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Abstract. We prove that the bijective correspondence between the space of
bounded measured laminations MLb(H) and the universal Teichmüller space
T (H) given by λ 7→ Eλ|S1 is a homeomorphism for the uniform weak* topol-

ogy on MLb(H) and the Teichmüller topology on T (H), where Eλ is an earth-
quake with earthquake measure λ. A corollary is that earthquakes with dis-
crete earthquake measures are dense in T (H). We also establish infinitesimal
versions of the above results.

1. Introduction

A Riemann surface is said to be hyperbolic if its universal covering is the hyper-
bolic plane H. 1 The ideal boundary ∂H of the hyperbolic plane H is homeomorphic
to the unit circle S1. The Teichmüller space T (H) of the hyperbolic plane H, called
the universal Teichmüller space, is the space of all quasisymmetric maps of the unit
circle S1 modulo post-composition by Möbius maps which preserve H. There is
a natural complex analytic embedding of the Teichmüller space of any hyperbolic
Riemann surface into the universal Teichmüller space T (H) (see [7]).

Earthquake maps in the hyperbolic plane H (and on any hyperbolic Riemann
surface) were introduced by Thurston [21]. An earthquake in the hyperbolic plane
is a bijective map E : H → H which is supported on a geodesic lamination L
in H in the sense that it is a hyperbolic isometry on each stratum (i.e. a leaf
of L or a component of H \ L) of L, and which (relatively) translates to the left
points of different strata of L. An earthquake E : H→ H continuously extends to
a homeomorphism of S1 and it induces a transverse Borel measure to its support
lamination L, called the earthquake measure. In particular, the earthquake measure
of E is a measured lamination whose support is L and it measures the amount of the
relative movement to the left by E. An earthquake measure λ uniquely determines
earthquake Eλ : H→ H up to post-composition by Möbius maps.

Thurston [21] proved that any homeomorphism of the unit circle S1 is obtained as
the continuous extension of an earthquake in H to its boundary S1. In other words,
any homeomorphism of S1 can be geometrically constructed as the continuous
extension to the boundary S1 of a piecewise isometry of H which moves strata of
its support geodesic lamination to the left by the amount given by a transverse Borel
measure to the lamination. However, the relationship between homeomorphisms
and earthquake measures of the earthquakes inducing them is not a simple one.

The first author is partially supported by Grant-in-Aid for Scientific Research (C) 21540177.
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1We are particularly interested in the geometrically infinite hyperbolic Riemann surfaces, e.g.

the hyperbolic plane H, an infinite genus surface, a surface with an interval of ideal boundary
points. All these surfaces have infinite hyperbolic area.
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This paper is mainly concerned with the dependence of the earthquake measures
on homeomorphisms of S1.

A measured lamination λ of the hyperbolic plane H is said to be bounded if

sup
I

λ(I) < ∞

where the supremum is over all geodesic arcs I of unit length that transversely
intersect the support of λ. Then a homeomorphism is quasisymmetric if and only
if h = Eλ|S1 for a bounded earthquake measure λ (see [8], [13] and [15]).

We denote by MLb(H) the space of all bounded measured laminations. The
above statement gives a well-defined earthquake measure map

EM : T (H) →MLb(H)

by EM([h]) = λ, where the quasisymmetric map h is continuous extension to S1

of the earthquake Eλ with the earthquake measure λ. The earthquake measure
map is a bijection by the above. Our main result establishes a natural topology on
MLb(H), called uniform weak* topology for which EM is a homeomorphism.

If MLb(H) is given the weak* topology, then EM−1 : MLb(H) → T (H) is
discontinuous. The problem is that the Teichmüller topology on T (H) is uniform
on the quadruples of points in S1 of a fixed cross-ratio, while the weak* topology
measures with respect to finitely many quadruples at one time. The remedy is to
pull-back, by hyperbolic isometries, measures from all quadruples of a certain size
to a fixed (standard) quadruple of the same size and to require convergence of all
pull-backs simultaneously. The requirement for the quadruples to be of the same
size is essential because a uniform convergence on quadrilaterals of all sizes makes
the topology on MLb(H) too large. In this case the map EM : T (H) →MLb(H)
would be discontinuous. This leads to our definition of a uniform weak* topology
in Section 5.

Our main result makes a connection between the uniform weak* topology and
earthquake maps in the hyperbolic plane H. Namely, we show that the uniform
weak* topology on MLb(H) is capturing the subtleties of the Teichmüller topology
on T (H) and the earthquake maps in the hyperbolic plane H.

Theorem 1 (Earthquake measure map is a homeomorphism). The earthquake
measure map

EM : T (H) →MLb(H)

is a homeomorphism for the Teichmüller topology of T (H) and the uniform weak*
topology on MLb(H).

The above theorem also holds for any geometrically infinite Riemann surfaces
by simply noting that a quasisymmetric map which is invariant under a Fuchsian
group is induced by an earthquake whose earthquake measure is invariant under
the same Fuchsian group. In the case of a closed hyperbolic surface S, Kerckhoff
[11] showed that the earthquake measure map is a homeomorphism for the weak*
topology on ML(S). Using the techniques in the paper, it is easy to prove that
EM : Möb(H)/Homeo(S1) → ML(H) is a homeomorphism for the topology of
pointwise convergence on the space of homeomorphisms Homeo(S1) of S1 and the
weak* topology on the (not necessarily bounded) measured laminations ML(H)
of H, where Möb(H) are Möbius maps that preserve H. We note that the weak*
topology on MLb(H) is strictly weaker than the uniform weak* topology.



UNIFORM WEAK* TOPOLOGY 3

Figure 1. λn 9 λ in the uniform weak* topology.

To illustrate the difference between the weak* topology and the uniform weak*
topology on MLb(H) we consider the following example. Identify the hyperbolic
plane H with the upper half-plane and its boundary ∂H with R̂ = R ∪ {∞}. Let l
be the vertical line connecting 0 and ∞, and let ln be the vertical line connecting
1
n and ∞. Both l and ln are geodesics in H. Let δl and δln denote the measured

laminations in H with supports l and ln and weights 1 (Figure 1). Then
δln+δl−n

2
converges in the weak* topology to δl as n → ∞, but it does not converge in the
uniform weak* topology (cf. §6.1). Let En be an earthquake whose earthquake
measure is

δln+δl−n

2 and let E be an earthquake whose earthquake measure is δl.
Then En|S1 pointwise converges to E|S1 as n →∞, but it does not converge in the
uniform weak* topology (cf. §6.2).

An earthquake is said to be finite if its earthquake measure is supported on
finitely many geodesics of H. Thurston [21] proved that the graph of any earthquake
E : H→ H is approximated by the graphs of finite earthquakes. Gardiner-Hu-Lakic
[8] proved that each monotone map from an n-tuple of points in S1 into S1 can
be realized by a finite earthquake whose support geodesics have ideal endpoints in
the n-tuple (finite earthquake theorem). We say that an earthquake is discrete if
the support geodesic lamination L of its earthquake measure is discrete; namely
any compact subset of H intersect only finitely many geodesics of L. Next to
finite earthquakes, discrete earthquakes are the simplest possible earthquakes and,
by definition, finite earthquakes are discrete. We prove that each earthquake E
can be approximated by a sequence of discrete earthquakes En in the sense that
E|S1 → En|S1 in the Teichmüller topology as n → ∞. Theorem below is a direct
consequence of Theorem 5 (cf. §7.2) and Theorem 1.

Theorem 2 (Countable Earthquake Theorem). Let MLdisc
b (H) be the set of all

bounded measured laminations whose supports are discrete geodesic laminations.
Then the set

{[Eλ|S1 ] : λ ∈ MLdisc
b }

is a dense subset of T (H) in the Teichmüller topology.

Zygmund maps on the unit circle S1 represent infinitesimal deformations of the
space of quasisymmetric maps at the identity map of S1. In other words, a map V
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is Zygmund if and only if there exists a differentiable path t 7→ ht, for t ∈ (−ε, ε),
of quasisymmetric maps such that

V =
d

dt
ht|t=0

and h0 = id (for example, see [7]). Let Z(S1) be the vector space of all Zygmund
maps on S1 modulo the closed subspace of quadratic polynomials equipped with
the cross-ratio norm, see §9.2. (Note that quadratic polynomials are infinitesimal
deformations of the paths of Möbius maps.)

Given λ ∈MLb(H), the earthquake path t 7→ Etλ|S1 is differentiable and

Ėλ|S1 :=
d

dt
(Etλ|S1)|t=0

is called the infinitesimal earthquake. Gardiner [6] proved that each Zygmund map
arises as an infinitesimal earthquake.

The infinitesimal earthquake measure map
˙EM : MLb(H) → Z(S1)

defined by
˙EM : λ 7→ Ėλ|S1

is a bijection. We prove that the uniform weak* topology on MLb(H) makes ˙EM
into a homeomorphisms analogous to the case of quasisymmetric maps.

Theorem 3 (Uniform weak* and Zygmund). Let MLb(H) be given the uniform
weak* topology and Z(S1) be given the cross-ratio norm topology. Then, the infin-
itesimal earthquake measure map

˙EM : MLb(H) → Z(S1)

is a homeomorphism.

An infinitesimal version of the countable earthquake theorem immediately follows
from Theorem 5 in §7 and Theorem 3.
Acknowledgements. We are grateful to the referee for useful suggestions.

2. Measured laminations in H

2.1. Space of geodesics. From this point on, H is the unit disk model of the
hyperbolic plane. The unit circle S1 is identified with the set of ideal boundary
points ∂H of the hyperbolic plane. Fix z0 ∈ H. Define the distance between
z1, z2 ∈ S1 to be smaller angle between the geodesic rays connecting z0 with z1 and
z2, respectively. This gives an angle metric on S1 which depends on z0. By varying
z0 ∈ H we obtain a biLipschitz class of metrics on S1.

A complete oriented geodesic g in H is uniquely determined by an ordered pair of
its distinct ideal endpoints on S1, the initial and the terminal point of g. Conversely,
given an ordered pair of points on S1, there is a unique oriented hyperbolic geodesic
with its initial endpoint being the first point and its terminal endpoint being the
second point of the pair. Thus the space G̃ of all oriented geodesics on H is naturally
identified with S1×S1\diag. Let G be the set of all unoriented complete hyperbolic
geodesic on H. The set G is identified with (S1×S1\diag)/ ∼, where the equivalence
is defined by (a, b) ∼ (b, a) and diag is the diagonal set of the product. We denote
by da, be the equivalence class of (a, b) ∈ S1×S1 \ diag. An angle metric dz0 on S1
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with respect to z0 ∈ H induces a metric d̄z0 on G as follows. Let da, be, dc, de ∈ G.
Define d̄z0(da, be, dc, de) = min{max{dz0(a, c), dz0(b, d)}, max{dz0(a, d), dz0(b, c)}}.
The set of geodesics G has a biLipschitz class of metrics obtained by varying z0 ∈ H.

A quasiconformal map f : H → H continuously extends to a quasisymmetric
map h : S1 → S1. Mori’s theorem [1] implies that h is a Hölder continuous homeo-
morphism of S1 whose Hölder constant depends only on the maximal dilatation of
f . Thus a quasisymmetric mapping of S1 also induces a Hölder continuous home-
omorphism of G for the angle metric d̄z0 . Since each quasisymmetric map induces
a biholomorphic isometry of the universal Teichmüller space, it is natural to work
with the class of Hölder equivalent metrics to the metric d̄z0 . For our purposes it
will be enough to work with the homeomorphism class of d̄z0 .

2.2. Measured laminations. A geodesic lamination L is a closed subset of H to-
gether with a foliation of this subset by disjoint complete geodesics. We recall that
the information of the foliation of the closed subset is necessary for the definition
of a geodesic lamination in H. For example, the hyperbolic plane can be foliated
by complete hyperbolic geodesics in infinitely many different ways and each differ-
ent foliation determines a different geodesic lamination. Equivalently, a geodesic
lamination L is a closed subset of G such that no two geodesics in L intersect in H
(they can have common ideal endpoints).

Each complete geodesic in L is called a leaf of L. A stratum of L is either a
geodesic of L or a component of the complement of L in H.

A measured lamination λ is a positive, locally finite, Borel measure on the space
of geodesics G whose support |λ| is a geodesic lamination. Each measured lamina-
tion λ induces a transverse measure to its support |λ|, namely an assignment of a
positive, Borel measure to each closed finite hyperbolic arc I in H whose support
is I ∩ |λ| and which is invariant under homotopies which preserve the strata of |λ|.
More precisely, the λ-mass of an arc I, denoted by λ(I), is the λ-measure of the set
of geodesics in G which intersect I. Conversely, a transverse measure to a geodesic
lamination L determines a unique measured lamination λ whose support is L = |λ|.
For this correspondence we refer the reader to §1 of [3]. A measured lamination λ
is bounded if the Thurston’s norm

‖λ‖Th = sup
I

λ(I)

is finite, where I runs over all geodesic arcs in H with unit length. Let MLb(H) be
the set of bounded measured laminations on H. When the support of a measured
lamination λ consists of one geodesic, we say that λ is an elementary measured
lamination.

Möbius transformations act isometrically on the set of bounded measured lami-
nations by the pull-backs as follows. Let γ ∈ Möb(H) and λ a measured lamination.
We define γ∗λ as the measured lamination with support γ−1(|λ|) and the transverse
measure λ ◦ γ, where (λ ◦ γ)(I) = λ(γ(I)) for all geodesic arcs I. Clearly,

‖γ∗λ‖Th = ‖λ‖Th

holds for any measured lamination λ, and hence Möb(H) acts by isometry on
MLb(H).

2.3. Boxes and the Liouville measure. The cross ratio of a quadruple (a, b, c, d)
is given by cr(a, b, c, d) = (a−c)(b−d)

(a−d)(b−c) . A box of geodesics Q in G is the quotient under
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the equivalence ∼ of the product [a, b]×[c, d] of two disjoint closed arcs in S1, where
[a, b] (resp. [c, d]) is the arc in S1 from a (resp. c) to b (resp. d) for the orientation
of S1. We will write somewhat incorrectly Q = [a, b] × [c, d] instead of a more
correct Q = ([a, b] × [c, d])/ ∼. The Liouville measure L is a non-trivial, Möbius
group invariant Borel measure on G defined by

L(Q) = |log |cr(a, b, c, d)|| =
∣∣∣∣log

∣∣∣∣
(a− c)(b− d)
(a− d)(b− c)

∣∣∣∣
∣∣∣∣

for all boxes Q = [a, b] × [c, d]. The infinitesimal form of the Liouville measure on
G = (S1 × S1 \ diag) ∼ is given by (see [2])

dL =
dαdβ

|eiα − eiβ |2 .

For instance, when we consider the upper half-plane model of the hyperbolic plane
instead of H and let Q = [−1, 1]× [eD,−eD], the Liouville measure of Q is

(2.1) L(Q) = −2 log tanh
D

2
.

Thus, for a general box Q = [a, b] × [c, d], the Liouville measure L(Q) is inversely
related to the hyperbolic distance between the geodesics da, be and dc, de. Further-
more, a box Q = [a, b] × [c, d] satisfies L(Q) = log 2 if and only if the distance D

between da, be and dc, de satisfies eD = ω0 (= (1 +
√

2)2) if and only if the distance
between da, be and dc, de equals the distance between da, de and db, ce. A short com-
putation shows that the box Q = [−1, 1]× [3+ 2

√
2,−(3+

√
2)] ⊂ (R̂× R̂ \ diag) ∼

has the Liouville measure log 2.
We again consider the unit disk model H of the hyperbolic plane and define the

standard box
Q∗ = [−i, 1]× [i,−1].

Let `Q∗ = de−π/4, e3π/4e ∈ Q∗. Let Q be a box with L(Q) = log 2 and γQ a Möbius
transformation of H with γQ(Q∗) = Q. The geodesic `Q := γQ(`Q∗) is called the
center of the box Q.

2.4. Bounded measured laminations as distributions.

2.4.1. Weak* convergence. We say that a sequence {λn}∞n=1 of Borel measures on
G converges in the weak* topology to a Borel measure λ if

lim
n→∞

∫

G
f dλn =

∫

G
f dλ

for all continuous functions f on G with compact support.

2.4.2. Measures of squares. The following lemma is well-known. However we give
a proof for readers convenience.

Lemma 2.1 (Comparison with Thurston norm). There is a universal constant C0

such that for any measured lamination λ, we have
1
C0
‖λ‖Th ≤ sup

Q
λ(Q) ≤ ‖λ‖Th,

where the supremum is taken over all boxes Q with Liouville measure L(Q) = log 2.
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Proof. Let I be a geodesic arc in H of unit length which intersects transversely a
leaf ` of λ. Since the support |λ| consists of disjoint geodesics, there is a universal
constant L0 with the following property: Let J be a geodesic arc in H of length L0

which is orthogonal to ` at the midpoint of J and let the midpoint of J be equal
to I ∩ `. Then, any leaf of |λ| with non-trivial intersection with I also intersects J .

One can check that any leaf of |λ| (⊂ G) which intersects J is contained in a
box Q′ with center ` satisfying L(Q′) = 2 log cosh(L0/2). To see this, we identify
H with the upper half-plane and normalize J and ` such that J = [1, eL0 ]i and
` = {|z| = eL0/2} ∩ H. Any complete geodesic which is disjoint from ` and which
intersects J is in the box Q′ = [e3L0/2,−eL0/2] × [eL0/2, e3L0/2]. This means that
λ(I) ≤ λ(J) ≤ λ(Q′) and hence we conclude

‖λ‖Th ≤ C0 sup
Q

λ(Q)

with universal constant C0 > 0, where the supremum runs over all boxes Q with
L(Q) = log 2.

To show the converse, let Q = [a, b] × [c, d] be a box in G. The measure λ(Q)
is obtained as follows. Suppose for simplicity that a, b, c and d are lying on S1

in this order. Let `1 = da, de and `2 = db, ce and I the geodesic segment which
intersects orthogonally to `1 and `2 at endpoints. Then, any complete geodesic in
Q intersects I. Since the length of I is log 2 < 1, there is a geodesic arc I ′ of unit
length which contains I and hence we obtain

λ(Q) ≤ λ(I ′) ≤ ‖λ‖Th,

for all boxes Q with L(Q) = log 2 which implies the desired inequality. ¤

3. Earthquakes and earthquake measures

3.1. Earthquakes. Let L be a geodesic lamination in H. An earthquake E with
support L is a surjective map E : H→ H such that E is a hyperbolic isometry when
restricted to any stratum of L and, for any two strata A and B, the comparison
isometry

cmp(A, B) = (E |A)−1 ◦ E |B
is a hyperbolic translation whose axis weakly separates A and B, and which trans-
lates B to the left as seen from A. An earthquake E of H continuously extends to a
homeomorphism of the boundary S1 (see [21]). We denote by E |S1 the extension.

Given an earthquake E with support L, there is an associated positive transverse
measure λ to L as follows. Let I be a closed geodesic arc transversely intersecting
L with arbitrary orientation. For given n, choose a closed geodesic arc In which
contains I in its interior such that In+1 ( In and ∩nIn = I. Furthermore, choose
strata An = {A0, A1, · · · , Ak(n), Ak(n)+1} of the support of E such that A0 contains
the left end point of In, A1 contains the left endpoint of I, Ak(n) contains the right
endpoint of I, Ak(n)+1 contains the right endpoint of In, Ai’s intersect I in the given
order and the maximum of the distances between the consecutive intersections of
An with In goes to zero as n →∞. The summation of the translation lengths of the
comparison isometries cmp(Ai,Ai+1) = (E |Ai)

−1◦E |Ai+1 for i = 0, 1, · · · , k(n)+1 is
the approximate measure of I. If n →∞ and An are chosen such that (∪k(n)

i=1 Ai)∩I
is dense in I for all n, the limit of approximate measure is a well-defined positive
finite Borel measure ([21] and [8]). (Note that if E : H → H is continuous at the
endpoints of I then we can replace In with I for each n in the above construction.)
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This transverse measure defines a measured lamination λ with support L. We call
the measured lamination λ the earthquake measure for E. We denote by Eλ an
earthquake map with earthquake measure λ. An earthquake map is (essentially)
uniquely determined by its earthquake measure. The ambiguity is up to post-
composition of the earthquake map by a Möbius map and on each leaf where the
earthquake has a discontinuity there is a range of possibilities (but the extension
to S1 gives the same map regardless of the choices in this range.) The set of strata
where an earthquake map has a discontinuity consists of an at most countable
family of leaves of L.

In [21], Thurston showed that for any orientation preserving homeomorphism h
on ∂H = S1, there is a unique earthquake map Eλ such that h = Eλ|S1 . Thurston’s
theorem induces an injective map from the space of right cosets of Möb(H) in
the group of orientation preserving homeomorphisms into the space of measured
laminations in H by the formula Möb(H) ◦ h 7→ λ where h = Eλ|S1 .

For an orientation preserving homeomorphism h : S1 → S1 and an earthquake
map Eλ such that Eλ|S1 = h, we have that h ◦ γ = Eγ∗(λ)|S1 for any γ ∈ Möb(H).

3.2. Convergence of earthquakes. Notice from the definition that for any γ ∈
Möb(H), the earthquake measure of γ ◦ E coincide with that of E. Hence, Eλ

is determined up to postcomposition of Möbius transformations. Because of this
ambiguity, we should give a remark on the symbol Eλ. Namely, when Eλ is treated
as a map, this Eλ is always chosen suitably for the content. For instance, we have
used the equation “h = Eλ” with a homeomorphism h on S1. This equation means
that we can choose an earthquake map with earthquake measure λ which coincides
with h on S1. When we say that “Eλn → Eλ as n →∞”, a sequence consisting of
choices of the earthquake maps for λn (n ∈ N) converges to one of those for λ.

4. The universal Teichmüller space and the earthquake measure map

4.1. Quasisymmetic maps. An orientation preserving homeomorphism h : S1 →
S1 is said to be quasisymmetric if there is a constant M ≥ 1 such that

(4.1)
1
M

≤ |h(J1)|
|h(J2)| ≤ M

for all adjacent intervals J1, J2 ⊂ S1 with |J1| = |J2|, where |Ji| is the arc length
with respect to the angle measure on S1 = ∂H. Let QS be the set of all quasisym-
metic maps on S1 and let Möb(H) be the group of Möbius transformations that
preserve H. The universal Teichmüller space T (H) is the quotient space

T (H) = Möb(H)\QS

where Möb(H) acts on QS via post-compositions. For any h ∈ QS, we denote
by [h] its class in T (H). The universal Teichmüller space T (H) admits a natural
(metric) topology induced by considering maximal dilatations of all quasiconformal
extensions to H of quasisymmetric maps of S1. Namely, two quasisymetric maps
h1 and h2 are close if there exists a quasiconformal extension of h2 ◦ h−1

1 whose
maximal dilatation is near one. This topology on T (H) is the same one inherited
from quasisymetric constants. See [4] or [7].
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4.2. The earthquake measure map. In this subsection, we define the earth-
quake measure map. We first recall the following theorem, which is proved by
Gardiner-Hu-Lakic [8] and in [15].

Theorem 4 (Gardiner-Hu-Lakic, Šarić). Let h be an orientation preserving homeo-
morphism of ∂H = S1 and let Eλ be the earthquake of H whose continuous extension
to S1 equals h. Then the following are equivalent.

(1) The earthquake measure λ of the earthquake Eλ|S1 = h is bounded.
(2) h is quasisymmetric.

The earthquake measure map

EM : T (H) →MLb(H)

is defined by EM([h]) = λ where h = Eλ|S1 . As noted in §3.2, every earth-
quake is determined by its earthquake measure up to post-composition by Möbius
maps. Hence, together with the uniqueness of the earthquake measures for home-
omorphisms [21], Theorem 4 tells us that the earthquake measure map EM is
well-defined and bijective.

In [8] and [9], it is proved that for a quasisymmetric map h, the Thurston norm
of the earthquake measure of h is comparable with the quasisymmetric constant
of h. We will give a brief proof of a weaker result than the comparison statement
which we need here (cf. Lemma 7.1).

5. Uniform weak* topology

We define a topology on MLb(H) which is natural for the correspondence be-
tween quasisymmetric maps of S1 and the earthquake measures. This topology is
the main object of study in this paper.

A sequence λm ∈ MLb(H) converges to λ ∈ MLb(H) in the uniform weak*
topology if for any continuous function f on G with supp(f) ⊂ Q∗,

sup
Q

∫

Q∗
fd((γQ)∗(λm)− (γQ)∗(λ)) → 0

as m → ∞, where the supremum is over all boxes Q with the Liouville measure
L(Q) = log 2, γQ ∈ Möb(H) is such that γQ(Q∗) = Q and Q∗ = [−i, 1]× [i,−1].

The definition of the uniform weak* topology has two important features. Namely,
it is uniform on an infinite family of boxes of geodesics and the family is restricted
to boxes of a fixed size. These two conditions together make the uniform weak*
topology useful for our purposes.

6. Examples

In this section, we consider the example from the Introduction of a sequence in
the space of bounded measured laminations which does not converge in the uniform
weak* topology and yet it does converge in the weak* topology.

6.1. Uniform weak* topology vs weak* topology. For simplicity, we use the
upper half-plane model for the hyperbolic plane in place of H. Let `n = d1/n,∞e
(n ∈ Z \ {0}) and `∞ = d0,∞e be two geodesics H. Namely, `n is the vertical line
which connects n and ∞, and `∞ is the vertical line which connects 0 and ∞.

Example 1. Let λn be the measured lamination whose support is `n with
λn(`n) = 1. Let λ∞ be the measured lamination whose support is `∞ such that



10 HIDEKI MIYACHI AND DRAGOMIR ŠARIĆ

Figure 2. `∞, `n, and the box Qn with center `∞ and L(Qn) =
log 2 such that `n /∈ Qn. The right picture represents how Qn

distributes in the space G.

λ∞(`∞) = 1. We claim that λn does not converge to λ∞ in the uniform weak*
topology as n →∞, while it does converge in the weak* topology on measures on
G.

Indeed, for n ≥ 1 and ω0 = (1 + 2
√

2)2, we define a box Qn = [−an, an] ×
[ω0an,−ω0an] with 1/(ω0n) < an < 1/n, where [ω0an,−ω0an] is the interval in
∂H = R ∪ {∞} which contains ∞ and connects ω0an and −ω0an (cf. Figure 2).

Then, one can check that L(Qn) = log 2, λ∞(Qn) = 1 and λn(Qn) = 0 since
`n 6∈ Qn. We take a positive continuous function ϕ on G with support in the
standard box for the upper half-plane Qu = [−1, 1] × [3 + 2

√
2,−(3 + 2

√
2)] such

that ‖ϕ‖∞ ≤ 1 and the value at the center `Qu = `∞ of ϕ is positive. From the
symmetries of Qn and Qu, one can see that γQn(`∞) = `Qn for all n. Then
(6.1)∣∣∣∣

∫

Qu

ϕd(γQn)∗(λn − λ∞)
∣∣∣∣ =

∣∣∣∣
∫

Qn

ϕ ◦ γ−1
Qn

d(λn − λ∞)
∣∣∣∣ = ϕ ◦ γ−1

Qn
(`∞) = ϕ(`∞)

for all n which implies that λn does not converge to λ∞ in the uniform weak*
topology. The weak* convergence of λn to λ∞ is immediate. By the same reason,
we can see that the “midpoint approximation” 1

2 (λn + λ−n) does not converge to
λ∞ in the uniform weak* topology either.

The above example motivates the following necessary condition for a sequence
{λn}n∈N to converge (in the uniform weak* topology) to a measured lamination
λ∞ whose support is a single leaf.

Proposition 6.1. Let {λn}∞n=1 be a sequence of bounded measured laminations
which converges in the uniform weak* topology to a measured lamination λ∞ whose
support is a single geodesic. Then, for all sufficiently large n, each endpoint of |λ∞|
is contained in the closure the set of endpoints of leaves of λn.

Proof. Let |λ∞| = d0,∞e. Suppose on the contrary that there is a δn > 0 such
that any leaf of λn does not have endpoints in an open interval (−δn, δn). We take
a sufficiently small an > 0 such that ω0an < δn, where ω0 = (1 +

√
2)2 as before.

Define Qn by
Qn = [−an, an]× [ω0an,−ω0an]
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Then, the center of Qn is `∞, L(Qn) = log 2 and Qn ∩ |λn| = ∅. Thus, by the same
calculation as (6.1), we get∣∣∣∣

∫

Qu

ϕd(γQn)∗(λn − λ∞)
∣∣∣∣ ≥ ϕ(`∞) > 0

for some continuous function ϕ independent of n. This means that {λn}∞n=1 cannot
converge to λ∞ in the uniform weak* topology. ¤

However, a sequence {λn}n∈N which converges in the weak* topology to a (single
geodesic support) measured lamination λ∞ and which satisfies the property in
Proposition 6.1 does not necessarily converge to λ∞ in the uniform weak* topology
which is illustrated by an example similar to the above.

6.2. Elementary earthquakes. We shall check the behavior of earthquakes whose
supports are single geodesics given in the above section to clarify the connection
between the uniform weak* topology and the weak* topology on the measured lami-
nations and the Teichmüller topology on the extensions to S1 of their corresponding
earthquake maps.

Let `n = d1/n,∞e for n ∈ N∪ {∞}. Then the earthquake map Eλn for elemen-
tary measures λn with single geodesic support `n and mass 1 (normalized to fix
three points {−1, 0,∞}) is

Eλn(z) =
{

e(z − 1/n) + 1/n (Re(z) > 1/n)
z (Re(z) ≤ 1/n)

for z ∈ H, where we set 1/∞ = 0. Clearly hn := Eλn |∂H converges to h∞ =
Eλ∞ |∂H pointwise. However, hn does not converge to h∞ in the Teichmüller
topology. Indeed, for n ∈ N and boxes Qn = [∞,−e/n]× [0, e/n], we get L(Qn) =
log 2 and

L(hn ◦ h−1
∞ (Qn)) = log(e + 1)− 1.

This means that the maximal dilatation of any quasiconformal extension of hn◦h−1
∞

is uniformly greater than 1. Thus, the sequence {hn}∞n=1 does not converge to h∞
in T (H), which also follows from Theorem 1 and Example 1 above.

7. The earthquake measure map is a homeomorphism

In this section, we prove Theorem 1. We need the following lemma which is a
special case of a result in [9].

Lemma 7.1. For any C1 > 0, there is C2 > 0 depending only of C1 such that for
any bounded measured lamination λ with ‖λ‖Th ≤ C1, the quasisymmetric constant
of Eλ |S1 is at most C2.

Proof. This follows from the results in [13]. The earthquake path t 7→ Etλ|S1 is
a real analytic path in the universal Teichmüller space T (H) which extends to a
holomorphic motion τ 7→ Eτλ|S1 of S1 in Ĉ. Moreover, the holomorphic motion is
well-defined for τ in a neighborhood of the real line R whose shape depends only
on ‖λ‖Th (see [13]). Then the essential supremum norm of the Beltrami coefficient
of the extension of the holomorphic motion of S1 to a holomorphic motion of Ĉ for
τ = 1 depends only on the shape of the domain in which τ is defined. As we noted
above, this in turn only depends on ‖λ‖Th. Thus the quasisymmetric constant of
Eλ|S1 depends only on ‖λ‖Th which proves the lemma. ¤
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7.1. Proof of Theorem 1. We first show that the earthquake measure map EM
is continuous. Let [h] ∈ T (H) and {[hm]}∞m=1 ⊂ T (H) with [hm] → [h] as m →∞.
Let λm = EM([hm]) and λ = EM([h]). Then, it follows from Lemma 4.1 of [16]
that for any continuous function f on G with supp(f) ⊂ Q∗,

sup
Q

∫

Q∗
fd((γQ)∗(λm)− (γQ)∗(λ)) → 0

as m →∞, where Q runs over all boxes whose Liouville measures are log 2 and γQ

is a Möbius map which sends the standard box Q∗ = [−i, 1]× [i,−1] onto the box
Q. This means that EM is continuous for the uniform weak* topology on MLb(H)
and the Teichmüller topology on T (H).

Next, we show that the inverse EM−1 is continuous. Suppose λn = EM([hm]) →
λ = EM([h]) in the uniform weak* topology. Assume on the contrary that EM−1

is not continuous. Namely, there are ε0 > 0 and a sequence {Qm}∞m=1 of boxes with
the Liouville measure L(Qm) = log 2 such that

(7.1) |L(hm(Qm))− L(h(Qm))| ≥ ε0

for all m, where h and hm are normalized to fix 1, i and −1. Take Möbius trans-
formations βm and β∗m such that gm = βm ◦ hm ◦ γQm and g∗m = β∗m ◦ h ◦ γQm fix
1, i and −1. By (7.1), we have

(7.2) |L(gm(Q∗))− L(g∗m(Q∗))| ≥ ε0

for all m. Since λn → λ in the uniform weak* topology, it follows that ‖λn‖Th is
uniformly bounded (using Lemma 2.1). Lemma 7.1 implies that the constants of
quasisymmetry of gm and g∗m are uniformly bounded. The compactness of normal-
ized quasisymmetric mappings with uniformly bounded quasisymmetric constants
imply that gm and g∗m have two subsequences which are index by the same set
that converge to normalized quasisymmetric mappings g and g∗, respectively. For
simplicity of notation, we rename the subsequences to be gm and g∗m. By (7.2), g
does not coincide with g∗.

We claim

Claim. The limits, in the weak* topology, of any pair of converging subsequences
{(γQmj

)∗λmj}∞j=1 and {(γQmj
)∗λ}∞j=1 of {(γQm)∗λm}∞m=1 and {(γQm)∗λ}∞m=1 are

the same bounded measured lamination λ′.

Proof of the Claim. From the compactness of probability measures under the weak*
topology, one sees that two sequences {(γQm)∗λm}∞m=1 and {(γQm)∗λ}∞m=1 con-
tain a pair {(γQmj

)∗λmj}∞j=1 and {(γQmj
)∗λ}∞j=1 of converging subsequences in the

weak* topology. Since λm converges to λ in the uniform weak* topology, it fol-
lows tha {(γQm)∗λm− (γQm)∗λ}∞m=1 converges to zero measure in the weak* sense.
Hence the weak* limits of the pair of converging subsequences {(γQmj

)∗λmj}∞j=1

and {(γQmj
)∗λ}∞j=1 are same. ¤

We continue the proof of Theorem 1. By Lemma 3.2 of [15], we can choose
representatives of earthquakes E(γQm )∗λm and E(γQm )∗λ such that the two sequences
{E(γQm )∗λm |S1}∞m=1 and {E(γQm )∗λ|S1}∞m=1 converge to the same (representative
of) earthquake map Eλ′ |S1 pointwise on S1 (cf. §3.2). Then we take Möbius
transformations β̂m and β̂∗m such that β̂m ◦ E(γQm )∗λn and β̂∗m ◦ E(γQm )∗λ fix 1, i
and −1. Since the limits of two sequences {E(γQm )∗λn}∞m=1 and {E(γQm )∗λn}∞m=1
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are same, β̂m and β̂∗m converge the same Möbius transformation. Hence, the limits
of β̂m ◦ E(γQm )∗λn and β̂∗m ◦ E(γQm )∗λ also agree.

On the other hand, from the definition of earthquakes we have that

EM([β̂m ◦ E(γQm )∗λm |S1 ]) = EM([E(γQm )∗λm |S1 ]) = (γQm
)∗λm

= EM([hm ◦ γQm ]) = EM([gm])

and

EM([β̂m ◦ E(γQm )∗λ|S1 ]) = EM([E(γQm )∗λ|S1 ]) = (γQm)∗λ

= EM([h ◦ γQm
]) = EM([g∗m]).

Since the earthquake measure map is bijective and all maps β̂m ◦E(γQm )∗λm , β̂m ◦
E(γQm )∗λ, gm, and g∗m fix 1, i and −1, we conclude β̂m ◦ E(γQm )∗λm |S1 = gm and
β̂m ◦ E(γQm )∗λ|S1 = g∗m. However, this contradicts that the limits g and g∗ of
{gm}∞m=1 and {g∗m}∞m=1 are distinct. The contradiction proves Theorem 1.

8. Approximations by discrete laminations

The purpose of this section is to propose a candidate for a class of simple mea-
sured laminations in order to better understand the universal Teichmüller space
using earthquake maps. Indeed, we will show that discrete measured laminations
are dense in MLb(H) with respect to the uniform weak* topology. Discrete mea-
sured laminations are close relative of finite measured laminations and earthquakes
supported on discrete measured laminations are easier to visualize.

8.1. Discrete laminations. A geodesic lamination L is said to be discrete if any
compact set K ⊂ H intersects only finitely many leaves of L. Equivalently, L is a
discrete geodesic lamination if it is discrete subset of G. A measured lamination
λ is, by definition, discrete if its support |λ| is a discrete subset of G. To show
the density of discrete measured laminations in MLb(H), we give some notations
needed in the proof of the density theorem.

Extreme geodesics and peaks. We recall that a box of geodesics is the product set
I × J ∈ G where I and J are disjoint closed intervals of ∂H = S1. In this proof,
we generalize the notion of boxes such that either I or J is allowed to be a point,
open or half-open interval. For a generalized box Q = I × J , we define the extreme
geodesics {`1Q, `2Q} for Q as follows. Suppose that both I and J are non-degenerate
intervals. Let Int(I) = (a, b) and Int(J) = (c, d). Then, we set `1Q = db, ce and
`2Q = da, de. When exactly one of the intervals is degenerate, say when I = {a}
and Int(J) = (c, d), we set `1Q = da, ce and `2Q = da, de. When I and J are both
degenerate, `1Q and `2Q are defined to be the geodesic connecting I and J . See
Figure 3.

Let Q = I × J be a generalized box in G and L a geodesic lamination. Let
Q̄ = Ī × J̄ be the closure of Q, where Ī , J̄ are closures of I, J . A leaf g of L is
said to be peak with respect to Q if g ∈ Q̄ and one of the two components of H \ g
does not contain leaves of L ∩Q. By definition, when L ∩ Q̄ contains at least two
leaves, there is exactly two peak geodesics of L with respect to Q. In addition, if
an extreme geodesic of Q is a leaf of L, it is also a peak geodesic of L with respect
to Q.
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Figure 3. Generalized boxes in G and their extreme geodesics.

8.2. Density of discrete laminations. We are ready to prove the density of
discrete laminations.

Theorem 5 (Discrete laminations are dense). The set of discrete bounded measured
laminations is dense in MLb(H) in the uniform weak* topology.

Proof. Fix λ ∈MLb(H). Let λ0 and λ1 be the discrete and continuous parts of the
measure λ on G, respectively. By definition, λ0 is the (possibly countably infinite)
sum of Dirac measures (atoms). Note that the support of λ0 is not necessarily
a discrete geodesic lamination which implies that λ0 is a not necessarily a dis-
crete bounded measured lamination according to our definition. We identify Dirac
measures appearing as terms of λ0 with their supports (each of them is a positive
number assigned to a point in G).

We now fix n and partition G into a locally finite, countable family of boxes
{B′

s}∞s=1 with mutually disjoint interiors such that their Liouville measures satisfy
L(B′

s) ≤ log 2. We enumerate the terms of λ0:

λ0 =
∞∑

s=1

∑
m

µs
m

such that supp(µs
m) ⊂ B′

s. If an atom belongs to the boundary side of a box, then
it is shared by at least two boxes and at most four boxes. We fix one of the possible
boxes to which the atom belongs and write it in the above sum only once. It is
possible that {µs

m}m consists of infinitely many Dirac measures, for any s. For each
s, we take ms,n such that

(8.1)
∞∑

s=1

∑

m≥ms,n

µk
m(B′

s) < 1/n.

Notice from the definition that

λ0
n :=

∞∑
s=1

∑

m≤ms,n

µs
m
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Figure 4. Boxes bounded by broken lines represents B′n
k .

is a discrete sub-measured lamination of λ. We define a measured lamination λ1
n

by

λ1
n := λ− λ0

n = λ1 +
∞∑

s=1

∑
m>ms,n

µk
m

We claim the following.

Claim 1. For any n, there is a locally finite collection {Bn
k }∞k=1 of countably many,

mutually disjoint generalized boxes with the following properties.
(1) {Bn

k }∞k=1 covers |λ1
n|.

(2) λ1
n(Bn

k ) < 1/n and L(Bn
k ) ≤ log 2 for all k, and

(3) extreme geodesics of Bn
k are leaves of |λ1

n|.
Proof of Claim 1. By the definition of λ1

n, we can divide each B′
s into a finite col-

lection of non-degenerate closed boxes such that its λ1
n-measure is less than 1/n

and interiors of distinct boxes are disjoint. We define a sub-collection {B′n
k}∞k=1 to

consist of all the above boxes (running all s) which intersect the support |λ1
n| of λ1

n.
We now fix one box B′n

k and modify it appropriately to get the collection of
generalized boxes as in the claim.

Case 1.1 : B′n
k ∩ |λ1

n| consists of one point. When B′n
k ∩ |λ1

n| is not an atom,
then it has to belong to a boundary side B′n

k . We drop B′n
k from the family of

boxes. Suppose B′n
k ∩ |λ1

n| is an atom λ′k,n of λ, we again drop B′n
k from the

collection of boxes and add λ′k,n to λ0
n. Since {B′n

k}∞k=1 is locally finite, even if we
continue this procedure infinitely (but countably) many times, λ0

n is still a locally
finite sublamination of λ (cf. (1) in Figure 4).

Case 1.2 : B′n
k ∩ |λ1

n| contains at least two points. Let gk,n and g′k,n be peak
geodesics of |λ1

n| with respect to B′n
k . We replace the box B′n

k by a box B′′n
k ⊂ B′n

k

whose extreme geodesics are gk,n and g′k,n (cf. (2) in Figure 4). If it happens that
gk,n and g′k,n share the same endpoint, then B′′n

k is a generalized box in our sense
(cf. the right figure of (2) in Figure 4).

From the definition, the family {B′′n
k}∞k=1 of the resulting boxes is locally finite

and satisfies the properties (1), (2) and (3) in the claim.
It is possible that some of the obtained closed boxes intersect along their bound-

aries. In this case, we divide the closed box into an open box which is the interior
and into boundary sides which are generalized boxes. Each of the boundary sides
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Figure 5. (1) in Claim 2 of the proof of Theorem 5.

is divided further into finitely many generalized boxes such that the new family
of generalized boxes is pairwise mutually disjoint. Thus, after renumbering with
respect to k if necessary, we finally obtain the family of generalized boxes {Bn

k }∞k=1

as we claimed. ¤

Let us continue the proof of the density theorem. Fix n ∈ N. Let {Bn
k }∞k=1 be

the family of boxes from Claim 1. We fix gn
k ∈ Bn

k ∩ |λ| arbitrary, and define

λ2
n :=

∞∑

k=1

λ1
n(Bn

k ) · δgn
k

and

λn := λ0
n + λ2

n,

where δgn
k

is the dirac measure on G with support gn
k . Since {Bn

k }∞k=1 is locally
finite, so is λn. Furthermore, λn is a measured geodesic lamination, because leaves
of λn are leaves of λ.

We will prove that, as n tends to ∞, λn converges to λ in the uniform weak*
topology, which implies that discrete bounded measured laminations are dense in
MLb(H). We need the following claim to show the convergence.

Claim 2. The following holds.

(1) For any box Q in G, there are at most two boxes from the family {Bn
k }∞k=1

such that Bn
k ∩Q 6= ∅ but Bn

k 6⊂ Q.
(2) The sequence {λn}∞n=1 has uniformly bounded Thurston norms. In partic-

ular, λn ∈MLb(H).

Proof of Claim 2. (1) Let Bn
k be a box satisfying gn

k ∈ Q but Bn
k 6⊂ Q. Let

Q = [a, b] × [c, d] and Bn
k = [x, y] × [z, w]. Without loss of generality, we may

assume that b is in the interior of [x, y]. Then, there is no box Bn
k′ = I ′ × J ′ such

that Bn
k′ ∩ Q 6= ∅ and I ′ ∩ [c, z] 6= ∅ or J ′ ∩ [c, z] 6= ∅. This follows because the

extreme geodesics of Bn
k′ are contained in a component of H \ dy, ze whose closure

contains c, and hence, no geodesic in Bn
k′ can connect [a, b] and [c, d]. (Figure 5). If

there is another box Bn
k1

= [x1, y1]× [z1, w1] such that gn
k1
∈ Q and Bn

k1
6⊂ Q, then

either a ∈ [x1, y1] or d ∈ [x1, y1] or a ∈ [z1, w1] or d ∈ [z1, w1]. The above reasoning
implies that there could be no more boxes with the above property. Thus, there
are at most two boxes with the property that Bn

k ∩Q 6= ∅ but Bn
k 6⊂ Q.
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(2) Let Q be a box with Liouville measure L(Q) = log 2. From the definition of
λn, we get

λn(Q) ≤ λ0
n(Q) +

∑

Bn
k∩Q6=∅

λ1
n(Bn

k ) ≤ λ(Q) + (λ(Q) + (1/n)× 2),

because λ0
n is a sub-measured lamination of λ and the number of boxes Bn

k that
intersect Q and are not contained in Q is at most 2. By Lemma 2.1, we deduce
that the sequence {λn}∞n=1 has uniformly bounded Thurston norms. ¤

Let us continue with the proof that λn converges to λ in the uniform weak*
topology. Let Q be a box with Liouville measure L(Q) = log 2 and let f be a
continuous function on G whose support is in the standard box Q∗. Let ε > 0. We
take δ > 0 such that |f(`)− f(`′)| < ε when d(`, `′) ≤ δ, where d is the fixed metric
on G induced by the angle metric on S1 with respect to 0 ∈ H (cf. §2.1).

Take Bn
k with Q ∩ Bn

k 6= ∅. Recall that γQ : Q∗ 7→ Q. Let γ−1
Q (Bn

k ) = I × J .
Suppose that I ∩ [−i, 1] and J ∩ [i,−1] are non-empty. We set

λ̂Q,n := (γQ)∗(λn)− (γQ)∗(λ) = (γQ)∗(λ2
n)− (γQ)∗(λ1

n)

for simplicity. We consider the following three cases for Bn
k .

Case 1. Bn
k ⊂ Q and the lengths of I and J are less than δ.

In this case, we have∣∣∣∣∣
∫

γ−1
Q (Bn

k )

f dλ̂Q,n

∣∣∣∣∣ =

∣∣∣∣∣f(γ−1
Q (gn

k ))λ1
n(Bn

k )−
∫

γ−1
Q (Bn

k )

f d((γQ)∗(λ1
n))

∣∣∣∣∣ ≤ ελ1
n(Bn

k ).

Therefore, the summation over all boxes Bn
k in this case gives

(8.2)
∑

{Bn
k ’s in Case 1}

∣∣∣∣∣
∫

γ−1
Q (Bn

k )

f dλ̂n

∣∣∣∣∣ ≤ ελ1
n(Q) ≤ ελ(Q).

Case 2. Bn
k ⊂ Q and, if γ−1

Q (Bn
k ) = I × J then either I or J has length at least δ.

Notice that the number of such Bn
k ’s in this case is O(1/δ) because the extreme

geodesics of each Bn
k are the leaves of λ which implies that no two Bn

k ’s can have a
side in common. In fact, sides of two Bn

k ’s can have at most one point in common.
Hence, we have

∑

{Bn
k ’s in Case 2}

∣∣∣∣∣
∫

γ−1
Q (Bn

k )

f dλ̂Q,n

∣∣∣∣∣ ≤ O (‖f‖∞/(nδ))(8.3)

Case 3. Bn
k 6⊂ Q.

Notice that∣∣∣∣∣
∫

γ−1
Q (Bn

k )

f dλ̂n

∣∣∣∣∣ ≤ (λ2
n(Bn

k ) + λ1
n(Bn

k ))‖f‖∞ ≤ 2‖f‖∞/n.

By (1) of Claim 2, there are at most two such boxes. Hence, we have

(8.4)
∑

{Bn
k ’s in Case 3}

∣∣∣∣∣
∫

γ−1
Q (Bn

k )

f dλ̂Q,n

∣∣∣∣∣ ≤ 4‖f‖∞/n.
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Figure 6. Orientations of leaves and associated intervals.

We can now complete the proof of the convergence. Indeed, we take n sufficiently
large such that nδ > 1/ε. Then, from the three cases above, we conclude

sup
Q

∣∣∣∣
∫

Q∗
f dλ̂Q,n

∣∣∣∣ ≤ sup
Q





∑

{Bn
k∩Q6=∅}

∣∣∣∣∣
∫

γ−1
Q (Bn

k )

f dλ̂Q,n

∣∣∣∣∣





≤ sup
Q
{ελ(Q) + O (‖f‖∞/(nδ)) + 4‖f‖∞/n}

= ε

(
sup
Q

λ(Q)
)

+ O(ε) = O(ε),

where the supremum is taken over all Q with L(Q) = log 2. Since λ̂Q,n = (γQ)∗(λn)−
(γQ)∗(λ), we have that λn converges to λ in the uniform weak* topology. ¤

Theorem 5 and Theorem 1 immediately imply Theorem 2.

9. Infinitesimal Earthquakes and Vector fields

In this section, we consider the vector fields on ∂H = S1 which arise by differ-
entiating the paths of earthquakes. The aim is to prove the equivalence between
the uniform weak* topology on earthquake measures and the Zygmund topology
on the vector fields (cf. Theorem 3) which is an analogy to Theorem 1.

9.1. Vector fields. Let λ be a bounded measured lamination. From now on, we
fix a stratum A of λ such that A is either a gap or a geodesic which is not an atom
of λ. Every leaf ` of λ is oriented as a part of the boundary of the component of
H \ ` containing A. Let a be the initial point and b the terminal point of ` for the
given orientation. Let [a, b] be an oriented interval connecting endpoints of ` (cf.
Figure 6). Then, we set

Ėλ
` (z) =

{
0 for z outside of [a, b]

(z−a)(z−b)
a−b for z ∈ [a, b].

When ` ∈ G is not a leaf of λ, we put Ėλ
` (z) = 0 for all z ∈ ∂H = S1. For any point

z ∈ ∂H = S1, Ėλ
` (z) is a function of ` ∈ G.

We consider the integral

(9.1) Ėλ(z) :=
∫

G
Ėλ

` (z)dλ(`)
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for a measured lamination λ. For a finite lamination λ =
∑m

i=1 λi`i, by definition,
it holds

Ėλ(z) =
m∑

i=1

λiĖ
λ
`i

(z).

One can show that the integral Ėλ in (9.1) is well-defined for all λ ∈MLb(H) by an
approximation argument (see [6]). We give a more direct proof of the convergence
of the integral in the Appendix (cf. §10).

9.1.1. Infinitesimal earthquakes. For λ ∈ MLb(H) and t > 0, we normalize Etλ to
be the identity on the stratum A which we have fixed before. Gardiner-Hu-Lakic
[8] proved that the integral (9.1) gives the tangent vector fields to the paths of
earthquake deformations:

(9.2) Ėλ(z) =
d

dt
Etλ(z)

∣∣∣∣
t=0

for z ∈ ∂H = S1 (cf. [8]). Let Z(∂H) be the Banach space of Zygmund functions
on ∂H modulo the subspace of quadratic polynomials (cf. §??). Gardiner [6] also
proved the infinitesimal earthquake theorem, which states that the map

(9.3) MLb(H) 3 λ 7→ Ėλ ∈ Z(∂H)

is bijective (Theorem 5.1 of [6]).

9.1.2. Convergence of vector fields. The following proposition is well-known.

Proposition 9.1. Let λ ∈ MLb(H) and let {λn}∞n=1 be a sequence in MLb(H)
with uniformly bounded Thurston norms. If {λn}∞n=1 converges to λ in the weak*
topology, then Ėλn pointwise converges to Ėλ on ∂H.

We shall give a proof of Proposition 9.1 in the Appendix (§10.3) for completeness.
After that, we will give a simple proof of the formula (9.2) using holomorphic
motions and Proposition 9.1 in §10.4.

9.2. Uniform weak* and Zygmund topologies. Let V be a continuous function
on ∂H = S1 satisfying V (z)/(iz) ∈ R for z ∈ ∂H = S1. We say that V is in the
Zygmund class if there is an M > 0 such that

(9.4) |V (ei(x+t)) + V (ei(x−t))− 2V (eix)| ≤ M |t|
for all 0 ≤ x < 2π and 0 < t < π. The infimum of the constant M in (9.4) is called
the Zygmund norm of V and we denote it by ‖V ‖Zyg. Recall that ‖V ‖Zyg = 0 if
and only if V is a quadratic polynomial. The quotient of the class of continuous
functions satisfying V (z)/(iz) ∈ R for z ∈ ∂H and inequality (9.4) by the subspace
consisting of the quadratic polynomials becomes a Banach space Z(∂H) with the
norm ‖ · ‖Zyg. We call Z(∂H) the Zygmund space.

We define the cross-ratio norm on Z(∂H) as follows. Let Q = [a, b]× [c, d] be a
box of geodesics such that 4-points a, b, c, d lie on ∂H in the counter-clockwise. For
V ∈ Z(∂H), we set

V [Q] =
V (a)− V (c)

a− c
+

V (b)− V (d)
b− d

− V (a)− V (d)
a− d

− V (b)− V (c)
b− c

.

Then, the cross-ratio norm ‖V ‖cr of V is defined by

‖V ‖cr = sup
Q
|V (Q)|
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where Q runs over all boxes with Liouville measure L(Q) = log 2. The Zygmund
norm is equivalent to the cross-ratio norm on Z(∂H) (see [7]).

9.3. Proof of Theorem 3. By Gardiner’s infinitesimal earthquake theorem the
map (9.3) is bijective. Hence it suffices to show that the map and its inverse are
both continuous.

We first check that the map (9.3) is continuous. Let λn → λ as n → ∞ in the
uniform weak* topology. Then ‖λn‖Th is uniformly bounded. It follows that the
sequence Vn := Ėλn |S1 has uniformly bounded cross-ratio norms. Indeed, the cross-
ratio norm gives the infinitesimal change in the cross-ratios under the earthquake
path t 7→ Etλn |∂H. Assume on the contrary that ‖Vn‖cr → ∞ as n → ∞. Then
there exists a sequence Qn of boxes in G with the Liouville measure L(Qn) = log 2
such that |Vn[Qn]| → ∞ as n →∞. Let γQn

: Q∗ 7→ Qn be a Möbius map from the
standard box Q∗ and let λ′n := (γn)∗(λn). Then there exists a subsequence of λ′n,
denoted by λ′n for simplicity, which converges in the weak* topology to a bounded
measured lamination λ′. Then, by Proposition 9.1, there exists an appropriate
normalization of the earthquake vector fields such that Ėλ′n |S1 → Ėλ′ |S1 pointwise
as n →∞. Since |V [Qn]| = |Ėλ′n |S1 [Q∗]| → ∞ as n →∞, this gives a contradiction.
Thus the vector fields Vn have uniformly bounded cross-ratio norms.

A family of normalized Zygmund bounded maps (normalized to be zero at three
fixed points of S1) whose cross-ratio norms are uniformly bounded is a normal fam-
ily (see [7]). If necessary, we normalize Ėλn |S1 by adding a quadratic polynomial,
such that Ėλn |S1 is a normal family. Assume on the contrary that Ėλn |S1 9 Ėλ|S1

in the cross-ratio norm topology. Then there are C > 0 and a sequence of quadru-
ples Qn in S1 with L(Qn) = log 2 such that |Ėλn [Qn] − Ėλ[Qn]| ≥ C. Let γQn

be the Möbius map such that γQn : Q∗ 7→ Qn, where Q∗ = [−i, 1] × [i,−1] is
the standard box. Then |γ∗Qn

(Ėλn)[Q∗] − γ∗Qn
(Ėλ)[Q∗]| ≥ C for all n. Since

‖γ∗Qn
(λn)‖Th = ‖λn‖Th and ‖γ∗Qn

(λ)‖Th = ‖λ‖Th, it follows that the Thurston
norms of γ∗Qn

(λn) and γ∗Qn
(λ) are uniformly bounded. Therefore, we can extract

convergent subsequences of γ∗n(λn) and γ∗n(λ) in the weak* topology, which we de-
note by the same letters for simplicity. The assumption on the convergence λn → λ
in the uniform weak* topology implies that the limit of γ∗n(λn) equals to the limit of
γ∗n(λ). On the other hand, the two sequences of vector fields γ∗n(Ėλn) and γ∗n(Ėλ)
converge pointwise to different limits (even different up to addition of a quadratic
polynomial) because they differ on the standard box Q∗. This implies that a sin-
gle measured lamination represents two different earthquake vector fields which is
impossible. Thus the map λ 7→ Ėλ|S1 is continuous.

It remains to show that the inverse map is continuous. From this point until the
end of the proof we replace H with the upper half-plane model. The ideal boundary
of the upper half-pane is R̂ = R ∪ {∞}. Assume that Ėλn |R̂ → Ėλ|R̂ as n →∞ in
the cross-ratio norm. We claim that there exists C > 0 such that ‖λn‖Th < C for
all n. Suppose on the contrary that ‖λn‖Th → ∞ as n → ∞. Then there exists
a sequence In of closed geodesic arcs in the upper half-plane whose length is 1/n
such that the λn-mass of the geodesics intersecting In goes to infinity as n → ∞.
Let ln and rn be the leftmost and the rightmost geodesic of |λn| which intersect In.
It is possible that ln = rn. Let γn be the Möbius map such that the endpoints of
γn(ln) are fixed points b, d ∈ R, say b < d, and such that the endpoints of γn(rn)
converge to b and d, respectively. Let a, c ∈ R with a < b and b < c < d be such
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that box Q = [a, b] × [c, d] has the Liouville measure L(Q) = log 2. We normalize
Ė(γ−1

n )∗(λn)|R̂ = (γ−1
n )∗(Ėλn |R̂) by orienting all the leaves of |γn(λn)| to the left

with respect to the geodesic db, de.
The cross-ratio norm is invariant under the push-forward by Möbius maps. This

implies that ‖Ė(γ−1
n )∗(λn)|R̂‖cr = ‖Ėλn |R̂‖cr is bounded. Let Vn = Ė(γ−1

n )∗(λn)|R̂ for
short. The normalization that we imposed on Vn gives that

Vn[Q] = Vn(a)[
1

a− c
− 1

a− b
] + Vn(c)[

−1
a− c

+
−1

c− d
].

Both terms are non-negative. Moreover, Vn(c) ≥ λn(In) → ∞ as n → ∞, where
λn(In) is the λn-mass of geodesics intersecting In. Thus Vn[Q] → ∞ as n → ∞
which is a contradiction. Thus ‖λn‖Th is uniformly bounded.

Assume on the contrary that λn 9 λ as n →∞ in the uniform weak* topology.
Then, after possibly taking a subsequence and renaming it, there exists a sequence
Qn of quadruples on R̂ such that L(Qn) = log 2 and

(9.5) |Ėλn |S1 [Qn]− Ėλ|S1 [Qn]| ≥ c > 0.

Let γn be Möbius map which maps Q = (−a,−1, 1, a) onto Qn, where a > 1
is chosen such that L(Q) = log 2. Let µn = (γn)∗(λn) and ξn = (γn)∗(λ). Since
‖µn‖Th and ‖ξn‖Th are uniformly bounded, there exist two subsequences of µn and
ξn with common indexing which converge in the weak* topology. We can assume
that µn and ξn converge in the weak* topology to µ and ξ, respectively. By (9.5) we
get that |Ėµ|R̂[Q]− Ėξ|R̂[Q]| ≥ c > 0 which implies that µ 6= ξ. On the other hand,
since Ėλn |R̂ → Ėλ|R̂ in the uniform weak* topology, it follows that if the push-
forwards of Ėλn |R̂ and Ėλ|R̂ by a sequence of Möbius maps pointwise converge then
the limits have to be equal. This is a contradiction with µ 6= ξ by the uniqueness of
the earthquake measures. Thus λn → λ as n →∞ in the uniform weak* topology
which is what we needed.

10. Appendix : The integral Ėλ

In this section, we consider the integral presentation of the earthquake vector
field. We prove (see §10.2) that the integral in (9.1) is well-defined.

10.1. Strata and restricted measures. Recall that a stratum of a (measured)
geodesic lamination λ is either a leaf of λ or the closure of a component of H \ λ.
By a generalized stratum, we mean either a stratum of λ or a point of ∂H.

Let λ be a measured lamination. Let A and B be two generalized strata of λ.
We denote by λA,B a measured lamination whose support consists of leaves of λ
separating A and B in H, and a leaf in ∂A (resp. ∂B) facing B (resp. A), if A
(resp. B) is a gap. The measure is defined to be the restriction of λ on the above
set of geodesics. Thus, λA,B is a measured geodesic lamination.

Alternatively, take a geodesic I connecting A and B where A ∩ I and B ∩ I are
points. When either A or B, say B, is a point of ∂H, we set I to be a geodesic
ray from a point of A terminating at B such that A ∩ I consists of a point. When
both A and B are points of ∂H, then I is the bi-infinite geodesic connecting them.
Let |λ|I be leaves of λ intersecting I. Notice that the set |λ|I is independent of the
choice of the geodesic I. Since I is closed, |λ|I is a geodesic lamination, that is, it
is a closed subset of G. Hence the restriction of λ to |λ|I defines a Borel measure
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on G and hence it is recognized as a measured lamination λA,B on H. When we
specify the geodesic I, we denote λA,B by λI .

In this notation, if B is a point of ∂H and B ∈ ∂A, we recognize λI = λA,B as
the zero measure. This notation will appear in Proposition 10.1.

10.2. The integral is well-defined. In this section, we prove that the integral

(10.1)
∫

G
Ėλ

` (z)dλ(`)

is well-defined for all z ∈ ∂H, when λ ∈MLb(H).

Remark 10.1. Recall that when we fix z ∈ ∂H,

G 3 ` 7→ Ėλ
` (z)

is a function with the domain G. Notice from the definition that for z ∈ ∂H, Ėλ
` (z)

is independent of the measure λ, depends only on the support |λ| of λ. Hence we
can define Ėλ

` (z) for any geodesic lamination λ.

10.2.1. Support of the integral. Let A be the fixed stratum which we used to define
Ėλ

` (z) in §9. Let `A be the leaf of λ contained in the closure of A which is closest
to z. Let z0 be a point of `A.

Let I be the geodesic connecting z0 and z. If z ∈ ∂H ∩A, Ėλ
` (z) is identically 0

on G. Hence the integral (10.1) converges in this case. Hence we may assume that
z is not in A. This means that I ∩A = {z0} and I is not contained in any leaf of λ.

We define a measured lamination λI as before. As above, we denote by |λ|I the
support of λI . Namely, |λ|I = |λI | = |λA,z|.

The following lemma is immediate from the definition of Ėλ
` (z).

Lemma 10.1. Suppose λ is a geodesic lamination. Then, for z ∈ ∂H, the support
of the function G 3 ` 7→ Ėλ

` (z) is equal to |λ|I = |λA,z|.
10.2.2. Function ẽz on G. For z ∈ ∂H, we define a function ẽz on G as follows. Let
` = da, be. We set

(10.2) ẽz(`) :=
{

(z−a)(z−b)
a−b a 6= z and b 6= z

0 otherwise,

where in the first row of the right-hand side of (10.2), a and b are chosen such that
the ordered triple (a, z, b) lies on ∂H counterclockwise. For instance, in Figure 7,
we have ẽz(`) = (z−a)(z−b)

a−b and ẽz′(`) = (z′−b)(z′−a)
b−a . Notice that ẽz is well-defined

and continuous on G. Since ẽz(`) = Ėλ
` (z) on the support |λ|I of λI , by Lemma

10.1, we conclude the following.

Lemma 10.2. Let λ be a measured lamination. Then, the function G 3 ` 7→ Ėλ
` (z)

is measurable with respect to λ. Furthermore, for any z ∈ ∂H, if the geodesic ray I
above is not contained in any leaf of λ, it holds

(10.3)
∫

G
Ėλ

` (z)dλ(`) =
∫

G
ẽz(`)dλI(`) =

∫

G
ẽz(`)dλA,z(`),

if either the middle term or the right-hand side of (10.3) are defined.
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Figure 7. Geodesics ` and `′.

In particular, the integral (10.1) is represented as the integration of a continuous
function defined independently of λ, but depending only on z. Thus, to check the
convergence of the integral (10.1), we may prove the integrability of ẽz with respect
to λA,z.

We describe the properties of the function ẽz. One can easily see that

ẽT (z)(T (`))T ′(z)−1 = ẽz(`)

for all ` ∈ G, z ∈ ∂H and T ∈ Möb(H). Let J be the radial geodesic ray emanating
from 0 to z ∈ ∂H. Let wd (d ≥ 0) be the length parametrization of J with w0 = 0.
The function ẽz has the following property.

Lemma 10.3. Let z ∈ ∂H. For D0 > 0,

|ẽz(`)| ≤ (8 cosh(D0))e−d

when ` intersects the D0-neighborhood of wd.

Proof. Notice that the set K0 ⊂ G of all geodesics intersecting the hyperbolic disk
of center 0 and radius D0 is compact. By a hyperbolic trigonometry formula, we
have

|ẽz(`)| = |(z − a)(z − b)|/|a− b| ≤ 4/|a− b| ≤ 8 cosh(D0)
for all ` = da, be ∈ K0 and z ∈ ∂H.

Let ` be a geodesic which intersects the D0-neighborhood of wd. Let T be a
Möbius transformation acting on H with T (wd) = 0 and fixing z. Since wd is on J ,
wd = |wd|z. Since T (`) ∈ K0, we obtain

|ẽz(`)| = |ẽT (z)(T (`))||T ′(z)|−1 ≤ (8 cosh(D0))|1− wdz|2/(1− |wd|2)

= (8 cosh(D0))
1− |wd|
1 + |wd| = (8 cosh(D0))e−d,

which implies what we wanted. ¤

10.2.3. Proof that the integral is well-defined. Recall that A is the stratum which
we fixed in the beginning and z0 ∈ A is the initial point of I. Let zd (d ≥ 0) be the
length parametrization of I. We set Id = {zk | k ≥ d}. We can define a measured
lamination λId

as above. Notice that if the support |λI | of λI is compact then λId

becomes the zero measure for d large enough.
The integral (10.1) for bounded measured laminations converges because of the

following estimate.
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Proposition 10.1 (Rate of decay). Let λ ∈ MLb(H) and z ∈ ∂H. Let `A be the
leaf of λ in A facing z. Let z0 ∈ `A and I be the geodesic ray emanating from z0

and terminating at z as above. Then, there is a constant C2 depending only on the
hyperbolic distance between 0 and z0 such that

(10.4)
∫

G
|ẽz(`)|dλId

(`) ≤ C2‖λ‖Th · e−d

for d ≥ 0.

Proof. When z is in the closure of A, the interval I is contained in A. Hence λI is
the zero measure, and (10.4) holds for all d ≥ 0. In this case Ėλ

` (z) is identically
zero on G. Therefore, the integral in (10.1) converges and equals to zero (and
the equation (10.3) also holds). Hence we may assume that z ∈ ∂H \ A. This
assumption means that I transversely intersects some leaves of λ in H. However,
note that z may be an endpoint of some leaf of λ.

Divide Id into a sequence {In,d}∞n=0 of consecutive subintervals of Id of unit length
such that Id,0 contains zd. Then In,d ∩ In+1,d = {zd+n}. We define a measured
sublamination λIn,d

of λI as above. When there is no leaf of λ intersecting In,d,
we define λIn,d

to be the zero measure as we noted before. Let `n be a leaf of the
support of λIn,d

and {zd(n)} = `n ∩ In,d. Note that d(n) is the distance between
z0 ∈ I to `n ∩ In,d ∈ I and d + n ≤ d(n) ≤ d + n + 1.

As in Lemma 10.3, we denote by J the radial geodesic ray emanating from 0
to z, and wd (d ≥ 0) the length parametrization of J with w0 = 0. Then, by the
triangle inequality, we have dH(0, zd(n)) ≥ n+d−D0, where D0 = dH(z0, w0). Since
J shares the endpoint z with I, dH(wd(n), zd(n)) ≤ dH(z0, w0) = D0, which means
that any leaf of λIn,d

intersects the D0 +1-neighborhood of wd(n). By Lemma 10.3,
we have

|ẽz(`)| ≤ (8 cosh(D0 + 1))e−dH(0,zd(n)) ≤ (8 cosh(D0 + 1))e−(d+n−D0) = C1e
−(d+n),

where C1 = 8eD0 cosh(D0 + 1).
Therefore, we get

∫

G
|ẽz(`)|dλIn,d

(`) ≤ C1e
−(d+n)λIn,d

(G) = C1e
−(d+n)λIn,d

(In,d)

≤ C1‖λ‖Th e−d · e−n,

since each In,d has unit length and the support of λIn,d
is contained in In,d. Thus,

we conclude
∫

G
|ẽz(`)|dλId

(`) ≤
∞∑

n=0

∫

G
|ẽz(`)|dλIn,d

(`) ≤ C2‖λ‖The−d,

where C2 = (1− e−1)C1. ¤

10.3. Weak* convergence and pointwise convergence. In this section, we
prove the continuity of the integral (9.1) on MLb(H) with respect to the weak*
topology.

Proposition 10.2 (Pointwise convergence). Let {λn}∞n=1 be a sequence of bounded
measured laminations which converges in the weak* topology to a measured lami-
nation λ ∈ MLb(H). If the Thurston norms of the sequence {λn}∞n=1 of measured
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laminations are uniformly bounded, then there is a choice of normalizations for Ėλ
`

and Ėλn

` such that

lim
n→∞

∫

G
Ėλn

` (z)dλn(`) =
∫

G
Ėλ

` (z)dλ(`)

for all z ∈ ∂H = S1.

Proof. The proof follows the same outline as the proof of [15, Lemma 3.2]. We first
fix the normalizations of Ėλ

` and Ėλn

` . Let A be a fixed stratum of λ which is either
a gap of λ or a leaf of λ whose λ-measure is zero (i.e. A is not an atom of λ). Let
z0 ∈ A be a point in the interior of A if it is a gap, or any point of A if it is a leaf
of λ. Let An be the stratum of λn which contains z0. We orient each ` ∈ |λ| to
the left as seen from A. If A is a geodesic, then we orient A arbitrary. This gives
a well-defined function Ėλ

` for ` ∈ |λ| which in turn implies
∫

G
Ėλ

` (z)dλ(`) =
∫

G
ẽ(`)dλA,z(`).

We define Ėλn

` by giving the left orientation to each ` with respect to the stratum
An in the same fashion.

Let I be a geodesic ray from z0 to z and let zd ∈ I be such that the distance
between z0 and zd is d ≥ 0. We fix d > 0 such that zd is contained in a stratum Ad

of |λ| which is either a gap or a leaf which is not an atom of λ.
Given i ∈ N, let Ii = (zi

l , z
i
r) be an open geodesic arc whose endpoints are on

the distance 1/i from z0 and zd, and which contains z0, zd. The set of geodesics of
H which intersect Ii is open in G and contains all geodesics of |λ| which intersect
the closed geodesic arc with endpoints z0 and zd. Since the lengths of (zi

l , z0)
and (zd, z

i
r) are going to zero as i → ∞, it follows that the λ-measure of the set

of geodesics intersecting (zi
l , z0) and (zd, z

i
r) is going to zero as i → ∞ by the

choice of z0 and zd (namely, A and Azd
are either gaps or non-atomic leaves).

Let ϕi : G → R be a non-negative continuous function whose support consists of
geodesics intersecting Ii = (zi

l , z
i
r) and which is identically equal to 1 on the set

of geodesics intersecting [z0, zd]. Then the function ` 7→ ϕi(`)ẽ`(z) is a continuous
function on G with compact support. It follows that

∫

G
ϕi(`)ẽ`(z)dλn(`) →

∫

G
ϕi(`)ẽ`(z)dλ(`)

as n →∞ by the weak* convergence λn → λ.
Note that

∫

G
ϕi(`)ẽ`(z)dλn(`) ≤

∫

G
|ẽ`(z)|d[(λn)(zi

l ,z0)+(λn)(zd,zi
r)](`)+

∫

G
ẽ`(z)d(λn)(z0,zd)(`)

and
∫

G
ϕi(`)ẽ`(z)dλ(`) ≤

∫

G
|ẽ`(z)|d[λ(zi

l ,z0) + λ(zd,zi
r)](`) +

∫

G
ẽ`(z)dλ(z0,zd)(`).

The choice of z0 and zd is such that the total masses of λ(zi
l ,z0) and λ(zd,zi

r) on G
converge to zero as i → ∞. Since λn converges to λ in the weak* sense, it follows
that given ε > 0 there exist i0, n0 ∈ N such that the total masses of λ(zi

l ,z0), λ(zd,zi
r),
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(λn)(zi
l ,z0) and (λn)(zd,zi

r) on G are less than ε for i ≥ i0 and n ≥ n0. The above
three inequalities imply that

∫

G
ẽ`(z)d(λn)(z0,zd)(`) →

∫

G
ẽ`(z)dλ(z0,zd)(`)

as n →∞.
Since | ∫G ẽ`(z)d(λn)(z0,zd)(`)−

∫
G ẽ`(z)dλn(`)| ≤ Ce−d and | ∫G ẽ`(z)dλ(z0,zd)(`)−∫

G ẽ`(z)dλ(`)| ≤ Ce−d, the conclusion follows. ¤

10.4. Differentiation of earthquake paths. In this section, we reprove the for-
mula (9.2).

10.4.1. Holomorphic motions and complex earthquakes. Let S be a subset of Ĉ and
let D be a domain in Ĉ. A holomorphic motion of S over D with base point t0 ∈ D
is, by definition, a map h : S ×D → Ĉ satisfying the following three properties:

(1) h(x, t0) = x for all x ∈ S.
(2) For all t ∈ D, ht(·) := h(·, t) is injective on S.
(3) For all s ∈ S, h(s, ·) : D → Ĉ is holomorphic.

By Slodkowski’s theorem ([20]), if D is conformally equivalent to the unit disk, any
holomorphic motion h of S over D with base point t0 ∈ D extends to a holomorphic
motion h̃ of Ĉ over D and for each t ∈ D, h̃t is Kt-quasiconformal mapping where
Kt = exp(dD(t0, t)) and dD is the Poincaré distance on D normalized such that it
has curvature −1.

The following theorem is proved in [13].

Theorem 6 (Theorem 2 in [13]). Let λ ∈ MLb(H). The earthquake map (z, t) 7→
Etλ(z) for t > 0 and z ∈ ∂H extends to a holomorphic motion (z, τ) 7→ Eτλ(z) of
∂H over a neighborhood Sλ of R in C with base point τ = 0.

The domain Sλ in the theorem above is concretely defined by

(10.5) Sλ = {τ = t + is | |s| < ε0/[C0 exp(‖tλ‖Th)‖λ‖Th]},

where ε0 and C0 are independent of λ.

Proof of Proposition 9.1. We first show the convergence in the case when {λn}∞n=1

is a finite approximation of λ. From the proof of Theorem 2 in [13], we know that
there is a neighborhood V0 of ∂H such that the complement of V0 contains at least 3
points and Eτλn(z) ∈ V0 for all τ ∈ Sλ, z ∈ ∂H and n ∈ N, where we assume in the
definition that the restriction of Etλn is the identity on a stratum of λn containing
A. This implies that {Eτλn(z)}τ∈Sλ

is normal family and converges to Eτλ(z) on
any compact set of Sλ. From the Weierstrass’ theorem, we have

d

dτ
Eτλ(z)

∣∣∣∣
τ=0

= lim
n→0

d

dτ
Eτλn(z)

∣∣∣∣
τ=0

.

On the other hand, by Theorem 10.2, the integral in (9.1) varies continuously on
MLb(H). Hence, we get the formula (9.2). ¤
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