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FENCHEL-NIELSEN COORDINATES ON UPPER BOUNDED

PANTS DECOMPOSITIONS

DRAGOMIR ŠARIĆ

Abstract. Let X0 be an infinite type hyperbolic surface (whose boundary
components, if any, are closed geodesics or punctures) which has an upper
bounded pants decomposition. The length spectrum Teichmüller space Tls(X0)
consists of all surfaces X homeomorphic to X0 such that the ratios of the corre-
sponding simple closed geodesics are uniformly bounded from below and from
above. Alessandrini, Liu, Papadopoulos and Su [1] described the Fenchel-
Nielsen coordinates for Tls(X0) and using these coordinates they proved that
Tls(X0) is path connected. We use the Fenchel-Nielsen coordinates for Tls(X0)
to induce a locally biLipschitz homeomorphism between l∞ and Tls(X0) (which
extends analogous results by Fletcher [9] and by Allessandrini, Liu, Papadopou-
los, Su and Sun [2] for the unreduced and the reduced Tqc(X0)). Consequently,
Tls(X0) is contractible. We also characterize the closure in the length spectrum
metric of the quasiconformal Teichmüller space Tqc(X0) in Tls(X0).

1. Introduction

Let X0 be a complete hyperbolic surface of infinite type whose boundary com-
ponents, if any, are closed geodesics or punctures. Assume that there exists a pants
decomposition P = {αn} of X0 by simple closed geodesics such that their lengths
are bounded from the above by a fixed constant M0 > 0. We say that such a pants
decomposition is upper bounded. By [2], any other pants decomposition of X0 by
simple closed curves can be straightened to a pants decomposition by simple closed
geodesics.

The quasiconformal Teichmüller space Tqc(X0) consists of all quasiconformal
maps f : X0 → X up to post composition by isometries and up to bounded homo-
topies which setwise fix boundary components ofX . Note that bounded homotopies
do not fix boundary geodesics pointwise since the distance between any two points
(on a boundary geodesic) is finite. Thus Tqc(X0) is the reduced quasiconformal
Teichmüller space of the surface X0.

The length spectrum Teichmüller space Tls(X0) consists of all homeomorphisms
h : X0 → X up to post compositions by isometries and up to bounded homotopies
that setwise preserve the boundary components of X such that

L(X0, X) := sup
β

max{
lβ(X)

lβ(X0)
,
lβ(X0)

lβ(X)
} < ∞,

where the supremum is over all simple closed curve β onX0, and where lβ(X), lβ(X0)
are the lengths of the geodesic representatives of β on X,X0, respectively. Note
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that Tqc(X0) ⊂ Tls(X0) because for each simple closed geodesic β on X0 and a
K-quasiconformal map f : X0 → X we have (cf. Wolpert [13])

1

K
lβ(X0) ≤ lβ(X) ≤ Klβ(X0).

The length spectrum metric dls is defined by

dls(X,Y ) =
1

2
logL(X,Y )

for X,Y ∈ Tls(X0). Shiga [12] was the first to study the length spectrum metric on
quasiconformal Teichmüller spaces of surfaces of infinite type and he proved that
dls in general is not complete on Tqc(X0). This implies that Tqc(X0) could be a
proper subset of Tls(X0).

For a fixed upper bounded pants decomposition P = {αn} on X0, the assign-
ment of Fenchel-Nielsen coordinates {(lαn

(X), tαn
(X))} to each X ∈ Tqc(X0) or

X ∈ Tls(X0) completely determines the (marked) surface X . Alessandrini, Liu, Pa-
padopoulus, Su and Sun [2] proved that the Fenchel-Nielsen coordinates for Tqc(X0)

satisfy supn | log
lαn(X)
lαn(X0)

| < ∞ and supn |tαn
(X)− tαn

(X0)| < ∞, and that the map

from Tqc(X0) to the Fenchel-Nielsen coordinates is a locally biLipschitz homeo-
morphism onto l∞. Alessandrini, Liu, Papadopuolus and Su [1] proved that the
Fenchel-Nielsen coordinates for X ∈ Tls(X0) satisfy

sup
αn∈P

| log
lαn

(X)

lαn
(X0)

| < ∞

and

sup
αn∈P

|tαn
(X)− tαn

(X0)|

max{1, | log lαn
(X0)|}

< ∞.

Moreover, they proved that if X0 (equipped with an upper bounded pants decom-
position) contains a sequence of simple closed geodesics whose lengths go to 0 then
Tqc(X0) ( Tls(X0) and that Tqc(X0) is nowhere dense in Tls(X0) (cf. [1]).

Let F : Tls(X0) → l∞, called the normalized Fenchel-Nielsen map, be defined by

F (X) =
{

(log
lαn

(X)

lαn
(X0)

,
tαn

(X)− tαn
(X0)

max{1, | log lαn
(X0)|}

)
}

n

where if αn is a boundary geodesic of X0 then we take only the length component
of the Fenchel-Nielsen coordinates.

By [2], the Fenchel-Nielsen coordinates give a locally biLipschitz homeomorphism
between the (reduced) quasiconformal Teichmüller space Tqc(X0) and l∞ which
implies that Tqc(X0) is contractible. Fletcher [9] used complex analytic methods to
prove that the unreduced quasiconformal Teichmüller space is locally biLipschitz
to l∞. Our main result is (cf. §2, Theorem 2.1 and Corollary 2.2):

Theorem 1. The normalized Fenchel-Nielsen map

F : Tls(X0) → l∞

is a locally biLipschitz homeomorphism.

In particular, the length spectrum Teichmüller space Tls(X0) is contractible.

Thus [9], [2] and Theorem 1 imply that the unreduced quasiconformal Te-
ichmüller space, the reduced quasiconformal Teichmüller space and the length spec-
trum Teichmüller space are locally biLipschitz to l∞ and thus to each other.
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A problem of characterizing the closure of Tqc(X0) inside Tls(X0) for the length
spectrum metric dls is raised in [1]. We use the Fenchel-Nielsen coordinates to

characterize the closure Tqc(X0) of Tqc(X0).

Theorem 2. Let X0 be an infinite type hyperbolic surface with an upper bounded

pants decomposition P = {αn}. Then X ∈ Tqc(X0) if and only if

sup
αn∈P

| log
lαn

(X)

lαn
(X0)

| < ∞

and

|tαn
(X)− tαn

(X0)| = o(| log lαn
(X0)|)

as | log lαn
(X0)| → ∞.

2. The Fenchel-Nielsen coordinates

We prove that the normalized Fenchel-Nilesen map is a localy biLipschitz home-
omorphism onto l∞.

Theorem 2.1. Let X0 be an infinite type complete hyperbolic surface equipped with

an upper bounded geodesic pants decomposition P = {αn}n∈N. The normalized

Fenchel-Nielsen map

(1) F (X) =
{(

log
lαn

(X)

lαn
(X0)

,
tαn

(X)− tαn
(X0)

max{1, | log lαn
(X0)|}

)}

n∈N

for X ∈ Tls(X0), induces a locally biLipschitz surjective homeomorphism

F : Tls(X0) → l∞.

Proof. Let M0 be such that lαn
(X0) ≤ M0 for each αn ∈ P .

Step I: We establish that F (Tls(X0)) ⊂ l∞ which is already proved in [1]. We
give another proof in order to facilitate the rest of the argument. By the definition,
X ∈ Tls(X0) if there is M > 0 such that

| log
lγ(X)

lγ(X0)
| ≤ M

for each simple closed curve γ ∈ C on X0. In particular {log
lαn (X)
lαn (X0)

}n∈N is a

bounded sequence.
It remains to bound the twists. The choice of the twists of X0 on αn are deter-

mined up to integer multiples of lαn
(X0). Without loss of generality, we normalize

them such that, for each n ∈ N,

0 ≤ tαn
(X0) < lαn

(X0).

Given this normalization, it is enough to prove that

|tαn
(X)|/max{1, | log lαn

(X0)|}

is bounded uniformly in n ∈ N.
Using [3], there exists a surface X ′ which is K-quasiconformal to X0 such that

lαn
(X ′) = lαn

(X) for all n ∈ N, where K = K(M) (cf. [1]). The K-quasiconformal
map f : X0 → X ′ maps each pair of pants P ∈ P of X0 onto a geodesic pair of
pants of X ′ such that on each boundary geodesic the map is affine. Divide each
geodesic pair of pants into two right angled hexagons by three seams, namely three
geodesic arcs connecting pairs of boundary curves and orthogonal to them. Each
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hexagon contains half of each boundary geodesic of the pair of pants which are
called a-sides. The other three sides of the hexagon which are seams are called
b-sides. The two hexagons are glued along their b-sides to obtain the pair of pants
and the pairwise union of their a-sides forms three geodesic boundaries of the pair
of pants. The map f : X0 → X ′ maps a-sides of each hexagon of each pair of pants
of X0 onto a-sides of hexagons of the corresponding pair of pants of X and it is
affine on the a-sides. Note that a single αn ∈ P is on the boundary of two pairs
of pants P 0

1 and P 0
2 of P which implies that αn is divided into a-sides with respect

to both P 0
1 and P 0

2 . The two divisions of αn into a-sides do not match in general
and the distance between the endpoints of two a-sides coming from two pairs of
pants is the twist parameter tαn

(X0) of X0 at the closed geodesic αn for the pants
decomposition P . The map f : X0 → X ′ is affine on each αn, it maps the foots
of the seams of the pair of pants P 0

i to the foots of the corresponding seams of
f(P 0

i ) = P ′
i for i = 1, 2 and it does not introduce any full twisting along αn by its

construction (cf. [1], [3]). Then for K = K(M) we have

tαn
(X ′) =

lαn
(X ′)

lαn
(X0)

tαn
(X0) ≤ Ktαn

(X0).

Let tn = tαn
(X)− tαn

(X ′). Then X is obtained by a(n infinite) multi twist on
X ′ along the family P = {αn} by the amount {tn}. It is enough to prove that

|tn|
max{1,| log lαn (X0)}

is bounded in terms of dls(X0, X) because |tαn
(X ′)| ≤ KM0.

This is proved in [1] using results of Minsky [11] and Choi-Rafi [6]. We give a more
direct proof of this result below. Fix a cuff αn and let P ′

1 = f(P 0
1 ) and P ′

2 = f(P 0
2 )

be two geodesic pairs of pants with common boundary αn. Either P ′
1 6= P ′

2 or
P ′
1 = P ′

2 and we divide the argument into these two cases.
Case 1. Assume that P ′

1 6= P ′
2. There exists a unique geodesic arc γi

n ⊂ P ′
i ,

for i = 1, 2, which starts and ends at αn that is orthogonal to αn at both of its
endpoints. Let βn be a closed curve on X ′ obtained by concatenating γ1

n followed
by an arc of αn from an endpoint of γ1

n to an endpoint of γ2
n in the direction of the

left twist along αn followed by γ2
n followed by an arc of αn connecting other two

endpoints of γ1
n and γ2

n in the direction of the right twist (cf. Figure 1).
We will give an upper bound for tαn

(X) in terms of lβn
(X). Fix three consecutive

lifts α̃j
n, for j = 1, 2, 3, of αn under the universal covering π : H2 → X . Let β̃∗

n be
the lift of the geodesic representative β∗

n of βn that intersects α̃j
n, for j = 1, 2, 3.

Moreover, let γ̃i
n be the lift of γi

n that connects α̃i
n and α̃i+1

n (cf. Figure 2). Let

a1 = γ̃1
n ∩ α̃2

n and a2 = γ̃2
n ∩ α̃2

n, and b = β̃∗
n ∩ α̃2

n. The lengths satisfy lγi
n
(X ′) =

lγi
n
(X) because X is obtained from X ′ by a multi twist along {αn}. We either have

dhyp(a1, b) ≥ |tαn
(X)|/2 or dhyp(a2, b) ≥ |tαn

(X)|/2. Consider the case that

(2) dhyp(a2, b) ≥ |tαn
(X)|/2

and the other case is analogous. Let c2 = γ̃2
n ∩ α̃3

n and let c1 ∈ α̃3
n be the foot of

the orthogonal from b to α̃3
n. Consider the quadrilateral with vertices b, c1, c2 and

a2 (cf. Figure 2). We get

(3) sinh dhyp(b, c1) = sinh lγ̃2
n
(X) coshdhyp(b, a2).

By the Collar lemma [5], there exists C1(M) > 0 such that

(4) lγ̃i
n
(X) = lγ̃i

n
(X ′) ≥ C1(M)max{1, | log lαn

(X0)|}.
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Figure 1. The curve βn.

Figure 2.

Since sinh dhyp(b, c1) ≤ e
dhyp(b,c1)

2 and coshdhyp(b, a2) ≥ e
dhyp(b,a2)

2 , and by (3)
and (4), we have

dhyp(b, a2) ≤ C2(M)max{1, | log lαn
(X0)|} + dhyp(b, c1)
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which implies

dhyp(b, a2) ≤ C2(M)max{1, | log lαn
(X0)|}+ lβn

(X) ≤

≤ C2(M)max{1, | log lαn
(X0)|}+ eM lβn

(X0).
(5)

Note that by construction

lβn
(X0) ≤ lγ1

n
(X0) + lγ2

n
(X0) + lαn

(X0).

We estimate lγi
n
(X0) from the above using right-angled pentagons. Namely each

hexagon of P 0
i contains a half of the arc γi

n and γi
n intersects the b-side of the

hexagons that connects the two boundary geodesics of P 0
i different from αn. Then

both hexagons of P 0
i are divided into two right-angled pentagons by γi

n. The sides
of the obtained pentagons are as follows in the cyclic order: a portion of the a-side
on αn, followed by the half of γi

n, followed by a portion of a b-side, followed by an
a-side on a boundary curve different from αn and followed by a b-side. We choose
one of the two pentagons such that the portion of the a-side has length at least
1
4 lαn

(X0). Since lαn
(X0) ≤ M0 it follows that any a-side of the hexagon has length

at most 1
2M0 and a hyperbolic formula for the right-angled pentagons gives

cosh
M0

2
≥ sinh

1

4
lαn

(X0) sinh
1

2
lγi

n
(X0) ≥

1

4
lαn

(X0) sinh
1

2
lγi

n
(X0).

The inequality implies that there is C3(M0) such that

lγi
n
(X0) ≤ C3(M0)max{1, | log lαn

(X0)|}

which in turn implies

(6) lβn
(X0) ≤ C4(M0)max{1, | log lαn

(X0)|}

for some constant C4(M0) > 0.
By (2), (5) and (6) we have

(7)
|tαn

(X)|

2
≤ dhyp(a2, b) ≤ [C2(M) + eMC4(M0)]max{1, | log lαn

(X0)|}

which gives

(8)
|tαn

(X)|

max{1, | log lαn
(X0)|}

≤ C5(M,M0)

and this finishes the proof of F (Tls(X0)) ⊂ l∞ in the case P 0
1 6= P 0

2 .
Case 2. Assume that P 0

1 = P 0
2 . We define γn to be the unique geodesic arc in

f(P 0
1 ) = f(P 0

2 ) = P ′
1 starting and ending at αn and orthogonal to αn at both of its

endpoints. Then we define a closed curve βn to consists of γn and an arc of αn of
the size tαn

(X ′). The above argument applies to this case as well.

Step II: F : Tls(X0) → l∞ is surjective. For a ∈ l∞ the surface Xa obtained by
gluing the pants with prescribed cuffs and twists is complete. The marking map
for Xa can be chosen to be a homeomorphism because each twist is realized in
an annulus containing a given cuff. Let X ′

a = Xa′ be the surface obtained by a
K-quasiconformal map f : X0 → X ′

a such that lαn
(X ′

a) = lαn
(Xa) for all n ∈ N as

before (cf. [3]). Then
∣

∣

∣
log

lβ(X
′
a)

lβ(X0)

∣

∣

∣
≤ M(K) < ∞
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for n ∈ N. The surface Xa is obtained by a multi twist around P = {αn} by the

amount {tn = tαn
(Xa) − tαn

(X ′
a)}. Note that 0 ≤ tαn

(Xa′) =
lαn (Xa)
lαn (X0)

tαn
(X0) <

lαn
(Xa). By the Collar lemma [5], we have that

(9) lβ(Xa′), lβ(Xa) ≥ C
∑

n

i(αn, β)max{1, | log lαn
(X0)|}

for each simple closed curve β on X0. Then

log
lβ(Xa)

lβ(Xa′)
≤ log

lβ(Xa′) +
∑

n i(αn, β)|tn|

lβ(Xa′)

and

|tn| ≤ C′ max{1, | log lαn
(X0)|}

which together with (9) implies that

log
lβ(Xa)

lβ(Xa′)
≤

C′

C
= C′′

for each β ∈ C. In the exactly the same fashion, we obtain

log
lβ(Xa′)

lβ(Xa)
≤ C′′′

for each β ∈ C. Thus Xa ∈ Tls(X0) and F : Tls(X0) → l∞ is onto.

Step III: F : Tls(X0) → l∞ is localy Lipschitz. Let X1 ∈ Tls(X0) be fixed
and let X,Y ∈ B 1

2
(X1) be two arbitrary points in the ball of radius 1

2 centered at

X1 ∈ Tls(X0). Consequently dls(X,Y ) < 1. Note that | log
lαn (X)
lαn (X0)

− log
lαn (Y )
lαn (X0)

| =

| log
lαn(X)
lαn(Y ) | ≤ dls(X,Y ) for each n ∈ N. It remains to consider

|tαn(X)−tαn (Y )|
max{1,| log lαn (X0)|}

.

By [1] and [3], there exists a [1 + Cdls(X,Y )]-quasiconformal map f : X → X ′

such that lαn
(X ′) = lαn

(Y ) for each n ∈ N with C = C(edls(X0,X1)+1M0) > 0. Let
0 ≤ t̃αn

(X) < lαn
(X) be such that there exists an integer k ∈ Z with

(10) tαn
(X) = k · lαn

(X) + t̃αn
(X).

Note that, for C′ = C′(M1 + 1,M0), we have

(11) |k| ≤ C′ | log lαn
(X0)|

lαn
(X0)

by (8) and (10) because normalized twists t̃αn
are bounded from the above and

e−(M1+1)lαn
(X0) ≤ lαn

(X) ≤ eM1+1lαn
(X0).

The construction of f : X → X ′ from [1] implies that

tαn
(X ′) = k · lαn

(Y ) +
lαn

(Y )

lαn
(X)

t̃αn
(X).

We estimate |tαn
(X ′)− tαn

(X)|. Let M1 = dls(X0, X1). Then we have

|tαn
(X ′)− tαn

(X)| ≤ |k| · |lαn
(Y )− lαn

(X)|+ t̃αn
(X)

∣

∣

∣

lαn
(Y )

lαn
(X)

− 1
∣

∣

∣

≤ C′max{1, | log lαn
(X0)|}

lαn
(X0)

lαn
(X)

∣

∣

∣

lαn
(Y )

lαn
(X)

− 1
∣

∣

∣
+ t̃αn

(X)
∣

∣

∣

lαn
(Y )

lαn
(X)

− 1
∣

∣

∣

(12)
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which implies

(13)
|tαn

(X)− tαn
(X ′)|

max{1, | log lαn
(X0)|}

≤ (C′eM +M0e
M )

∣

∣

∣

lαn
(Y )

lαn
(X)

− 1
∣

∣

∣
≤ C1

∣

∣

∣
log

lαn
(Y )

lαn
(X)

∣

∣

∣
.

Note that dls(X,X ′) ≤ Cdls(X,Y ) which implies that

dls(X
′, Y ) ≤ dls(X

′, X) + dls(X,Y ) ≤ C2dls(X,Y ).

Let

(14) tn = tαn
(Y )− tαn

(X ′).

The surface Y is obtained from X ′ by a multi twist along {αn} by the amount {tn}.
As before, we divide the argument into two cases: P ′

1 = P ′
2 and P ′

1 6= P ′
2.

Case 1. Given αn, assume first that the pairs of pants with boundary αn are
equal, namely P ′

1 = P ′
2. Let βn be a closed curve obtained by concatenating the

unique arc γn in P ′
1 orthogonal to αn at both of its endpoints followed by an arc

on αn of the length t̃αn
(X ′). Let β∗

n be the geodesic representative of βn.
Denote by X ′

t the hyperbolic surface obtained by twisting the amount t · tn, for
t ∈ R and tn defined by (14), along the cuffs αn on the surface X ′. Note that
X ′

0 = X ′ and that by the definition of tn we have that X ′
1 = Y .

Recall that (cf. [10], [7])

(15)
d

d(t · tn)
lβ∗

n
(X ′

t) = cosϕ∗
t

where ϕ∗
t ∈ (0, π) is the angle between β̃∗

n and α̃n. Let us fix ǫ0 > 0. Note that
ϕ∗
t is either increasing or decreasing from ϕ∗

0 to ϕ∗
1 in t for 0 ≤ t ≤ 1 (depending

whether tn is positive or negative) due to the fact that the geodesic length along a
left earthquake with support αn is a convex function (cf. [10], [7]).

Assume that tn > 0. If cosϕ∗
0 ≥ ǫ0 (which implies cosϕ∗

t ≥ ǫ0 for 0 ≤ t) then we
set β∗∗

n := β∗
n. If cosϕ

∗
0 < ǫ0 then we choose β∗∗

n such that cosϕ∗∗
t > ǫ0 as follows.

Consider universal covering π : H2 → X ′ such that one lift α̃n of αn is the y-axis.
Further we arrange that two lifts γ̃−1

n and γ̃1
n of the arc γn that are adjacent to the

y-axis from the left and the from the right meet the y-axis between i and elαn(X′)i.
Let b < 0 be an endpoint on R of the hyperbolic geodesic containing γ̃−1

n and let
a > 0 be an endpoint on R of the geodesic containing γ̃1

n. For any k ∈ Z, a k full
left twists on αn on the surface X ′ maps the curve β∗

n to a new curve β∗∗
n . The

curve obtained by the concatenating the arc γn with the arc which winds around
αn k-times plus the shear amount t̃αn

(X ′) is homotopic to β∗∗
n . The lift of the

above arc has two orthogonal sub arcs to the y-axis one from the left which is equal
to γ̃−1

n which meets y axis at a point |b|i between i and elαn(X′)i, and the other

orthogonal arc γ̃2
n which meets the y-axis at a point c2 = |a|eklαn (X′)i. By the

definition of left twists, it follows that one endpoint of a lift β̃∗∗
n of β∗∗

n is between b

and 0, and the other endpoint of β̃∗∗
n is between aeklαn (X′) and ∞. Among all the

geodesics whose one endpoint is in the interval [b, 0) and the other endpoint is in

the interval [aeklαn (X′),∞), the geodesic with endpoints b and aeklαn (X′) subtends
the largest angle ϕ0 with the y-axis. We have

cosϕ0 =
aeklαn (X′) + b

aeklαn (X′) − b
.
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Define

k =
[ 1

lαn
(X ′)

log
1 + ǫ0
1− ǫ0

]

+ 2

where [x] is the integer part of x ∈ R. Then we have that

cosϕ0 ≥ ǫ0

which implies that

1

tn

d

dt
lβ∗∗

n
(X ′

t) =
d

d(t · tn)
lβ∗∗

n
(X ′

t) ≥ ǫ0

for all t ∈ [0, 1].
Note that

lβ∗∗

n
(X ′) ≤ klαn

(X ′) + C| log lαn
(X ′)| ≤ C′ max{1, | log lαn

(X0)|}

By the Mean Value Theorem there exists t∗ ∈ (0, 1) such that

|lβ∗∗

n
(Y )− lβ∗∗

n
(X ′)| = |

d

dt
lβ∗∗

n
(X ′

t∗)| ≥ ǫ0tn

because X ′
1 = Y . Since lβ∗∗

n
(X ′) ≤ C′ max{1, | log lαn

(X0)|}, the above gives

|tn|

max{1, | log lαn
(X0)|}

≤
|tn|

lβ∗∗

n
(X ′)

≤
C

ǫ0
|
lβ∗∗

n
(Y )

lβ∗∗

n
(X ′)

− 1| ≤
C

ǫ0
| log

lβ∗∗

n
(Y )

lβ∗∗

n
(X ′)

|.

Assume now that tn < 0. Then we use a similar method by considering cosϕ∗
t ≤

−ǫ0 and k full right twist around αn to replace β∗
n with β∗∗

n . The proof proceeds
analogously.

Case 2. The second case is when P ′
1 6= P ′

2. Define a closed curve βn ⊂ P ′
1∪P ′

2 ⊂
X ′ to consists of the unique arc γ1

n in P ′
1 orthogonal at both of its endpoints to

αn followed by the arc in αn (in the direction of the left twist) of the size at
most lαn

(X ′) followed by the unique arc γ2
n ⊂ P ′

2 orthogonal to αn at both of its
endpoints followed by an arc on αn of size at most lαn

(X ′). For the convenience
of the notation, denote by βn the closed geodesic homotopic to βn. The arcs
γi
n, for i = 1, 2, have lengths comparable to max{1, | log lαn

(X0)|} up to positive
multiplicative constants.

Let α̃j
n, for j = 1, 2, be two consecutive lifts of αn. Two lifts γ̃j,k

n , for k = 1, 2,
of γj

n which meet α̃j
n can be chosen such that the distance between their foots

on α̃j
n is at most lαn

(X ′). Assume that tn > 0. We perform k full left twists
along αn to obtain a new closed curve β∗∗

n from the closed curve β∗
n. When k =

[ 1
lαn(X′) log

1+ǫ0
1−ǫ0

] + 2, we get (similar to Case 1) for both angles ϕj
n that the new

closed geodesic β∗∗
n subtends with αn,

cosϕj
n ≥ ǫ0.

Then
d

dt
lβ∗∗

n
(X ′

t) = cosϕ1
n + cosϕ2

n ≥ 2ǫ0

which gives
|tn|

max{1, | log lαn
(X0)|}

≤ C| log
lβ∗∗

n
(Y )

lβ∗∗

n
(X ′)

|.

When tn < 0, the proof proceeds as before.
Thus we established that the map F : Tls(X0) → l∞ is locally Lipschitz.
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Step IV: F−1 : l∞ → Tls(X0) is locally Lipschitz. We consider the map
F−1 : l∞ → Tls(X0) and prove that it is also locally Lipschitz. Let a0 ∈ l∞ be
fixed. Denote by Xa0 the surface corresponding to a0, namely Xa0 = F−1(a0) ∈
Tls(X0). Let a, b ∈ l∞ such that ‖a− a0‖∞ < 1

2 and ‖b− a0‖∞ < 1
2 which implies

‖a−b‖∞ < 1. There exists a (1+C| log
lαn(Xb)
lαn(Xa)

|)-quasiconformal map f : Xb → X ′
b

such that lαn
(X ′

b) = lαn
(Xa) for all n (cf. [3], [1]). Recall that

tαn
(Xb) = klαn

(Xb) + t̃αn
(Xb)

where k ∈ Z, 0 ≤ t̃α(Xb) < lαn
(Xb) and

(16) |k| ≤
Cmax{1, | log lαn

(X0)|}

lαn
(Xb)

.

By the construction of f : Xb → X ′
b, we have

tαn
(X ′

b) = klαn
(Xa) +

lαn
(Xa)

lαn
(Xb)

t̃αn
(Xb).

It follows that

(17) |tαn
(Xb)− tαn

(X ′
b)| ≤ |k|lαn

(Xa)
∣

∣

∣

lαn
(Xb)

lαn
(Xa)

− 1
∣

∣

∣
+ lαn

(Xb)
∣

∣

∣

lαn
(Xb)

lαn
(Xa)

− 1
∣

∣

∣
.

Since a, b ∈ l∞, it follows that there exists C > 0 such that

(18)
∣

∣

∣

lαn
(Xb)

lαn
(Xa)

− 1
∣

∣

∣
≤ C

∣

∣

∣
log

lαn
(Xb)

lαn
(Xa)

∣

∣

∣
.

The inequalities (17), (16) and (18) imply

|tαn
(Xb)−tαn

(X ′
b)| ≤ Cmax{1, | log lαn

(X0)|}
lαn

(Xa)

lαn
(Xb)

| log
lαn

(Xb)

lαn
(Xa)

|+C′| log
lαn

(Xb)

lαn
(Xa)

|

where C′ = C′(‖a0‖∞ + 1
2 ), and since | log

lαn (Xb)
lαn(Xa)

| ≤ ‖a− b‖∞, we get

(19)
|tαn

(Xb)− tαn
(X ′

b)|

max{1, | log lαn
(X0)|}

≤ C′′‖a− b‖∞.

Since f : Xb → X ′
b is a (1+C‖a−b‖∞)-quasiconformal, it follows that dls(Xb, X

′
b) ≤

C‖a − b‖∞. Moreover, if X ′
b = F−1(b′) then (19) implies that that ‖b′ − b‖∞ ≤

C‖a− b‖∞. Finally, ‖a− b′‖∞ ≤ ‖a− b‖∞ + ‖b− b′‖∞ ≤ C‖a− b‖∞.
It remains to estimate the length-spectrum distance between X ′

b = Xb′ and Xa.
This part of the argumentt is essentially contained in [1]. Note that Xa is obtained
from Xb′ by multi twist along αn by the amount t′n = tαn

(Xa) − tαn
(Xb′). The

estimate (19) and the triangle inequality ‖tαn
(Xa) − tαn

(Xb′)‖∞ ≤ ‖tαn
(Xa) −

tαn
(Xb)‖∞ + ‖tαn

(Xb)− tαn
(Xb′)‖∞ gives that

|t′n| = |tαn
(Xa)− tαn

(Xb′)| ≤ C‖a− b‖∞max{1, | log lαn
(X0)|}.

For any simple closed geodesic β on Xb′ , we estimate | log
lβ(Xb′ )
lβ(Xa)

|. We have

lβ(Xb′) ≤ lβ(Xa) +

∞
∑

n=1

i(β, αn)|t
′
n| ≤ lβ(Xa)+

+C‖a− b‖∞

∞
∑

n=1

i(β, αn)max{1, | log lαn
(X0)|}
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and

lβ(Xa) ≥ C′
∞
∑

n=1

i(β, αn)max{1, | log lαn
(Xa)|}

by the Collar lemma. Since Xa ∈ Tls(X0), it follows that there exists M > 0 such
that | log lαn

(Xa)| ≥ | log lαn
(X0)| −M . Thus there exists C′′ > 0 such that

max{1, | log lαn
(Xa)|} ≥ C′′ max{1, | log lαn

(X0)|}.

The above inequalities imply that

lβ(Xb′)

lβ(Xa)
≤ 1 + C′′′‖a− b‖∞

and by reversing roles played by Xa and Xb′ we get

lβ(Xa)

lβ(Xb′)
≤ 1 + C′′′‖a− b‖∞.

This proves that F−1 : l∞ → Tls(X0) is Lipschitz. �

Since l∞ is contractible, we get

Corollary 2.2. The length spectrum Teichmüller space Tls(X0) for any hyperbolic

surface X0 with an upper bounded pants decomposition is contractible.

3. The closure of Tqc(X0) in Tls(X0)

A question of characterizing the closure of the image of Tqc(X0) inside Tls(X0)
was raised in [1]. We use our understanding of the topology on the Fenchel-Nielsen
coordinates that makes the map F : Tls(X0) → l∞ into a homeomorphism to give
a characterization of the closure of Tqc(X0).

Let l = {(x1, x2, . . .) : xi ∈ R} be the space of all sequences of real numbers. We

first define F̃ : Tls(X0) → l by setting

F̃ (X) = {(x1, x2, . . .) ∈ l : x2n−1 = log
lαn

(X)

lαn
(X0)

, x2n = tαn
(X)−tαn

(X0) for n ∈ N}.

If αn is a boundary component we use only the length coordinate.
By [1] or by Theorem 1, F̃ (Tls) ⊂ l consists of all x̄ = (x1, x2, . . .) ∈ l such that

sup
n

max{|x2n−1|,
|x2n|

max{1, | log lαn
(X0)|}

} < ∞.

Let O(1) denotes a bounded function and let O(M) := M · O(1) as M → ∞.
Moreover, o(1) denotes a function which converges to 0 as M → ∞ and let o(M) =
M · o(1). Then x̄ = (x1, x2, . . .) are the Fenchel-Nielsen coordinates of X ∈ Tls(X0)
if and only if

|x2n−1| = O(1)

and
|x2n| = O(max{1, | log lαn

(X0)|}).

By [2], the image F (Tqc(X0)) ⊂ l of the quasiconformal Teichmüller space Tqc(X0)
consists of all x̄ = (x1, x2, . . .) such that

‖x̄‖∞ < ∞,

or equivalently
|xn| = O(1).
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Theorem 3.1. Let X0 be a complete hyperbolic surface with an upper bounded

pants decomposition P = {αn}. Then X ∈ Tls(X0) is in the closure of Tqc(X0) for
the metric dls if and only if

sup
αn∈P

∣

∣

∣
log

lαn
(X)

lαn
(X0)

∣

∣

∣
< ∞

and

(20) |tαn
(X)− tαn

(X0)| = o(| log lαn
(X0)|)

as | log lαn
(X0)| → ∞.

Proof. We first note that if X0 has a (geodesic) pants decomposition which is
bounded from the above and from the below then (cf. [12], [1]) Tqc(X0) = Tls(X0).
Therefore we assume that there is a pants decomposition of X0 which is upper
bounded with a sequence of cuffs whose lengths go to 0.

Let Xi ∈ Tqc(X0) such that Xi → X in the length spectrum metric dls as i → ∞.
Then dls(X0, X) < ∞, namely X ∈ Tls(X0). Let {αnk

}k be the set of all geodesics
in P such that lαnk

(X0) ≤
1
e
. Then by Theorem 2.1

sup
k

|tαnk
(Xi)− tαnk

(X)|

| log lαnk
(X0)|

→ 0

as i → ∞. Thus for any ǫ > 0 there exists i0 such that for all i > i0 we have

|tαnk
(X)− tαnk

(X0)| ≤ |tαnk
(Xi)− tαnk

(X0)|+ ǫ| log lαnk
(X0)|.

Assume on the contrary that (20) is false. Then there exists C > 0 and subsequence
kj such that lαnkj

(X0) → 0 as j → ∞ and

|tαnkj

(X)− tαnkj

(X0)| ≥ C| log lαnkj

(X0)|.

Choose ǫ = C
2 . The above two inequalities give for all i > i0

|tαnkj

(Xi)− tαnkj

(X0)| ≥
C

2
| log lαnkj

(X0)|

which contradicts Xi → X as i → ∞. Thus X satisfies (20).

Assume thatX ∈ Tls(X0) satisfies (20). We need to find a sequenceXi ∈ Tqc(X0)
such that Xi → X as i → ∞ for the length spectrum metric dls. For a given i ∈ N,
let Xi ∈ Tls(X0) be defined by the Fenchel-Nielsen coordinates

lαn
(Xi) := lαn

(X)

and

(21) tαn
(Xi)− tαn

(X0) := sgn[tαn
(X)− tαn

(X0)]min{|tαn
(X)− tαn

(X0)|, i}.

By [2], we have Xi ∈ Tqc(X0). Let M = dls(X0, X) and choose ǫ > 0. Since X
satisfies (20), it follows that there exists δ > 0 such that

|tαn
(X)− tαn

(X0)|

| log lαn
(X0)|

<
ǫ

2

for all αn ∈ P with lαn
(X0) ≤ δ. Moreover, there exists C = C(δ) > 0 such that

|tαn
(X)− tαn

(X0)| ≤ C

for all αn ∈ P with lαn
(X0) > δ.



UPPER BOUNDED PANTS DECOMPOSITION 13

For lαn
(X0) ≤ δ, we have

|tαn
(X)− tαn

(Xi)|

| log lαn
(X0)|

≤
|tαn

(X)− tαn
(X0)|

| log lαn
(X0)|

+
|tαn

(X0)− tαn
(Xi)|

| log lαn
(X0)|

≤

≤ 2
|tαn

(X)− tαn
(X0)|

| log lαn
(X0)|

< ǫ.

For lαn
(X0) > δ, we have that tαn

(Xi) = tαn
(X) for each i > C. Thus Xi → X

as i → ∞ in the length spectrum metric dls. �
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[6] Y-E. Choi and K. Rafi, Comparison between Teichmüller and Lipschitz metrics, J. Lond.

Math. Soc. (2) 76 (2007), no. 3, 739-756.
[7] D. B. A. Epstein and A. Marden, Convex hulls in hyperbolic space, a theorem of Sulli-

van, and measured pleated surfaces, Analytical and geometric aspects of hyperbolic space
(Coventry/Durham, 1984), 113-253, London Math. Soc. Lecture Note Ser., 111, Cambridge
Univ. Press, Cambridge, 1987.

[8] D.B.A. Epstein, A. Marden and V. Markovic, Quasiconformal homeomorphisms and the

convex hull boundary, Ann. of Math. (2) 159 (2004), no. 1, 305-336.
[9] A. Fletcher, Local rigidity of infinite-dimensional Teichmüller spaces J. London Math.

Soc. (2) 74 (2006), no. 1, 26-40.
[10] S. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), no. 2, 235-

265.
[11] Y. Minsky, Extremal length estimates and product regions in Teichmüller space, Duke

Math. J. 83 (1996), no. 2, 249-286.
[12] H. Shiga, On a distance defined by the length spectrum of Teichmüller space, Ann. Acad.

Sci. Fenn. Math. 28 (2003), no. 2, 315-326.
[13] S. Wolpert, The length spectra as moduli for compact Riemann surfaces., Ann. of Math.

(2) 109 (1979), no. 2, 323-351.

Department of Mathematics, Queens College of CUNY, 65-30 Kissena Blvd., Flush-

ing, NY 11367

E-mail address: Dragomir.Saric@qc.cuny.edu

Mathematics PhD. Program, The CUNY Graduate Center, 365 Fifth Avenue, New

York, NY 10016-4309


	1. Introduction
	2. The Fenchel-Nielsen coordinates
	3. The closure of Tqc(X0) in Tls(X0)
	References

