at most Y , and we write X ≺ Y , if there exists a constant c > 0
such that X 6 cY . We say that X is of the same order as Y , and we write
X ≍ Y , if X ≺ Y and Y ≺ X.

Choose a complex structure m0 ∈ T (S) and a base point x̃0 ∈ S̃. This

defines a riemannian metric on the circle at infinity ∂∞S̃, where the distance

between η, ξ ∈ ∂∞S̃ is defined as the angle between the Poincaré geodesics

joining x̃0 to η and ξ, respectively. Taking a different base point x̃0 ∈ S̃
modifies this metric only up to bi-Lipschitz equivalence. However, if we
change the complex structure m0 ∈ T (S), the new metric is usually only
bi-Hölder equivalent to the original one. We state this property for future
reference.

Lemma 7. On the circle at infinity ∂∞S̃, let d0 be the metric induced as
above by the choice of a complex structure m0 ∈ T (S) and of a base point

x̃0 ∈ S̃, and let d1 be similarly associated to m1 ∈ T (S) and x̃1 ∈ S̃. Then
there exists ν 6 1 such that

d0(ξ, ξ
′)

1
ν ≺ d1(ξ, ξ

′) ≺ d0(ξ, ξ
′)ν

for all ξ, ξ′ ∈ ∂∞S̃.
In addition, ν tends to 1 as m1 tends to m0 in T (S). �

This riemannian metric on the circle at infinity ∂∞S̃ gives a riemannian

metric on the geodesic space G(S̃) ⊂ ∂∞S̃ × ∂∞S̃, and therefore on the

product G(S̃)×G(S̃).

With this data, a relatively compact subset X ⊂ G(S̃) × G(S̃) has
Minkowski m0–dimension 6 d if the volume of the ε–neighborhood Uε of X

in G(S̃)×G(S̃) is such that

vol(Uε) ≺ ε4−d

as ε > 0 is bounded above. This definition is clearly independent of the

choice of base point x̃0 ∈ S̃, but does depend on the complex structure
m0 ∈ T (S). The Minkowski dimension is also often called the box counting
dimension, but this terminology would be here clumsy since we are already
dealing with many types of boxes. Note that d 6 4, and that a separating
subset necessarily has Minkowski m0–dimension > 3.

Recall that the double geodesic space DG(S̃) consists of all pairs of

geodesics (g, h) ∈ G(S̃) × G(S̃) such that g and h transversely meet in
one point.
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A subdivision scheme for a subset Ω ⊂ DG(S̃) consists of two families
{In}n∈N and {Bn}n∈N such that:

(1) each I ∈ In is an interval in the circle at infinity ∂∞S̃;
(2) the family In+1 is obtained from In by subdividing each interval

I ∈ In into two intervals;

(3) each B ∈ Bn is a double box I1 × I2 × I3 × I4 in DG(S̃) ⊂ (∂∞S̃)4

where I1, I2, I3, I4 are intervals of In;
(4) Ω =

⋃∞
n=1

⋃
B∈Bn

B;
(5) any two double boxes B ∈ Bn and B′ ∈ Bn′ are disjoint.

The intervals I ∈ In can be closed, open or semi-open. In particular, in
Condition (5), the closures of two boxes are allowed to have a non-trivial
intersection. We actually will not worry much about the box boundaries,
as they are irrelevant for the type of cross-ratio functions considered in the
rest of the article.

Lemma 8. Let Ω be an open subset of the double geodesic space DG(S̃) ⊂

G(S̃)×G(S̃) that is relatively compact in G(S̃)×G(S̃) and whose topological

frontier δΩ in G(S̃) × G(S̃) has Minkowski m0–dimension 6 d. Pick two
numbers 0 < r 6 1

2 6 R < 1. Then there exists a subdivision scheme
{In}n∈N, {Bn}n∈N, such that:

(1) the length of each interval I ∈ Bn is of order between rn and Rn,

for the metric on ∂∞S̃ defined by the complex structure m0 and by

a choice of base point in S̃0;
(2) each double box B ∈ Bn is at distance ≺ Rn from the complement of

Ω in G(S̃)×G(S̃);
(3) the number of boxes in Bn is ≺ r−dn.

Proof. We will prove the result in the case where r = R = 1
2 , which of course

implies the general case. (The result is stated in the above form for future
reference).

Since Ω is relatively compact in G(S̃)×G(S̃), there exists a finite family

of boxes A1, A2, . . . , As in G(S̃) such that Ω is contained in the union of
the products Ai ×Aj.

Each box Ai is of the form Ai = Ii × Ji, where Ii and Ji are two disjoint

intervals in the circle at infinity ∂∞S̃. Let I1 be the family of these finitely
many intervals. By subdivision of the boxes Ai, we can arrange that these
intervals are disjoint.

We now define the sequence In by induction, where I1 is the family of the
above intervals Ii, Ji, and where In+1 is obtained from In by subdividing
each interval into two intervals of equal lengths. In particular, the length of
each i ∈ In is of order 2−n.

Define the family Bn to consist of all double boxes B = I1 × I2 × I3 × I4
with all four Ii in In, such that:

(1) the double box B is contained in Ω;
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(2) if I ′i ∈ In−1 is the level n − 1 interval that contains Ii, the double
box B′ = I ′1× I ′2× I ′3× I ′4 is not contained in Ω (so that B′ 6∈ Bn−1).

It is immediate from the construction that any two double boxes B ∈ Bn

and B′ ∈ Bn′ are disjoint.
Also, the union

⋃∞
n=1

⋃
B∈Bn

B is equal to Ω. Indeed, for every n, each pair
of geodesics (g, f) ∈ Ω is contained in some double box B = I1× I2× I3× I4
with all four Ii in In. This double box B will be contained in Ω for n large
enough since Ω is open; this box will belong to Bn for the first such n.

Therefore, {In}n∈N and {Bn}n∈N provide a subdivision scheme for Ω, and
the lengths of the intervals of In are of order 2−n.

The construction also makes it clear that every B̃ ∈ Bn is at distance

≺ 2−n from the complement of Ω in G(S̃)×G(S̃), and therefore at distance
≺ 2−n from the frontier δΩ of Ω. Indeed, the level n − 1 double box that

contains B̃ is not contained in Ω.
In particular, each B ∈ Bn is contained in the ǫn–neighborhood of the

frontier δΩ, where ǫn ≍ 2−n. By definition of Minkowski m0–dimension, the
volume of this neighborhood is ≺ 2−(4−d)n. On the other hand, the volume
of each B ∈ Bn is of order 2−4n. Since the double boxes have disjoint interior,
we conclude that the number of B ∈ Bn is of order at most 2dn.

This concludes the proof of Lemma 8 when r = R = 1
2 , and therefore in

the general case. �

3. Intersection number of Hölder regular cross-ratios

Now, consider two cross-ratio functions α, β ∈ X (S) that are ν–Hölder
regular with respect to m0, as defined in the introduction.

For an open subset Ω ⊂ DG(S̃) satisfying the hypotheses of Lemma 8,
let B =

⋃
n∈N Bn be the family of double boxes covering Ω provided by that

statement. As in §1, each double box B ∈ B is the product B = B1 × B2

of two boxes in the geodesic space G(S̃), and we can define α × β(B) =
α(B1)β(B2) and

iΩ(α, β) =
∑

B∈B

α× β(B).

Lemma 9. Under the hypotheses of Lemma 8, let α, β ∈ X (S) be ν–Hölder

regular with respect to m0. If ν > d
4
log r
logR and if B =

⋃
n∈N Bn is the family

of double boxes provided by Lemma 8, the sum

iΩ(α, β) =
∑

B∈B

α× β(B).

is (absolutely) convergent.

Proof. For a box B ⊂ G(S̃) containing at least one geodesic of Ω (so that it is

at bounded distance from the base point of S̃), the Liouville mass Lm0(B) is
of the same order as the product of its side lengths. Therefore, if the double
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box B = B1 ×B2 is in Bn,

α× β(B) = α(B1)β(B2) ≺ Lm0(B1)
νLm0(B2)

ν ≺ R4νn

because B1 and B2 have side lengths of order ≺ Rn and meet a fixed com-

pact subset of G(S̃), namely the union of the images of Ω under the two

projections G(S̃)×G(S̃) → G(S̃).
As a consequence, since the number of elements of Bn is of order at most

r−dn,

∑

B∈B

α× β(B) =

∞∑

n=1

∑

B∈Bn

α× β(B) ≺

∞∑

n=1

r−dnR4νn < ∞

if ν > d
4
log r
logR . �

Lemma 10. Under the hypotheses of Lemma 9, suppose in addition that

ν > 2
(

log r
logR − 1

)
+ d

4 . Then the sum

iΩ(α, β) =
∑

B∈B

α× β(B).

is independent of the subdivision scheme providing the family of double
boxes B.

Proof. Let B =
⋃∞

n=1 Bn and B′ =
⋃∞

n=1 B
′
n be two families of double boxes

as in Lemma 8, respectively associated to families {In}n∈N and {I ′
n}n∈N of

intervals in ∂∞S̃.
For k 6 n, the subdivision scheme enables us to decompose each double

box B ∈ Bk into 16n−k double boxes B′ = I1 × I2 × I3 × I4 with all Ii ∈ In.
In particular, the side lengths of these new boxes are of order between rn

and Rn. Let Bk,n be the family of double boxes so obtained. Similarly define

a family B′
k,n by subdividing each double box B′ ∈ B′

k into 16n−k double
boxes whose side lengths are of order between rn and Rn. Consider the
families Cn =

⋃n
k=1 Bk,n and C′

n =
⋃n

k=1 B
′
k,n of all double boxes so created.

Because their lengths are of order between rn and Rn, each interval in
In meets at most ≺ Rn

rn
intervals of I ′

n, and conversely each interval in I ′
n

meets ≺ Rn

rn
intervals of In. We can therefore subdivide the double boxes

of Cn and C′
n into a common family Dn of disjoint double boxes, in such a

way that each double box of Cn and C′
n is the union of a number ≺ R4n

r4n
of

double boxes of Dn.

We split the family Dn into three disjoint families D
(0)
n , D

(1)
n and D

(2)
n ,

where D
(0)
n consists of those D ∈ Dn that are contained in both

⋃
C∈Cn

C and
⋃

C′∈C′

n

C ′, where D
(1)
n consists of those D that are contained in

⋃
C∈Cn

C

but not in
⋃

C′∈C′

n
C ′, and where D

(2)
n consists of those D that are contained

in
⋃

C′∈C′

n

C ′ but not in
⋃

C∈Cn
C.
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We now use Condition (3) of Lemma 8, to show that the number of ele-

ments of D
(1)
n is smaller than one could have expected. Indeed, by definition,

such a double box D ∈ D
(1)
n is contained in some double box C ∈ Cn and

not in
⋃

C′∈C′

n
C ′ =

⋃n
k=1

⋃
B′∈B′

k

B′. It therefore meets some double box

B′ ∈ B′
m with m > n. By Condition (3) of Lemma 8, the double box C

consequently is at distance ≺ Rn from the complement of Ω, and is therefore
contained in an ǫn–neighborhood of the boundary δΩ with ǫn ≍ Rn since
its diameter is ≺ Rn. By a volume estimate, it follows that there can be at

most ≺ R(4−d)n

r4n
such double boxes C ∈ Cn containing a double box D ∈ D

(1)
n .

Since each C ∈ Cn contains at most ≺ R4n

r4n
double boxes of Dn, it follows

that the number of elements of D
(1)
n is of order at most R4n

r4n
R(4−d)n

r4n
= R(8−d)n

r8n

The same argument shows that D
(2)
n has ≺ R(8−d)n

r8n
elements.

We are now ready to complete the proof of Lemma 10. To show that the
two families of double boxes B and B′ give the same value for iΩ(α, β), we
need to prove that

∑
B∈B α× β(B) =

∑
B′∈B′ α× β(B′), and therefore that

∞∑

n=1

∑

B∈Bn

α× β(B) =

∞∑

n=1

∑

B′∈B′

n

α× β(B′).

Consider a partial sum of the first series. By finite additivity of α and β,

n∑

k=1

∑

B∈Bk

α× β(B) =
∑

C∈Cn

α× β(C)

=
∑

D∈D
(0)
n

α× β(D) +
∑

D∈D
(1)
n

α× β(D)

since every double box of Bk is the union of finitely many boxes of Cn, and

since every double box of Cn is the union of finitely many boxes of D
(0)
n and

D
(1)
n .
Similarly,

n∑

k=1

∑

B′∈B′

k

α× β(B′) =
∑

C′∈C′

n

α× β(C ′)

=
∑

D∈D
(0)
n

α× β(D) +
∑

D∈D
(2)
n

α× β(D).
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Taking the difference between these partial sums,
∣∣∣∣

n∑

k=1

∑

B∈Bk

α× β(B)−

n∑

k=1

∑

B′∈B′

k

α× β(B′)

∣∣∣∣

6
∑

D∈D
(1)
n

∣∣α× β(D)
∣∣+

∑

D∈D
(2)
n

∣∣α× β(D)
∣∣

≺
R(8−d)n

r8n
R4νn =

(
R8−d+4νr−8

)n

since each D = B1 × B2 ∈ Dn has side lengths ≺ Rn, so that α(B1) ≺
Lm0(B1)

ν ≺ R2νn and a similar estimate holds for β(B2).

Letting n go to infinity and using the hypothesis that ν > 2
(

log r
logR − 1

)
+

d
4 , we conclude that

∞∑

k=1

∑

B∈Bk

α× β(B) =

∞∑

k=1

∑

B′∈B′

k

α× β(B′)

as required. �

We are now going to apply this to a specific domain Ω.

Lemma 11. For every complex structure m0 on S and every d > 3, there

exists an open subset Ω ⊂ DG(S̃) such that

(1) Ω is relatively compact in G(S̃)×G(S̃);

(2) the quotient map DG(S̃) → DG(S) = DG(S̃)/π1(S) is injective on
Ω, and sends Ω to an open dense set of DG(S);

(3) there exists finitely many γ ∈ π1(S) such that Ω ∩ γ(Ω) 6= ∅;

(4) the frontier δΩ of Ω in G(S̃)×G(S̃) has Minkowski m0–dimension
< d.

Namely, Ω is a fundamental domain for the action of π1(S) on DG(S̃),
whose frontier has small dimension.

Proof. The complex structure m0 defines a projection p: DG(S̃) → S̃, which

to a double geodesic (g, h) ∈ DG(S̃) associates the intersection point g∩h ∈

S̃. (Note that this projection map depends on m0).
Let ω be a compact fundamental polygon for the action of π1(S) on the

universal cover S̃, bounded by a piecewise differentiable curve. Let Ω be
the preimage of the interior of ω under p. The first three conclusions of the
statement clearly hold.

The frontier δΩ of Ω in G(S̃) ×G(S̃) is the union of p−1(δω) and of the

subset of the diagonal consisting of those (h, h) ∈ G(S̃) × G(S̃) such that
h meets ω. Since the boundary of ω is piecewise differentiable, it follows
that the frontier δΩ has Minkowski m0–dimension 3, which is less than d by
hypothesis. �
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Lemma 12. Given numbers d > 3 and 0 < r 6 1
2 6 R < 1, consider

two cross-ratios α, β ∈ X (S) that are ν–Hölder regular with respect to m0

for ν > max{d
4
log r
logR , 2

(
log r
logR − 1

)
+ d

4}. Let Ω ⊂ DG(S̃) be provided by

Lemma 11, and consider the sum

iΩ(α, β) =
∑

B∈B

α× β(B)

as in Lemmas 9 and 10. This number iΩ(α, β) is independent of the choice
of Ω.

Proof. Let Ω′ be another domain as in Lemma 11. By Condition (3) of
Lemma 11, there are finitely many elements γ1, . . . , γt ∈ π1(S) such that Ω is
covered by the union of the γs(Ω

′). Considering the domains Ωs = Ω∩γs(Ω
′),

we first prove that

iΩ(α, β) =
t∑

s=1

iΩs
(α, β).

For this, consider the subdivision scheme {In}n∈N, {Bn}n∈N for Ω pro-
vided by Lemma 8.

We then use the same interval family {In}n∈N to create a subdivision

scheme {B′′
n}n∈N for Ω′′ =

⋃t
s=1Ωs. More precisely, inductively define the

family B′′
n to consist of all double boxes B′′ = I ′′1 × I ′′2 × I ′′3 × I ′′4 with all four

I ′′i in In, such that:

(1) the double box B′′ is contained in Ω′′;
(2) if Ii ∈ In−1 is the level n − 1 interval that contains I ′′i , the double

box B = I1 × I2 × I3 × I4 is not contained in Ω′′.

As in the proof of Lemma 10, let Cn be the family of all double boxes
B = I1 × I2 × I3× I4, with all four Ii in In, that are contained in Ω, and let
C′′
n ⊂ Cn be similarly associated to Ω′′. Then, by finite additivity,

n∑

k=1

∑

B∈Bk

α× β(B) =
∑

C∈Cn

α× β(C)

so that

iΩ(α, β) = lim
n→∞

∑

C∈Cn

α× β(C).

Similarly,

t∑

s=1

iΩs
(α, β) = iΩ′′(α, β) = lim

n→∞

∑

C′′∈C′′

n

α× β(C ′′).

Each double box C ∈ Cn has side lengths of order between rn and Rn,
so that its contribution α× β(C) to the above sums is bounded in absolute
value by R4νn. Also, the complement Cn−C′′

n consists of those C ∈ Cn which
meet the union of the frontiers δΩs. Since these frontier have Minkowski
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m0–dimension < d, the now usual volume arguments show that the cardinal

of Cn − C′′
n is bounded by R(4−d)n

r4n
. Therefore,

∣∣∣∣
∑

C∈Cn

α× β(C)−
∑

C′′∈C′′

n

α× β(C ′′)

∣∣∣∣ 6
∑

C∈Cn−C′′

n

∣∣α× β(C)
∣∣

6
R(4−d)n

r4n
R4νn.

Passing to the limit as n → ∞, we conclude that

iΩ(α, β) = iΩ′′(α, β) =

t∑

s=1

iΩs
(α, β)

since R4−d+4νr−4 < 1 by our hypothesis on ν.
Considering the domains γ−1

s (Ωs) in Ω′, the same argument shows that

iΩ′(α, β) =
t∑

s=1

i
γ−1
s (Ωs)

(α, β).

In addition, because the cross-ratio functions α and β are invariant under
the action of the fundamental group,

iΩs
(α, β) = i

γ−1
s (Ωs)

(α, β)

for every s. (Note that γs distorts the metric induced by the complex struc-

ture m0 on the circle at infinity ∂∞S̃ by a uniformly bounded Lipschitz
factor, so that all estimates are preserved.)

It follows that iΩ(α, β) = iΩ′(α, β). �

This proves Theorem 1, in the following form.

Theorem 13. The above construction provides a well-defined geometric in-
tersection number i(α, β) for any two cross-ratio functions α, β ∈ X (S) that
are ν–Hölder regular with respect to the complex structure m0 ∈ T (S) and
for some ν > 3

4 .
A priori, this intersection number may depend on the complex structure

m0 with respect to which α and β are ν–Hölder regular. However, it is a
locally constant function of m0 ∈ T (S).

Proof. Pick numbers d < 4 and 0 < r < 1
2 < R < 1 sufficiently close to 3

and 1
2 , respectively, that ν > max{d

4
log r
logR , 2

(
log r
logR − 1

)
+ d

4}.

Choose a domain Ω ⊂ DG(S̃) as in Lemma 11, and consider the family
B =

⋃∞
n=1 Bn of double boxes in Ω provided by Lemma 8. Then define

i(α, β) = iΩ(α, β) =
∑

B∈B

α× β(B).

Lemmas 9, 10 and 12 show that this sum converges, and is independent of
choices.
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In addition, by Lemma 7, the estimates are stable under small pertur-
bation of the complex structure m0. This guarantees the invariance under
small perturbation of the complex structure m0. (The introduction of the
numbers r, R and d in the various statements were specially designed to
guarantee this.) �

4. The geometric estimate

This section is devoted to the proof of Proposition 2, which says that
infinitesimal Liouville cross-ratios are ν–Hölder regular for every ν < 1. It
will enable us to apply Theorem 13 to infinitesimal Liouville cross-ratios.

Let V ∈ Tm0T (S) be a tangent vector to the Teichmüller space T (S) at
the point m0. The infinitesimal deformation associated with V is described
by an equivalence class [µ] of Beltrami coefficients, where the Beltrami co-
efficients µ and µ′ are equivalent if and only if

∫

S

µϕ =

∫

S

µ′ϕ

for all holomorphic quadratic differentials ϕ on S. We then define the Te-
ichmüller norm ‖V ‖ of the tangent vector V ∈ Tm0T (S) as

‖V ‖ = min
µ

‖µ‖∞,

where the infimum is taken over all Beltrami differentials µ representing V .

Lemma 14. There exists a universal constant c0 > 0 such that

|LV (I, J)| 6 c0 ‖V ‖Lm0(I, J) | log Lm0(I, J)|

for all intervals I, J ⊂ ∂∞S̃ with disjoint closure such that Lm0(I, J) 6
1
2 .

To simplify the notation, set L = Lm0(I, J).

Proof. For the complex structure m0, biholomorphically identify the univer-

sal cover S̃ to the upper half-plane H
2 ⊂ C. By invariance of the requested

estimate under biholomorphic transforms of H2, we can further arrange that
I = [−eα,−1] and J = [1, eα] for some α > 0. An easy computation then
shows that Lm0(I, J) = 2 log

(
cosh α

2

)
≍ α2.

The first variation formula for the solution of the Beltrami equation with
coefficient tµ yields the formula (see [Wo1])

LV ([a, b], [c, d]) = −
2

π
Re

∫

H2

µ(z)
(a− b)(c− d)

(z − a)(z − b)(z − c)(z − d)
dx dy

where z = x+ iy.
In our situation, this provides a bound

|LV (I, J)| ≺ ‖µ‖∞α2

∫

H2

dx dy

|(z + 1)(z + eα)(z − 1)(z − eα)|
,

since the intervals I and J have length ≍ α.
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An integration along the lines of [Ša1, page 448] then gives
∫

H2

dxdy

|(z + 1)(z + eα)(z − 1)(z − eα)|
≺ | log α | ≍ | logLm0(I, J) |

Combining these two inequalities, taking the infimum over all Beltrami
coefficients µ representing V , and observing that the constants hidden in
the symbols ≺ and ≍ are universal completes the proof. �

Lemma 14 proves the Hölder regularity property of Proposition 2.

5. Proof of Theorem 3

We restate Theorem 3 for the convenience of the reader.

Theorem 15. Let t 7→ mt and u 7→ nu be two differentiable curves in
T (S), respectively tangent to the vectors V and W ∈ Tm0T (S) at m0 =
n0. Consider the associated Liouville geodesic currents Lmt

and Lnu
, and

the infinitesimal Liouville currents LV = d
dt
Lmt |t=0 and LW = d

du
Lnu |u=0.

Then,

∂

∂t

∂

∂u
i(Lmt

, Lnu
)|(t,u)=(0,0) = i(LV , LW ),

where i(LV , LW ) is the geometric intersection number provided by Theorem 1
and Proposition 2, and where i(Lmt

, Lnu
) is the classical intersection number

of measure geodesic currents as in [Bo1].

Proof. As in the construction of intersection numbers in the proof of The-
orem 3, pick numbers d > 3, 0 < r < 1

2 < R < 1 and ν < 1 such that

ν > max{d
4
log r
logR , 2

(
log r
logR − 1

)
+ d

4}. For every α, β ∈ X (S) that are ν–Hölder

regular with respect to m0, we can then define the intersection number

i(α, β) =
∑

B∈B

α× β(B)

as in the proof of Theorem 3.
Lemma 7 and Proposition 2 show that, for t, t′, u, u′ sufficiently close

to 0, the cross-ratio functions Lmt
, Lnu

, ∂
∂t
Lmt

and ∂
∂u

Lnu
are ν–Hölder

regular with respect to the complex structures mt′ and nu′. Similarly, the
family B =

⋃∞
i=1 Bn of double boxes satisfy the size estimates of Lemma 8

with respect to the complex structures mt′ and nu′ .

For a given double box B = B1 ×B2 ∈ B, with B1, B2 ⊂ G(S̃), write

∂

∂u

(
Lmt

× Lnu
(B)

)
=

∂

∂u

(
Lmt

(B1)× Lnu
(B2)

)
= Lmt

(B1)×

(
∂

∂u
Lnu

(B2)

)

= Lmt
×

(
∂

∂u
Lnu

)
(B)
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Summing over all boxes B ∈ B and using the fact that all convergence
estimates are uniform in t,

∂

∂u
i(Lmt

, Lnu
) =

∑

B∈B

Lmt
×

(
∂

∂u
Lnu

)
(B) = i

(
Lmt

,
∂

∂u
Lnu

)
.

Iterating this argument (and again using the uniform convergence esti-
mates) then gives

∂

∂t

∂

∂u
i(Lmt

, Lnu
) =

∑

B∈B

(
∂

∂t
Lmt

)
×

(
∂

∂u
Lnu

)
(B) = i

(
∂

∂t
Lmt

,
∂

∂u
Lnu

)

for every (t, u) sufficiently close to (0, 0), and in particular for (t, u) = (0, 0).
�
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