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COMPLEX FENCHEL-NIELSEN COORDINATES WITH SMALL

IMAGINARY PARTS

DRAGOMIR ŠARIĆ

Abstract. Kahn and Markovic [9] proved that the fundamental group of each
closed hyperbolic three manifold contains a closed surface subgroup. One of the
main ingredients in their proof is a theorem which states that an assignment
of nearly real, complex Fenchel-Nielsen coordinates to the cuffs of a pants
decomposition of a closed surface S induces a quasiFuchsian representation
of the fundamental group of S. We give a new proof of this theorem with
a slightly stronger conditions on the Fenchel-Nielsen coordinates and explain
how to use the exponential mixing of the geodesic flow on a closed hyperbolic
three manifold to prove that our theorem is sufficient for the applications in
the work of Kahn and Markovic [9].

1. Introduction

Kahn and Markovic [9] recently proved that the fundamental group π1(M) of
any closed hyperbolic three manifold M has a closed surface subgroup. Their
proof uses the exponential mixing of the geodesic flow on M in order to find a
“well-distributed” finite collection of skew pants in the three manifold M that have
large and nearly equal cuff lengths, that are nearly flat, and that can be glued
pairwise with nearly zero angles. The collection of skew pants has a subcollection
P that closes to form an abstract closed surface S of (high) genus with nearly real,
complex Fenchel-Nielsen coordinates on P . The final step in the proof of Kahn and
Markovic [9] is to show that nearly real, complex Fenchel-Nielsen coordinates on
P necessarily induce an isomorphism between the fundamental group π1(S) and a
quasiFuchsian group. Our contribution is to give a new proof of this statement. In
fact, we prove a slightly weaker statement by requiring that the imaginary parts
of the complex Fenchel-Nielsen coordinates satisfy slightly stronger conditions and
establish that this weaker statement is sufficient for the purposes of the proof of
the surface subgroup conjecture along the lines in [9]. Our proof adopts the ideas
of proving the injectivity of the bending along a measured lamination (cf. [7], [8],
[13]) which (at least conceptually) simplifies this part of the argument in [9].

Let S be a closed surface of genus g ≥ 2 equipped with a pants decomposition
P . Then P consists of 3g − 3 simple closed curves such that each component of
the complement is a pair of pants. Following [9, §2] (see also §2), to each cuff
C ∈ P we associate complex half-length hl(C) ∈ C/2πiZ and complex twist-bend
parameter s(C) ∈ C/(2πiZ+hl(C)Z). An assignment of half-lengths and twist-bend
parameters to C ∈ P induces a representation of the fundamental group π1(S) into
PSL2(C). The representation is Fuchsian if and only if {(hl(C), s(C)}C∈P ∈ R

3g−3.
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2 DRAGOMIR ŠARIĆ

The following theorem characterizes a neighborhood of the real subspace R3g−3

inside C3g−3 which gives quasiFuchsian representations. We note that the size of
the neighborhood is independent of the genus g.

Theorem 1.1 (Kahn-Markovic [9]). There exist universal ǫ̂, K0 > 0 and R(ǫ̂) > 0
such that the following is satisfied. Let S be a closed surface of genus g ≥ 2 and
let P be a pants decomposition of S. If ρ : π1(S) → PSL2(C) is a representation
which is discrete and faithful on each pair of pants in P and if the reduced complex
Fenchel-Nielsen coordinates on each cuff C ∈ P satisfy

(1) |hl(C)−R/2| < ǫ

and

(2) |s(C) − 1| < ǫ/R

for some ǫ < ǫ̂ and R > R(ǫ̂), then ρ : π1(S → PSL2(C) is injective and ρ(π1(S))
is quasiFuchsian.

Moreover, let S be endowed with a hyperbolic metric whose reduced Fenchel-
Nielsen coordinates are hl(C) = R/2 and s(C) = 1 for each C ∈ P. Then there

exists an injective map f̃ : ∂∞S̃ → ∂∞H3 which conjugates π1(S) into the above
quasiFuchsian group and which extends to a (1+K0ǫ)-quasiconformal map of ∂∞H3

onto itself.

We give a new proof of the above theorem under assumptions (2) and

(3) |hl(C)−R/2| < ǫ/R.

Even though (3) is stronger than (1) (which makes our statement weaker than
the above theorem), it turns out that this is enough for the purposes in [9]. At the
end of Introduction we indicate how to see that (3) follows from the fact that the
skew pairs of pants are “well-distributed” inside the three manifold which proves
that the weaker statement suffices. One advantage of using (3) instead of (1) is
that we do not need to require that ρ is discrete and faithful on pairs of pants in
P in order to establish the injectivity of the representation ρ : π1(S) → PSL2(C).
In particular, ρ is discrete and injective on each pair of pants of P if it satisfies (2)
and (3).

In [9], Theorem 1.1 is proved by estimating the derivative (along a path of rep-
resentations connecting the Fuchsian representation with the representation corre-
sponding to the given reduced Fenchel-Nielsen coordinates) of the distance between
the images in H3 of two lifts of geodesics C ∈ P in H2 from the above by a function
of the distance between these two lifts of geodesics at the representation. This leads
to an inductive argument which gives the desired theorem.

Our approach is to decompose each pair of pants in P into two ideal hyperbolic
triangles by adding three infinite geodesics such that each end of each added ge-
odesic spirals around a different cuff. The union of cuffs of P together with the
added geodesics in each pair of pants is a maximal geodesic lamination λ in S with
finitely many leaves. Let λ̃ be the lift of λ to the universal covering H2. The re-
duced complex Fenchel-Nielsen coordinates {(hl(C), s(C)}C∈P induce a developing

map f̃ : ∂∞H2 → ∂∞H3 which conjugates π1(S) < PSL2(R) into a subgroup of

PSL2(C). The developing map extends to complementary triangles of λ̃ to define

a pleated surface f̃ : H2 → H
3 which is pleated along λ̃ (cf. [3] and also §3). Each
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pleated surface along λ̃ induces a finitely additive (C/2πiZ)-valued transverse co-

cycle α to λ̃ which measures the shearing and the bending along λ̃ (cf. [3]). The
bending cocycle is the imaginary part β of the transverse cocycle α which is an
(R/2πZ)-valued transverse cocycle to λ̃ measuring the amount of the bending of
the pleated surface. We translate the reduced complex Fenchel-Nielsen coordinates
into the bending transverse cocycle β to λ̃ as follows.

An isolated leaf l̃ of λ̃ is on a common boundary of two complementary ideal
triangles ∆1(l̃) and ∆2(l̃) to λ̃. Isolated leaves of λ̃ accumulate to each lift C̃ of

each cuff C ∈ P from both sides of C̃. Let S be endowed with a hyperbolic metric
whose Fenchel-Nielsen coordinates are {(Re(hl(C)), Re(s(C))}C∈P and divide each
pair of pants of P into two hyperbolic hexagons Σ1 and Σ2 by drawing common
orthogonal arcs between pairs of cuffs of each pair of pants in P . Each hexagon
Σ on the surface S lifts to infinitely many hexagons in the universal covering H2.
Recall the assumptions |Re(s(C)) − 1| < ǫ/R and |Re(hl(C)) − R/2| < ǫ/R, for
R ≥ R(ǫ̂) and 0 < ǫ < ǫ̂. A cuff C is the union of two boundary sides of two
hexagons coming from the pair of pants on one side of C as well as the union of
two boundary sides of two hexagons coming from the pair of pants on the other
side of C. The boundary sides of the hexagons from one side of C are not exactly
matched along C with the boundaries of the hexagons from the other side of C
but they are glued with a shift close to 1 by the condition |Re(s(C)) − 1| < ǫ/R.
It follows that for each hexagon Σi, i = 1, 2, on one side of C there is a unique
hexagon Σ′

i, i = 1, 2, on the other side of C such that the common subarc of their
boundary sides on C has length close to R/2− 1. We will say that Σi and Σ′

i are

0-neighbors in this case. Two lifts Σ̃i and Σ̃′
i to H

2 of 0-neighbors hexagons are also

called 0-neighbors if they meet along a lift C̃ of C with a common subarc of length
close to R/2 − 1 (cf. §3). If hexagon Σ̃ is a lift of a hexagon Σ, then Σ̃ intersects

infinitely many complementary triangles to λ̃. There is a unique triangle ∆Σ̃ such

that its intersection with Σ̃ is a hexagon, and we call ∆Σ̃ the canonical triangle of

Σ̃ (cf. §3 and Figure 1).

Theorem 1.2. There exists C0 > 0 such that the following holds. Let {hl(C), s(C)}C∈P

be the reduced complex Fenchel-Nielsen coordinates that satisfy (3) and (2), and let

β be the induced bending transverse cocycle to the lamination λ̃. If l̃ is an isolated
leaf of λ̃ and ∆i(l̃), i = 1, 2, are complementary triangles to λ̃ with a common

boundary side l̃, then

(4) |β(∆1(l̃),∆2(l̃))| ≤ C0ǫ

R
.

If Σ̃1 and Σ̃2 are 0-neighbors hexagons, and ∆Σ̃1
and ∆Σ̃2

are their canonical
triangles, then

(5) |β(∆Σ̃1
,∆Σ̃2

)| ≤ C0ǫ

R
.

Theorem 1.2 translates the original problem of whether the reduced complex
Fenchel-Nielsen coordinates give a quasiFuchsian representation into whether a
bending cocycle gives a quasiFuchsian representation. We point out that any con-
dition on the bending cocycle that guarantees injectivity of the bending map on
∂∞H2 necessarily depends on the hyperbolic metric from which the bending starts.
In our case, a sufficient information about the hyperbolic metric is given by the fact
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that a unit length hyperbolic arc in H2 can have at most 2R+2 intersections with
the lifts of the cuffs (cf. [9, Lemma 2.3] and Lemma 3.2). When the transverse
bending measure is countably additive, then it is well-known that the bending mea-
sure which is uniformly small on each transverse arc of length 1 gives a bending
map which is injective on ∂∞H

2 (cf. [7], [8], [13]). The above sufficient condition
for the injectivity of the bending along the measured laminations is universal in
the sense that it does not depend on the genus of the surface and, in fact, it works
for any surface including the unit disk. The main difficulty in proving that the
bending along finitely additive transverse cocycles is injective on ∂∞H2 lies in the
fact that the total variation of the transverse bending measure is infinite. However,
conditions (3) and (2) guarantee that the bending map behaves “semi-locally” as
the bending map along a measured lamination. Using ideas from [13], we prove
that the above conditions on the bending cocycle and the hyperbolic metric are
sufficient to guarantee injectivity on ∂∞H2 of the bending map. Holomorphic mo-
tions provide the desired bound on quasiconformal extension of the restriction to
∂∞H2 of the bending map.

Theorem 1.3. Given C0, there exist ǫ̂ > 0, K0 > 1 and R(ǫ̂) > 0 such that for
0 ≤ ǫ < ǫ̂ the following is satisfied. Let S be a closed hyperbolic surface equipped
with a maximal, finite geodesic lamination λ such that each closed geodesic of λ has
length in the interval (R− C0ǫ

R , R+ C0ǫ
R ) for some R ≥ R(ǫ̂) and that each geodesic

arc on S of length 1 intersects at most C0 · R closed geodesics of λ. If a bending
cocycle β transverse to the lift λ̃ in H2 satisfies (4) and (5) then the induced bending
map

f̃β : ∂∞H
2 → ∂∞H

3

is injective and the induced representation of π1(S) is quasiFuchsian. The bending

map extends to a (1 +K0ǫ)-quasiconformal map f̃β : ∂∞H
3 → ∂∞H

3.

We give an analogue of the above theorem for non-finite geodesic laminations
and bending (finitely additive) transverse cocycles [14].

It remains to explain why the condition |hl(C)−R/2| < ǫ can be replaced with
the condition |hl(C)−R/2| < ǫ/R. The geodesic flow on a closed hyperbolic three
manifold M is exponentially mixing [12]. Let F(M) be the 2-frame bundle over
M . Since the hyperbolic Laplacian of M has a spectral gap the following holds by
[12]. There exists q > 0 which depends on the three manifold M such that for any
two Cnifty-functions ψ, ϕ : F(M) → R we have

(6)
∣

∣

∣
Λ(F(M))

∫

F(M)

(g∗tψ)ϕdΛ −
∫

F(M)

ψdΛ

∫

F(M)

ϕdΛ
∣

∣

∣
≤ Ce−qt,

where Λ is the Liouville measure on F and the constant C depends on the C1-norms
of ψ and ϕ.

Let fǫ : F(M) → R be a non-negativeC∞-function supported in the ǫ-neighborhood
of a point in F(M3) with

∫

F(M) fǫdΛ = 1, called a bump function for the ǫ-

neighborhood. By applying (6) to fǫ, Kahn and Markovic [9] proved that there
exist triples of 2-frames, called tripods, that after traveling a long time t > 0 along
the geodesic flow return to their ǫ-neighborhoods. These tripods define skew pairs
of pants in M whose cuff lengths are R = 2t − 2 log 4

3 with a possible error D · ǫ,
for some D > 0 because the expression on the right of (6) goes to 0 as t → ∞ (cf.
[9, Lemma 4.6]).
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It is possible to improve the estimate on the complex length of the cuffs of the
above skew pairs of pants. Note that the constant C in (6) can be estimated (cf.
[12]) in terms of H2

2 -Sobolev norms to be C0‖ψ‖H2
2
‖ϕ‖H2

2
, where C0 is a fixed

constant. Then, for a given time t geodesic flow, we consider bump function fǫ/t
for ǫ/t-neighborhood of a point in F(M). The bump function fǫ/t can be produced
by scalling the domain and the size of fǫ such that ‖fǫ/t‖H2

2
≤ p2(t)‖fǫ‖H2

2
, where

p2(t) is a polynomial in t of degree 2. From (6) we get
∣

∣

∣
Λ(F(M))

∫

F(M)

(g∗t fǫ/t)fǫ/tdΛ− 1
∣

∣

∣
≤ C0‖fǫ‖2H2

2
p2(t)

2e−qt → 0

as t → ∞. This implies that the skew pairs of pants have cuffs of the length R
within ǫ/R, when we choose an appropriate value for t = t(R) thus obtaining (3).

Acknowledgements. I am grateful to Vladimir Markovic and Hideki Miyachi for
various discussions regarding this work.

2. The reduced complex Fenchel-Nielsen coordinates

Let S be a closed surface of genus g ≥ 2 and let π1(S) be its fundamental group.
Let P be a pants decomposition of S, namely P consists of 3g − 3 simple, closed
curves on S such that the components of the complement of P are pairs of pants.
A representation ρ : π1(S) → PSL2(C) associates to each cuff C ∈ P two complex
numbers: the complex length and the twist-bend parameter. In total, 6g−6 complex
numbers is associated to a representation ρ, called the complex Fenchel-Nielsen
coordinates. The complex Fenchel-Nielsen coordinates were introduced in [10] and
[16], and it was proved there that the quasiFuchsian space of S is parametrized by
an open subset of C6g−6 which contains the real locus R6g−6. We use the reduced
Fenchel-Nielsen coordinates introduced by Kahn and Markovic [9, §2] and we refer
the reader to their article for more details.

Let α and β be two oriented geodesics in H3. Let γ be their common orthogonal
oriented from α to β. The complex distance dγ(α, β) between α and β is defined to
have a positive real part equal to the distance between α ∩ γ and β ∩ γ, while the
imaginary part of dγ(α, β) is the angle between the parallel transport along γ of the
unit tangent vector to α at α∩γ and the unit tangent vector to β at β∩γ. Since the
imaginary part of dγ(α, β) is well defined modulo 2πi, we have dγ(α, β) ∈ C/2πiZ
(for more details, cf. [9, §2]).

Let Π0 be a pair of pants and π1(Π0) be its fundamental group. Consider a
representation ρ : π1(Π0) → PSL2(C) which is faithful and loxodromic. Namely,
the cuffs Ci, i = 0, 1, 2, of Π0 are represented by loxodromic elements ρ(Ci) ∈
PSL2(C). Let γi be the axis of ρ(Ci) and ηi be the common orthogonal to γi−1

and γi+1, for i = 0, 1, 2, where the indices are taken modulo 3. Then the half-length
hlΠ0,ρ(Ci) of the curve Ci associated to the representation ρ is dγi(ηi−1, ηi+1) (cf.
[9, §2]).

Consider a representation ρ : π1(S) → PSL2(C) of the fundamental group π1(S)
of a closed surface S of genus at least two into PSL2(C) and fix a pants of decom-
position P . The representation ρ is viable if ρ : π1(Π) → PSL2(C) is discrete and
faithful for each pair of pants Π of the pants decomposition P , and for any two
pairs of pants Π and Π′ with a common cuff C we have hlΠ,ρ(C) = hlΠ′,ρ(C) (cf.
[9]). For a given viable representation ρ, we define the complex half-length of a
cuff C ∈ P by hl(C) = hlΠ,ρ(C) = hlΠ′,ρ(C) ∈ C/2πiZ, where Π and Π′ are pairs
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of pants with one cuff C (cf. [9]). Let Π and Π′ be two pairs of pants with cuffs
Ci, i = 0, 1, 2, and C′

i, i = 0, 1, 2, respectively such that C0 = C′
0 = C. Let γi, γ

′
i

be the axes of ρ(Ci), ρ(C
′
i). Let ηi and η′i be common orthogonals to γi−1, γi+1

and γ′i−1, γ
′
i+1, respectively. The twist-bend parameter s(C) is the complex distance

between unit tangent vector to η1 at the point η1∩γ0 and the unit tangent vector to
η′1 at the point η′1∩γ0. The choices involved guarantee that the complex twist-bend
parameter s(C) is well defined in C/(2πiZ+ hl(C)Z).

3. Pleated surfaces and transverse cocycles to geodesic laminations

Recall that S is a closed surface of genus g ≥ 2. Let λ be a maximal geodesic
lamination on S, namely each component of the complement of λ is an ideal hy-
perbolic triangle. We do not need to specify a hyperbolic metric on S in order to
be able to talk about geodesic laminations on S (cf. [3]).

Let π : H2 → S be the universal covering for a metric m and let λ̃ = π−1(λ). An

abstract pleated surface for S with the pleating locus λ is a pleating map f̃ with the
pleating locus λ̃ from the hyperbolic plane H2 into the hyperbolic three-space H3

which is equivariant under the action on H
2 of the covering group G of S and the

action on H3 of a subgroup Gf̃ of PSL2(C). If the continuous extension of f̃ from

the ideal boundary ∂∞H2 of H2 to the ideal boundary ∂∞H3 is injective then the
group Gf̃ is quasifuchsian and f̃ projects to a pleated map from S = H2/G into

the quasifuchsian three-manifold H3/Gf̃ .
In this article we consider only finite maximal geodesic laminations on S which

are necessarily obtained by triangulating pairs of pants of a pants decomposition P
of S as follows. Let Π1 and Π2 be two pairs of pants of P that have C ∈ P as one
of its boundaries. It is possible that Π1 = Π2. Assume that ideal triangulations of
Π1 and Π2 are given. Let aj1 for j = 1, 2 be the boundary edges of the triangulation

of Π1 whose one end accumulate at C, and similarly let aj2 for j = 1, 2 be the

boundary edges of the triangulation of Π2 whose one end accumulate at C. Let C̃
be a lift of C to H2. Then there are adjacent lifts ãj1 of aj1 for j = 1, 2 that share

an ideal endpoint x1 with C̃, and there are adjacent lifts ãj2 of aj2 for j = 1, 2 that

share an ideal endpoint x2 with C̃. Either x1 = x2 or x1 6= x2. If x1 = x2 then,
we say that the triangulations of the two pairs of pants with common boundary C
accumulate in the same direction on C. From now on, we assume that λP is a finite,
maximal geodesic lamination that is obtained by triangulating pairs of pants of P
such that the triangulations of pairs of pants with common boundaries accumulate
in the same direction at each C ∈ P .

Let {Πj}2g−2
j=1 be the pairs of pants in P . Given a pair of pants Πj in P with cuffs

Cj
i ∈ P , i = 1, 2, 3, denote by γji ∈ π1(S) the elements representing closed curves Cj

i

such that γj3γ
j
2γ

j
1 = id in π1(S). Let {(hl(C), s(C))}C∈P be the reduced complex

Fenchel-Nielsen coordinates that satisfy (2) and (3). By [10, Proposition 2.3], there
exists a representation ρ : π1(S) → PSL2(C) which realizes {(hl(C), s(C))}C∈P

such that ρ(γji ∈ PSL2(C), for i = 1, 2, 3, and j = 1, 2, . . . , 2g − 2 are loxo-

dromic and ρ(γji ), i = 1, 2, 3, have distinct endpoints for each j = 1, 2, . . . , 2g − 2.
Let S be endowed with the hyperbolic metric whose Fenchel-Nielsen coordinates
{(Re(hl(C)), Re(s(C)))}C∈P are the real parts of the reduced complex Fenchel-
Nielsen coordinates {(hl(C), s(C)}C∈P . Let G be the covering group for the uni-

versal covering π : H2 → S. Consider the lifts C̃ to H
2 of the cuffs of P . Then there
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exists a developing map f̃ from the set of endpoints of C̃ ∈ P into ∂∞H3 which
realizes the reduced complex Fenchel-Nielsen coordinates {(hl(C), s(C)}C∈P . The

map f̃ extends to an abstract pleating map as follows. Let λ̃P be the lift of λP
to H2. Each geodesic of λ̃P which is not a lift of a cuff has its both endpoints at
the endpoints of two lifts of two different cuffs of a single pair of pants in P which
implies that the endpoints are distinct. Thus f̃ extends to map each geodesic of λ̃P
into a geodesic of H3. Since the complementary components to λ̃P are ideal hyper-
bolic triangles, it follows that we have an extension f̃ : H2 → H3 which determines
an abstract pleated surface with the pleating locus λ̃P . Thus the representation ρ
realizes the geodesic lamination λ̃P (cf. [2]).

An abstract pleated surface f̃ : H2 → H3 with a pleating locus λ̃P determines
a (C/2πiZ)-valued transverse cocycle α to the geodesic lamination λ̃P (cf. [3]).
Namely, α determines a finitely additive assignment of a number in C/2πiZ to

each arc transverse to λ̃P (with endpoints in the complementary triangles of λ̃P)
which is homotopy invariant relative λP . If k is a geodesic arc connecting triangles
∆1 and ∆2, then we write α(∆1,∆2) = α(k) because α(k) depends only on the

homotopy class of k relative λ̃P . The real part of α is an R-valued transverse
cocycle which completely determines the path metric on the pleated surface (cf.
[3]). The imaginary part of α is an (R/2πZ)-valued transverse cocycle β to the
geodesic lamination λP . The transverse cocycle β determines the amount of the
bending of the pleated surface f̃ : H2 → H3 (cf. [3]).

Our first task is to translate the conditions (3) and (2) in terms of the associated

transverse cocycle to λ̃P . Let f̃ : H2 → H3 be the pleating map corresponding to
the reduced Fenchel-Nielsen coordinates {hl(C), s(C)}C∈P starting from the real
Fenchel-Nielsen coordinates {Re(hl(C)), Re(s(C))}C∈P as above. We also lift the
decomposition of the pairs of pants of P into right-angled hexagons. A right-angled
hexagons on S lifts to an infinite collection of right-angled hexagons in H2. Fix a
lift C̃ ∈ π−1(C) of the closed geodesic C and fix a lifted hexagon Σ that has one

boundary side on C̃. Then there is a unique lifted hexagon Σ′ with one boundary
side on C̃ which lies on the opposite side of C̃ such that the distance between the
corresponding vertices of Σ and Σ′ on C̃ is equal to Re(s(C)). We say that Σ and

Σ′ are 0-neighbors. Thus 0-neighbors hexagons meet along C̃ and have an arc of
length R/2−Re(s(C)) in common (cf. Figure 1). If two hexagons Σ and Σ′′ meet
along their boundaries but they are not 0-neighbors then we call them 1-neighbors
(cf. Figure 1).

Fix a lifted hexagon Σ in H2. Among all complementary triangles to λ̃P there is
a unique triangle ∆Σ whose all three boundary sides intersect Σ. We call ∆Σ the
canonical triangle for Σ. Let Σt be the intersection of Σ and ∆Σ. Then Σ \Σt has
three connected components each being a quadrilateral (cf. Figure 1). Let H be
the set of all lifted hexagons in H2. Then

T Ht =
⋃

Σ∈H

Σt

separates geodesics in π−1(C) (cf. Figure 2). We give a proof of Theorem 1.2 from
Introduction.
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Figure 1. Σ and Σ′ are 0-neighbors; Σ and Σ′′ are 1-neighbors;
∆Σ is the characteristic triangle of Σ

Figure 2. The set T Ht

Theorem 3.1. There exists C0 > 0 such that the following holds. Let {hl(C), s(C)}C∈P

be the reduced complex Fenchel-Nielsen coordinates such that

|hl(C)−R/2| < ǫ

R
and

|s(C) − 1| < ǫ

R
.

Let S be endowed with a hyperbolic metric whose Fenchel-Nielsen coordinates are
{Re(hl(C)), Re(s(C))}C∈P . Let λP be a maximal geodesic lamination obtained by
triangulating pairs of pants of P such that the edges of the triangles from both sides
of each C ∈ P accumulate in the same direction. Let f̃ : H2 → H

3 be the bending
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map with the bending locus λ̃P = π−1(λP ) which realizes the complex Fenchel-
Nielsen coordinates {hl(C), s(C)}C∈P , where π : H2 → S is the universal covering.

Denote by β the bending cocycle transverse to λ̃P for f̃ . Let l̃ be an isolated leaf
of λ̃P which is on the boundary of two complementary triangles ∆1(l̃) and ∆2(l̃) of

λ̃P . Then

|β(∆1(l̃),∆2(l̃))| ≤
C0ǫ

R
.

Moreover, let Σ1 and Σ2 be 0-neighbor hexagons and let ∆Σ1 and ∆Σ2 be their
canonical triangles, respectively. Then

|β(∆Σ1 ,∆Σ2)| ≤
C0ǫ

R
.

Proof. Let Π be a pair of pants in P with boundary curves Ci, i = 0, 1, 2. Let li,
for i = 0, 1, 2, be the geodesics of λP that triangulate Π such that li+1 and li+2

accumulate on Ci, for i = 0, 1, 2, with the indices taken modulo 3. Let C̃i be a lift
of Ci to H

2 and let l̃i+1, l̃i+2 be consecutive lifts of li+1, li+2 that share a common

endpoint with C̃i. Let γi ∈ PSL2(R) be the deck transformation corresponding to

C̃i such that γi(l̃i+1) = l̃′i+1 is adjacent to l̃i+2. Let l̃′i+2 = γi(l̃i+2). Then l̃′i+2 is

adjacent to l̃′i+1.

Let ri+2 be the geodesic ray orthogonal to f̃(l̃i+2) that starts at the endpoint of

f̃(l̃i+1) which is not in common with f̃(C̃i). Let r
′
i+2 be the geodesic ray orthogonal

to f̃(l̃i+2) that starts at the endpoint of f̃(l̃
′
i+1) which is not in common with f̃(C̃i).

Define si+2 to be the complex distance between the unit tangent vector to r′i+2 at

r′i+2 ∩ f̃(l̃i+2) and the unit tangent vector to ri+2 at ri+2 ∩ f̃(l̃i+2). Define si+1

using the geodesics f̃(l̃i+2), f̃(l̃
′
i+1), f̃(l̃i+2) similar to the above. Then

si+1 + si+2 = l(δi)

where δi = f̃ ◦ γi ◦ f̃−1 ∈ PSL2(C) and l(δi) is the complex translation length of
δi, for i = 0, 1, 2. Solving the above system gives

si =
l(δi+1) + l(δi+2)− l(δi)

2

for i = 0, 1, 2. Since
∣

∣Im(
1

2
l(δi))

∣

∣ ≤ ǫ

R
,

it follows that

|β(∆1(l̃i),∆2(l̃i))| ≤
C0ǫ

R
for i = 0, 1, 2 and some C0 > 0.

Let Σ ⊂ H2 be a lifted right angled hexagon from a pair of pants Π whose
boundary sides lie on Ci, i = 0, 1, 2. We fix lifts C̃i of Ci such that three sides of
Σ lie on C̃i for i = 0, 1, 2. Let Σf̃ be the skew right angled hexagon whose three

sides lie on f̃(C1), f̃(C2) and f̃(C3). Then the complex lengths of these sides are
hl(C1), hl(C2) and hl(C3). These sides are called long sides and the other three
sides of Σf̃ are called short sides. Denote by hi the short side of Σf̃ which connects

f̃(Ci+1) and f̃(Ci+2). Then the hexagon cosine formula directly gives (cf. [4], [9]))

l(hi) = 2e−
R
4 + 1

2 [hl(Ci+1)+hl(Ci+2)−hl(Ci))] +O(e−3R/4)
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Figure 3. Computing the bending cocycle.

where l(hi) is the complex distance between f̃(C̃i+1) and f̃(C̃i+2). This implies

|Re(l(hi))| = O
(

e−R/4
)

and

|Im(l(hi))| = O
( ǫ

R
e−R/4

)

.

Let Σ1 and Σ2 be two 0-neighbors hexagons in H2, and let ∆Σ1 and ∆Σ2 be their

canonical triangles. Let C̃ ∈ P̃ = π−1(P) be the geodesic which separates ∆Σ1 and

∆Σ2 , and let C = π(C̃) ∈ P . Note that both Σ1 and Σ2 have one boundary side on

C̃. Normalize the bending map such that the ideal triangles f̃(∆Σ1) and f̃(∆Σ2),

have a common endpoint ∞, and that f̃(C̃) has endpoints 0 and ∞. Let C̃j
1 for

j = 1, 2 be the two geodesics of P̃ (different from C̃) which contain boundary

sides of Σ1, and let C̃j
2 for j = 1, 2 be the two geodesics in P̃ (different from C̃)

which contain boundary sides of Σ2. We can assume that the twist-bend s(C) is

the complex distance (along f̃(C̃)) between the common orthogonal to f̃(C̃1
1 ) and

f̃(C̃), and the common orthogonal to f̃(C̃1
2 ) and f̃(C̃). It follows that the complex

distance (along f̃(C̃)) between the common orthogonal to f̃(C̃2
1 ) and f̃(C̃), and the

common orthogonal to f̃(C̃2
2 ) and f̃(C̃) is also equal to the twist-bend s(C) (cf.

Figure 3).
We recall the definition of β(∆Σ1 ,∆Σ2) given by Bonahon [3]. Let W be the com-

ponent of H2\(∆Σ1∪∆Σ2) which separates ∆Σ1 and ∆Σ2 . Denote by λ̃P (∆Σ1 ,∆Σ2)

the set of leaves of λ̃P which separate ∆Σ1 and ∆Σ2 , and orient them to the left as

seen from ∆Σ1 . The leaves of λ̃P divide W into hyperbolic strips and the images

under f̃ of the hyperbolic strips are two-dimensional hyperbolic strips in H3. Each
such hyperbolic strip intersects ∂∞H3 in two circular arcs with a possibility that
one is reduced to a point such that one circular arc is bounded by the negative
endpoints of the leaves f̃(λ̃P (∆Σ1 ,∆Σ2)), and the other by positive endpoints. Let
γ ∈ ∂∞H3 be an oriented, piecewise circular curve formed by concatenating the
circular arcs bounded by negative endpoints from ∆Σ1 to ∆Σ2 . Let v∆Σ1

be the
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outward tangent vector to the circular arc of the intersection of f̃(∆Σ1 ) ∩ ∂∞H3,
and let v∆Σ2

be the inward tangent vector to the circular arc of the intersection

f̃(∆Σ2 ) ∩ ∂∞H
3. Then (cf. [3])

β(∆Σ1 ,∆Σ2) = ∠(v∆Σ1
, v∆Σ2

)−
∑

W

βW

where ∠(v∆Σ1
, v∆Σ2

) is the angle under Euclidean parallel transport in C, βW is
the signed curvature of the circular subarc W of γ and the sum is over all circular
subarcs of γ. In our case, all circular arcs are Euclidean segments and each term of
the sum in the above formula is zero. Thus we obtain

β(∆Σ1 ,∆Σ2) = ∠(v∆Σ1
, v∆Σ2

).

To finish the proof we refer to Figure 3. The vector v∆Σ1
is parallel to the

vector −→xy in ∂∞H3 whose initial point x is an endpoint of f̃(C̃1
1 ) and terminal

point y is an endpoint of f̃(C̃1
2 ) as in Figure 3. Similarly, the vector v∆Σ2

is

parallel to the vector
−−→
y′x′ in ∂∞H3 whose initial point y′ is an endpoint of f̃(C̃2

2 )

and terminal point x′ is an endpoint of f̃(C̃2
1 ) as in Figure 3. We normalize the

situation such that the short sides h1 and h2 of Σ1 meet C̃ at j = (0, 0, 1) ∈ H3 and
e−Re(hl(C))j = Ce−R/2j ∈ H3 for e−

ǫ
R < C < e

ǫ
R . In this case, the points where

the short sides h′1 and h′2 of Σ2 meet C̃ are eRe(s(C))j = Cej ∈ H3, e−
ǫ
R < C < e

ǫ
R ,

and eRe(s(C)−hl(C))j = C1e
1−R

2 j ∈ H3, e−
2ǫ
R < C1 < e

2ǫ
R .

If h1 lies in the xz-plane in H3 then x is an analytic function of the complex
length l(h1) of h1. An explicit (and elementary) computation shows that the deriva-
tive of x in the variable l(h1) at the point l(h1) = 0 is non-zero. Thus the euclidean
distance from x to 0 ∈ ∂∞H3 is O(|l(h1)|) = O(e−R/4) (this holds without the
restriction that h1 is in the xz-plane). Since y is the image of x under the map
z 7→ e−hl(C)z, it follows that the distance between y and 0 is O(e−3R/4). Similar
statements hold for x′ and y′, respectively. Consider the Fenchel-Nielsen coordi-
nates {(Re(hl(C)), s(C)}C∈P and let f̃Re be the corresponding developing map.

We normalize f̃Re such that f̃Re(C̃) has endpoints 0 and ∞, and that f̃Re(∆Σ1)

and f̃Re(∆Σ2) have a common endpoint ∞. Moreover, we require that the common

orthogonal between f̃Re(C̃) and f̃Re(C̃
1
1 ) meets f̃Re(C̃) at j ∈ H3, and the common

orthogonal between f̃Re(C̃) and f̃Re(C̃
2
1 ) meets f̃Re(C̃) at e

1+O(ǫ/R)j ∈ H3. Let x0,

y0, x
′
0 and y′0 be the endpoints of f̃Re(C̃

1
1 ), f̃Re(C̃

1
2 ), f̃Re(C̃

2
1 ) and f̃Re(C̃

2
2 ) that are

different from ∞, respectively.
Let f̃Im be the developing map which maps the pleated surface for {(Re(hl(C)), s(C))}C∈P

to the pleated surface for {(hl(C), s(C))}C∈P and fixes C̃. Then x = f̃Im(x0),

y = f̃Im(y0), x
′ = f̃Im(x′0) and y′ = f̃Im(y′0). In terms of the geometry, x is the

image of the endpoint x0 of the geodesic f̃Re(C̃
1
1 ) under the rotation around the

common orthogonal to f̃Re(C̃) = C̃ and f̃Re(C̃
1
1 ) with the angle of the rotation

equal to the imaginary part of the complex length of the common orthogonal to
f̃(C̃) = C̃ and f̃(C̃1

1 ). The cosine formula estimates this angle to be O( ǫ
Re

−R/4).

Then the euclidean distance between x0 and x is O( ǫ
Re

−R/4) which implies that

the distance between x and0 is O(e−R/4). Note that y0 and y are the images of x0
and x under the maps z 7→ e−R/4+(1+i)O( ǫ

R ). Thus the euclidean distance between
y and y0 is O( ǫ

Re
−3R/4) and the distance between y and 0 is O(e−3R/4). Similar

properties hold for x′0, x
′ and y′0, y

′. The angle between the vectors −−→x0y0 and
−−→
y′0x

′
0
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is s(C) because the length of C ∈ P is real (which means that the hexagons are
not skewed). The above shows that the angle −−→x0y0 and −→xy is O( ǫ

R ), and the same

estimate for the angle between
−−→
y′0x

′
0 and

−−→
y′x′. Thus the angle between −→xy and

−−→
y′x′

is O( ǫ
R ) which finishes the proof. �

The definition of the bending map. Let ∆1 and ∆2 be two complementary triangles
to λ̃. Bonahon [3] defined the bending map f̃β|∆2 = ϕ∆1,∆2 normalized to be the
identity at ∆1 as follows. Let Pp = {∆′

1,∆
′
2, . . . ,∆

′
p} be a sequence of complemen-

tary triangles to λ̃ which separate ∆1 and ∆2 given in the order from ∆1 to ∆2.
Define

ψp = R
β(∆1,∆

′
1)

g
∆1
∆′

1

◦R−β(∆1,∆
′
1)

g
∆2
∆′

1

◦Rβ(∆1,∆
′
2)

g
∆1
∆′

2

◦R−β(∆1,∆
′
2)

g
∆2
∆′

2

◦ · · · ◦Rβ(∆1,∆
′
p)

g
∆1
∆′

p

◦R−β(∆1,∆
′
p)

g
∆2
∆′

p

where Rb
g is the hyperbolic rotation around the axis g ⊂ H

3 by the angle b ∈ R,

and g∆k

∆′
i
is the geodesic on the boundary of ∆′

i which is closest to ∆k for k = 1, 2.

Let P be the family of all complementary triangles to λ̃ that separate ∆1 and ∆2.
If Pp → P in the sense that Pp is an increasing family with ∪∞

p=1Pp = P , then the
limit

ψ∆1,∆2 = lim
Pp→P

ψp

exists and it is independent of the choice of Pp (cf. [3]). Then

ϕ∆1,∆2 = ψ∆1,∆2 ◦Rβ(∆1,∆2)

g
∆1
∆2

.

The following lemma is established in [9]. We give a different proof below.

Lemma 3.2. Under the above assumptions, a geodesic arc in H2 of length 1 inter-
sects at most 2R+ 2 geodesics from π−1(P), when R is large enough.

Proof. Let l be an arc of length 1 which transversely intersects geodesics of P̃ =
π−1(P). Let {C̃1, C̃2, . . . , C̃n} be the geodesics in P̃ which intersect l in the given

order and we orient them to the left as seen from the half-plane in H2 \ C̃1 which

does not contain C̃2. For R large enough, consecutive geodesics in {C̃1, C̃2, . . . , C̃n}
are connected by the short arcs of the hexagons (otherwise l would intersect two

short sides of a single hexagon which would imply |l| ≥ R/4 > 1). Given C̃j and

C̃j+1, let hj be the common orthogonal, and let x+j = C̃j ∩hj and x−j+1 = C̃j+1∩hj
for j = 1, . . . , n − 1, and x+n = x−n . Given a ∈ C̃j , define r(a) to be the signed

distance between a and x+j . Issue a geodesic ga through a such that the angle of

intersection between C̃j and ga is equal to the angle of intersection between C̃j+1

and ga. Let a
′ = ga ∩ C̃j+1. Then the signed distance between a′ and x−j+1 is equal

to r(a) and consequently the signed distance between a′ and x+j+1 is r(a)− (1± ǫ
R )

because the twist parameter is 1 ± ǫ
R by the assumption. Let r−(a) denote the

signed distance of a to x−j for a ∈ Cj . Thus r
−(a′) = r(a) for a ∈ Cj .

Let Lj = l ∩ C̃j . We compare the signed distance between Lj+1 and x+j+1 to

the signed distance between L′
j and x+j+1. Consider the hyperbolic triangle with

vertices Lj, L
′
j and Lj+1. The angle at Lj is smaller than the angle at L′

j (cf.
Figure 4). By the sine formula for hyperbolic triangles we get

(7) d(Lj , Lj+1) > d(L′
j , Lj+1).
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Figure 4. The number of intersections.

By the condition on the twist parameters we have

r(Lj+1) = r−(Lj+1)− (1± ǫ

R
).

Moreover, we have

r−(Lj+1) = r−(L′
j)± d(L′

j , Lj+1) = r(Lj)± d(L′
j , Lj+1).

The above gives
r(Lj+1) = r(Lj)± d(L′

j , Lj+1)− (1± ǫ)

and thus

(8) r(Ln) ≥ r(L1)− 1 + (n− 1)(1± ǫ

R
)

for all n ≥ 2 because
∑n

i=1 d(L
′
j , Lj+1) ≤

∑n
i=1 d(Lj , Lj+1) ≤ 1 by (7).

Assume that n ≥ 2R+ 2. Then there is 1 ≤ j ≤ n such that |r(Lj)| ≥ R by (8).
We find the contradiction with this inequality by proving that d(Lj , Lj+1) is too
large in this case.

We prove that d(Lj , Lj+1) is too large. Without the loss of generality, we assume
that the quadrilateral Q with vertices Lj, x

+
j , x

−
j+1 and Lj+1 has a right angle at

the vertex Lj+1. It follows then that thee angles of Q are equal to π
2 since the

angles at x+j and x−j+1 are equal to π
2 . An elementary hyperbolic geometry gives

cosh2 d(Lj , Lj+1) = cosh2 d(x+j , Lj) sinh
2 d(x+j , x

−
j+1) + 1.

Since
d(x+j , Lj) = |r(Lj)| ≥ R

and
d(x+j , x

−
j+1) ≤ Ce−R/2,

the above gives

d(Lj , Lj+1) ≥
R

2
− C

for a fixed C > 0 and R large enough. This implies that d(Lj , Lj+1) > 1 for R
large enough which is a contradiction. Thus a geodesic arc of length 1 intersects at
most 2R+ 2 geodesics of P̃. �
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4. Injectivity of the bending maps

The purpose of this section is to prove the following theorem which is the first
statement of Theorem 1.3 from Introduction. We finish the proof of the remaining
statements of Theorem 1.3 in the next section.

Theorem 4.1. Given C0 > 0, there exist ǫ̂ > 0 and R(ǫ̂) > 0 such that for each
0 ≤ ǫ < ǫ̂ and R ≥ R(ǫ̂) the following is satisfied. Let S be a closed hyperbolic
surface equipped with a maximal, finite geodesic lamination λ such that each closed
geodesic of λ has length in the interval (R − ǫ

R , R + ǫ
R ) and that each geodesic arc

of length 1 intersects at most C0R closed geodesics of λ. Assume that a bending
cocycle β transverse to the lift λ̃ in H2 satisfies

(9) |β(∆1(l̃),∆2(l̃))| ≤ C0ǫ

R

for each isolated leaf l̃ and complementary triangles ∆1(l̃) and ∆2(l̃) with common

boundary l̃, and

(10) |β(∆Σ1 ,∆Σ2)| ≤
C0ǫ

R

for the characteristic triangles ∆Σ1 and ∆Σ2 of each two 0-neighbors hexagons Σ1

and Σ2 (coming from the pants decomposition of S whose cuffs are closed geodesics
of λ). Then the induced bending map

f̃β : ∂∞H
2 → ∂∞H

3

is injective.

Proof. Let x, y ∈ ∂∞H2 be two different points. We need to prove that f̃β(x) 6=
f̃β(y). Let P be a pants decomposition of S whose cuffs are closed curves of λ.
We fix a decomposition of S into hexagons as in §3 using the pants decomposition
P and lift it to the universal covering π : H2 → S. Recall that λ̃ = π−1(λ) and

P̃ = π−1(P). Let g be the geodesic in H2 whose ideal endpoints are x and y. If

g ⊂ H
2 \ T Ht then g is a lift of some C ∈ P and f̃β(x) 6= f̃β(y) because g is in the

bending locus of f̃β .
Therefore we assume that g ∩T Ht 6= ∅. Fix a hexagon Σ0 such that g ∩Σ0

t 6= ∅.
Let P be a point in g∩Σ0

t . The point P divides the geodesic g into two rays g±1. Let
P0 = P and assume that we have chosen points P±1, P±2, . . . , P±n in the increasing
order on g±1 such that P±k ∈ (Σ±k)t for distinct hexagons Σ±k, for k = 1, 2, . . . , n.
We define P±(n+1) as follows. Let Σ±(n+1) be the first hexagon after Σ±n such that
(Σ±(n+1))t intersect g±1 and that there exists a point P±(n+1) ∈ g±1 ∩ (Σ±(n+1))t
with d(P±n, P±(n+1)) ≥ 1. If such hexagon does not exist, then we set P±(n+1) to
be the ideal endpoint of g±1. In this fashion we partition each g±1 into consecutive
arcs of lengths at least 1. It is possible that the partition is finite when P±(n+1) is
the endpoint of g±1.

Let g ⊂ H3 be a geodesic ray with initial point p0, and let p ∈ g be another
point. For 0 < θ < π, the cone C(p, g, θ) with vertex p, axis g and angle θ is the set
of all w ∈ H3 such that the angle at p between the positive direction of g and the
geodesic ray from p through w is less than θ. Note that a cone is an open set. A
non-zero vector (p, v) ∈ T 1(H3) uniquely determines a geodesic ray g which starts
at the basepoint p of v and which is tangent to v. Then C(p, v, θ) is by the definition
C(p, g, θ). The shadow of the cone C(p, g, θ) is the set ∂∞C(p, g, θ) of endpoints at
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∂∞H3 of all geodesic rays starting at p and inside C(p, g, θ). The shadow of a cone
is an open subset of ∂∞H3.

For d > 0, let pd ∈ g be the point on g which is on the distance d from p0 = p.
Let η > 0 be the maximal angle such that C(pd, g, η) ⊂ C(p0, g, θ). Then η = η(d, θ)
is a continuous function of d and θ. For a fixed 0 < θ < π, we have η(d, θ) > θ and
η(d, θ) → θ as d→ 0. These properties are elementary.

Let {P±n}n be the points of the partition of g±1. We consider a sequence of
cones {C(P±n, g±1,

π
2 )}. Then

∂∞(C(P±(n+1), g±1,
π

2
) ⊂ ∂∞(C(P±n, g±1,

π

2
)

for each n ∈ N and we say that the sequence of cones is nested.
If we prove that the images of the nested cones under the bending map f̃β

remain nested then we are done. Indeed, since x and y lie in the intersection of the
shadows of all nested cones along g1 and g−1, since the shadows of C(P0, g1,

π
2 ) and

C(P0, g−1,
π
2 ) are disjoint, and if f̃β preserves the nesting of the cones, it follows

that f̃β(x) 6= f̃β(y). It remains to prove that f̃β preserves the nesting of the cones.

To see this, it is enough to normalize f̃β to be the identity on the canonical triangle
∆Σ±n of Σ±n and to prove that

(f̃β |∆Σ
±(n+1)

)(∂∞C(P±(n+1), g±1,
π

2
)) ⊂ ∂∞C(P±n, g±1,

π

2
)

for each n ∈ N.
Let a±n be the arc of g±1 between P±n and P±(n+1). Note that the length of a±n

is at least 1 and that it can be infinite. We first assume that a±n has finite length.
Let Σ1,Σ2, . . . ,Σk be the sequence of all hexagons such that (Σi)t ∩ a±n 6= ∅, for
i = 1, 2, . . . , k. Note that (Σ1)t ∋ P±n and (Σk)t ∋ P±(n+1). For a hexagon Σ,
define C(Σ) to be the union of all hexagons which are connected by a sequence
of 0-neighbors to Σ. Note that C(Σ) looks like a trivalent tree and that it has
infinitely many boundary components which are made out of partial boundaries of
the hexagons in C(Σ). It is important to note that either C(Σ1) = C(Σk−1), or
C(Σ1) and C(Σk−1) share a boundary component. If not, then the subarc of a±n

which connects (Σ1)t to (Σk−1)t connects two boundary components of some C(Σ′),
where C(Σ′) separates C(Σ1) and C(Σk−1). Note that the arc which connects a
short side of a hexagon to a non-adjacent side of the same hexagon has length at
least R/4, where the long sides of the hexagon have lengths R/2. It follows that
the subarc of a±n which connects two boundary components of C(Σ′) has length
at least R/4− 3. Thus the above subarc of a±n has length greater than 1 when R
is large enough which is impossible.

If C(Σ1) = C(Σk−1) then we form a new sequence of hexagons Σ1,Σ
′
2, . . .Σ

′
k−2,Σk−1

such that the adjacent pairs of hexagons are 0-neighbors and a±n intersects char-
acteristic triangles of the hexagons in the sequence. If C(Σ1) 6= C(Σk−1) (and
they share a boundary component) then we can choose a new sequence of hexagons
Σ1,Σ

′
2, . . . ,Σ

′
k−2,Σk−1 such that each pair of adjacent hexagons are 0-neighbors

except one adjacent pair that are 1-neighbors, and that a±n intersects characteris-
tic triangles of the sequence. Note that the subarc of a±n that connects (Σ1)t and
(Σk−1)t is of length less than 1.

The hexagons Σk−1 and Σk are either 0- or 1-neighbors, or neither 0- nor 1-
neighbors. If Σk−1 and Σk are either 0- or 1-neighbors, then Σ1,Σ

′
2, . . . ,Σ

′
k−2,Σk−1,Σk
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is a sequence of hexagons whose adjacent hexagons are 0-neighbors with the excep-
tion of at most 2 pairs which are 1-neighbors. Note that the arc a±n could have
large length in general. If Σk is a 0-neighbor of Σk−1 then there is an arc b±n from
the second point of the intersection of a±n with the boundary of (Σk−1)t to the

boundary of (Σk)t that has length less than 2. To see this, let C̃ ∈ π−1(P) = P̃
be the geodesic which contains one boundary side of both Σk−1 and Σk. Then

the boundary side of (Σk−1)t closets to C̃ is in the C1e
−R/4-neighborhood of C̃

for some C1 > 0, and the same statement is true for (Σk)t. Since Σk is shifted
by 1 ± ǫ

R with respect to Σk−1, it follows that such b±n exists. Thus the set of

geodesics of λ̃ = π−1(λ) that intersect a±n also intersect a geodesic arc c±n with
the initial point P±n and of length at most 3. Assume now that Σk and Σk−1 are

1-neighbors and that C̃ ∈ P̃ separates them. Let Σ′
k be the 0-neighbor of Σk−1

which is separated by C̃ from Σk−1. It follows that the geodesics of λ̃ which in-
tersect a±n except possibly the last geodesic (namely, the geodesic which contains

one side of (Σk)t closets to C̃) intersect a geodesic arc of length at most 3 with one
endpoint P±n. This follows simply by applying the above reasoning to the sequence

Σ1,Σ
′
2, . . . ,Σ

′
k−2,Σk−1,Σ

′
k. If Σk and Σ′

k are not separated by some C̃ ∈ P , then
Σ1,Σ

′
2, . . . ,Σ

′
k−2,Σk−1 suffices to get the same conclusion.

We give a proof of the nesting for the second case discussed above and the first
case above is a subcase of the second. Namely, we are assuming that the set of
geodesics λ̃(a±n) of λ̃ which intersect a±n is also intersected by a geodesic arc c±n

of length at most 3 with the initial point P±n with a possible exception of one

geodesic in λ̃(a±n). We consider the bending map (f̃β)|∆Σk
= ϕ∆Σ1 ,∆Σk

. Let gk be

the geodesic of λ̃ which contains the boundary of (Σk)t and that separates (Σk)t and
(Σ′

k)t. If (Σk)t ∩ a±n comes before (Σ′
k)t ∩ a±n along a±n then c±n does intersect

∆Σk
and this subcase of the second case reduces to the first case. Therefore, we

assume that (Σk)t∩a±n comes after (Σ′
k)t∩a±n along a±n. The geodesic gk might

not intersect c±n. We have

ϕ∆Σ1 ,∆Σk
= ϕ∆Σ1 ,∆Σ′

k

◦Rβ(gk)
gk

where Σ′
k is the 0-neighbor of Σk−1 that is separated from Σk by the geodesic gk.

We normalize such that P±n = j ∈ H3 and P±(n+1) = e−mj, wherem ≥ 1. Then

v = {e−mj,−j} is a tangent vector to a±n at the point P±(n+1) pointing towards
the ideal endpoint of g±1. Lemma A.3 and the assumptions give
(11)

DTH3(Rβ(∆1(gk),∆2(gk))
gk ({e−mj,−j}), {e−mj,−j}) ≤ C|β(∆1(gk),∆2(gk))| ≤

C′ǫ

R

for some C′ > 0 when ǫ > 0 is small enough and R ≥ 1, where {e−mj,−j} ∈ TH3

is a tangent vector to H3 based at e−mj and the function DTH3(·, ·) is defined in
Appendix formula (14).

We consider

ϕ∆Σ1 ,∆Σ′
k

= ψ∆Σ1 ,∆Σ′
k

◦R
β(∆Σ1 ,∆Σ′

k
)

g′
k

where g′k ∈ λ̃ is the side of ∆Σ′
k
facing ∆Σ1 . Let ∆Σ′

i
and ∆Σ′

i+1
be canonical

triangles of two adjacent hexagons from the sequence Σ′
1 := Σ1,Σ

′
2, . . . ,Σ

′
k−1 :=

Σk−1,Σ
′
k. Then ∆Σ′

i
and ∆Σ′

i+1
are separated by C̃i ∈ P̃ and they have a common

endpoint x̃i with C̃i. Let Fi be the family of complementary triangles between ∆Σ′
i
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Figure 5.

and ∆Σ′
i+1

. Let ∆i
1,∆

i
2 be two triangles in Fi which are closets to ∆Σ′

i
and let

∆i+1
1 ,∆i+1

2 be two triangles in Fi which are closets to ∆Σ′
i+1

. Let γi ∈ PSL2(R)

be the element of the covering group of S that corresponds to C̃i. Any triangle in
Fi between ∆Σ′

i
and C̃i is the image of either ∆i

1 or ∆i
2 under a power of γi, and

any triangle of Fi between C̃i and ∆Σ′
i+1

is the image of either ∆i+1
1 or ∆i+1

2 under

a power of γi.
Let hi be the horocyclic arc connecting ∆Σ′

i
and ∆Σ′

i+1
with the center ỹi =

c±n ∩ C̃i. Note that the length |hi| of the arc hi is less than a constant multiple of
the length of the subarc of c±n connecting ∆Σ′

i
and ∆Σ′

i+1
. Moreover, the length

hi is less than the sum of the lengths of hi ∩∆i
k, hi ∩∆i+1

k , for k = 1, 2, and of the

sum of the lengths of the intersections of hi with the translates of ∆i
k and ∆i+1

k , for

k = 1, 2, under the powers of γi such that the common endpoint of ∆i
1 and C̃i is

repelling. Then the length of all translates is less than C|hi|e−l(γi)/2, where l(γi) is
the real part of the translation length of γi. To see this, we normalize the situation
such that ỹi = (0, 1) ∈ H2 and C̃i is the geodesic with endpoints 0 and ∞. Then hi
is the horizontal Euclidean arc which contains (0, 1) ∈ H2 and the Euclidean length

of hi equals the hyperbolic length of hi. Let {fm}m∈N be the geodesics of λ̃ with

one endpoint ∞ that separate ∆Σ′
i
and C̃i in the increasing order from ∆Σ′

i
. Let

{em}m∈N be the geodesics of λ̃ with one endpoint ∞ that separate ∆Σ′
i+1

and C̃i

in the decreasing order from ∆Σi+1 . Let x1 be the length of the arc of hi between
f1 and f2, and let x2 be the length of the arc of hi between f2 and f3. Note that
fm is mapped to fm+2 by the hyperbolic translation γi with the axis C̃i and the
attracting fixed point 0 ∈ ∂∞H2. Then the distance between f2m+1 and f2m+2 is

x1e
−

ml(γi)

2 , and similarly the distance between f2m+2 and f2m+3 is x2e
−

ml(γi)

2 for
m ∈ N (cf. Figure 5). Therefore, the sum of the lengths of the gaps of hi except
the first two gaps and the last two gaps is bounded by C|hi|e−l(γi)/2.
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Note that

(12)

∣

∣β(∆Σ′
i
,∆i

1)
∣

∣ ≤ C0ǫ
R

∣

∣β(∆Σ′
i
,∆i

2)
∣

∣ ≤ 2C0ǫ
R

∣

∣β(∆Σ′
i
,∆Σ′

i+1
)
∣

∣ ≤ C0ǫ
R

∣

∣β(∆Σ′
i
,∆i+1

1 )
∣

∣ ≤ 2C0ǫ
R

∣

∣β(∆Σ′
i
,∆i+1

2 )
∣

∣ ≤ 3C0ǫ
R .

By the uniform boundedness of the composition of rotations [3], there exists
C > 0 such that

‖ψ∆Σ1 ,∆Σk
− id‖ ≤ C

∑

d

‖Rβ(kd)

g
∆Σ1
d

R
−β(kd)

g
∆Σk
d

− id‖

where the sum is over all gaps d of c±n, kd is the subarc of c±n from P±n to a point

in d, and g
∆Σ1

d (g
∆Σk

d ) is the leaf of λ̃ which contains the endpoint of d closer to

∆Σ1 (∆Σk
). We divide the above sum over the gaps of c±n into two sums

∑′ and
∑′′

. The first sum
∑′

is over all gaps c±n ∩∆Σ′
i
, for i = 1, 2, . . . , k, and c±n ∩∆i

l,

for l = 1, 2, and the second sum
∑′′

is over the remaining gaps.
The first sum is finite. By Lemma 3.2, k ≤ 2R + 2 ≤ 4R for R ≥ 1 and by the

finite additivity of β, we have that
∣

∣β(∆Σ1 ,∆Σ′
i
)
∣

∣ ≤ C1ǫ

for i = 1, 2, . . . , k, as well as
∣

∣β(∆Σ1 ,∆
i
l)
∣

∣ ≤ C1ǫ

for i = 1, 2, . . . , k and l = 1, 2, and some constant C1 > 0.
Lemma A.4 implies

′
∑

≤
k

∑

i=1

C2ǫ|hi| ≤ C2|c±n|ǫ ≤ C3ǫ.

It remains to estimate
∑′′

. We proved above that the total length of the gaps of
hi with respect to the family Fi of complementary triangles except for the first two
and the last two gaps is less than Ce−R/2|hi|. Since

∑n
i=1 |hi| ≤ C|c±n| ≤ C4 and

the cocycle β takes values in [−π, π) (thus β is bounded), Lemma A.4 gives

′′
∑

≤ C
k

∑

i=1

e−R/2 ≤ C5Re
−R/2

for some C5 > 0. Then
∑′

+
∑′′

can be made arbitrary small when ǫ > 0 is small
enough and R > 0 is large enough. The above, Lemma A.3 and

∣

∣β(∆Σ1 ,∆Σ′
k
)
∣

∣ ≤ Cǫ

imply that
‖ϕ∆Σ1 ,∆Σ′

k

− id‖
is as small as needed for ǫ > 0 small enough and R > 0 large enough. Then (12),
Lemma A.2 and the above prove that the assumptions of Lemma A.1 are satisfied
for ǫ > 0 small enough and R > 0 large enough. Thus the nesting for f̃β on a±n

follows by Lemma A.1. We choose ǫ̂ > 0 and R(ǫ̂) > 0 accordingly.
We assume now that Σ′

k−1 and Σk are neither 0- nor 1-neighbors. Then there

is a unique C̃k−1 ∈ P̃ which separates Σ′
k−1 and Σk, and that contains boundary
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sides of both of them. Let Σ′
k be the 0-neighbor of Σ′

k−1 which is on the same

side of C̃k−1 as Σk. Let s ≥ 1 be the number of hexagons in between Σ′
k and Σk.

There are two possibilities: either a±n intersect ∆Σ′
k
in which case we say that ∆Σk

is “above” ∆Σ′
k
, or a±n does not intersect ∆Σ′

k
in which case we say that ∆Σk

is
“below” ∆Σ′

k−1
.

Assume we are in the former case and let {g1, g2, . . . , gs+1} be the geodesic of λ̃
between ∆Σ′

k
and ∆Σk

. We use the following fact. Let h and h′ be two geodesics

that intersect L = {(0, 0, t) : t > 0} at points e−mj and e−m′

j subtending angles
ǫ > 0 and ǫ′ > 0, where m < m′. Let ǫ′′ = max{ǫ, ǫ′} and let h′′ be the geodesic
that intersects L at the point e−mj subtending an angle ǫ′′. Then, for m′′ ≥ m′

and ǫ′′ > 0, we have

DTH3(Rθ
h ◦Rθ′

h′({e−m′′

j,−j}), {e−m′′

j,−j}) ≤
≤ max

0≤θ′′≤2π
DTH3(Rθ′′

h′′({e−m′′

j,−j}), {e−m′′

j,−j}).

Let
Rs = Rβ(∆1(g1),∆2(g1))

g1 ◦ · · · ◦Rβ(∆1(gs+1),∆2(gs+1))
gs+1

.

Then, the above implies that

DTH3(Rs({e−m′′

j,−j}), {e−m′′

j,−j}) ≤
≤ max

0≤θ≤2π
DTH3(Rθ

g′
1
({e−m′′

j,−j}), {e−m′′

j,−j}).(13)

where g′1 is the geodesic passing through g1∩L that subtends an angle max{|∠(g1, L)|, . . . , |∠(gs, L)|}
with L. Lemma A.5 and (13) imply that DTH3(Rs({e−m′′

j,−j}), {e−m′′

j,−j}) is
as small as we want when the angle |∠(g′1, L)| is small enough for any 0 ≤ θ ≤ 2π.
Note that

ϕ∆Σ1 ,∆Σk
= ϕ∆Σ1 ,∆Σ′

k

◦ ϕ∆Σ′
k
,∆Σk

.

Since ϕ∆Σ′
k
,∆Σk

= Rs, the above gives

DTH3(ϕ∆Σ′
k
,∆Σk

({P±(n+1),−j}), {P±(n+1),−j})
is as small as needed for R large enough. Indeed, the subarc of a±n from the second
point of the intersection with the boundary of (Σk−1)t to the first point of intersec-
tion with the boundary of (Σ′

k)t is inside one complement of T Ht as well as long
sub arcs of the set of geodesics {g1, . . . , gs+1}. Thus a±n and {g1, . . . , gs+1} remain

in a neighborhood of one C̃ ∈ P̃ for a long distance when R is large. It follows
that the angles of intersections between a±n and the geodesics in {g1, g2, . . . , gs+1}
are small for R large enough and the above applies. The reasoning in the first
case applies to ϕ∆Σ1 ,∆Σ′

k

and we have the nesting of the images of the cones at the

endpoints of a±n under the bending map ϕ∆Σ1 ,∆Σk
. If ∆Σ′

k−1
is “above” ∆Σk

then

symmetry reduces to the previous case.
It remains to consider the case when a±n has infinite length (in which case the

endpoint of a±n is also the endpoint of C̃ ∈ P̃ and a±n ⊂ H2−T Ht). An elementary

(euclidean) considerations prove that when R ≥ 1 the number of geodesics of λ̃ that
intersect the geodesics subrays of a±n which connect two sides of a single hexagon
is at most 6. Indeed, assume that a±n is the geodesic arc in H2 with the initial
point i − e−R/4 and the endpoint 0 ∈ ∂∞H2. Then a±n is a circular arc with the

center a =
eR/4+e−R/4−

√
(eR/4+e−R/4)2−4e−R

2 and the radius a. The x-coordinate of
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the intersection of a±n with the horizontal line y = e−R/2 is estimated to be more
than e−3R2. Since the translation length of the element γ fixing the y-axis is e−R/2

and since γ identifies every second geodesic of λ̃ that have endpoint ∞, the claim
follows. Then applying Lemma A.3 finitely many times to the sequence of subarcs
of a±n of lengths R/2, we obtain a nesting property along this sequence. Thus f̃β
is injective for ǫ > 0 small enough and R > 0 large enough.

We choose ǫ̂ and R(ǫ̂) as the minimum of the choice in all the cases considered.
�

5. Holomorphic motions

We finish the proof of Theorem 1.3 using holomorphic motions. This proof is
standard once the injectivity is established (cf. [8], [7] and [13]). Holomorphic
motions were introduced and studied in [11] and the key extension property is
proved in [15].

The endpoints of the representations of elements of π1(S) vary holomorphically
in the complex Fenchel-Nielsen coordinates. We established that the holomorphic
variation is injective on the set of endpoints when the parameters are close to being
real in the sense of (2) and (3). Thus the holomorphic variation of the endpoint
of π1(S) is a holomorphic motion which extends by the lambda lemma (cf. [11])
to a holomorphic motion of the unit circle. Then there exists an extension to a
holomorphic motion of the complex plane (cf. [15]). It follows that f̃β extends
to a quasiconformal mapping of the complex plane and that the quasiconformal
constant is less than 1 +K0ǫ for ǫ > 0 small enough and fixed K0 > 0 (cf. [11]).

The extension of f̃β can be chosen to be equivariant with respect to to the action
of π1(S) (cf. [5]) which finishes the proof of Theorem 1.3.

Appendix

We use the quaternions to represent the upper half-space modelH3 = {z+tj : z ∈
C, t > 0} of the hyperbolic three-space (see Beardon [1]), where j = (0, 0, 1) ∈ H3.
The space of isometries of H3 is identified with PSL2(C). The Poincaré extension
of A(z) = az+b

cz+d ∈ PSL2(C) to H3 is given in [1] by

A(z + tj) =
(az + b)(cz + d) + ac̄t2 + tj

|cz + d|2 + |c|2t2 .

An isometry of H3 which is close to the identity moves points on a bounded
distance from j ∈ H3 by a small amount and the tangent vectors are rotated by
a small angle with respect to the Euclidean parallel transport in R3. We give a
quantitative statement for the above including the situation when the points are
on the unbounded distances from j ∈ H3 which is needed in our considerations.

Given P = z + tj ∈ H
3, we define

ht(P ) = t

and
Z(P ) = z.

Consider the tangent space TH3 to the upper half-space H3. Let {P, u}, {Q, v} ∈
TH3 be two tangent vectors based at P,Q ∈ H3, respectively. We define

(14) DTH3({P, u}, {Q, v}) = max{
∣

∣

ht(P )

ht(Q)
− 1

∣

∣,
∣

∣Z(P )− Z(Q)
∣

∣,
∣

∣∠(u, v)
∣

∣},
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Figure 6.

where ∠(u, v) is the angle between the vectors u and v after the euclidean transport
in H3. Note that DTH3({P, u}, {Q, v}) is not a metric on TH3.

Lemma A.1. Given m0 > 0, there exists δ = δ(m0) > 0 such that for any m ≥ m0

we have

(15) ∂∞C(P, v, π
2
) ⊂ ∂∞C(j,−j, π

2
)

where {P, v} ∈ TH3 satisfies DTH3({P, v}, {e−mj,−j}) < δ.

Proof. Let x be the center of the Euclidean hemisphere (orthogonal to C) that
passes through P and touches the unit Euclidean hemisphere orthogonal to C with
the center 0 ∈ C ⊂ ∂∞H3 (cf. Figure 6). Let y = Z(P ) ∈ C and let ϕ be the angle
between euclidean segments Px and Py at the point P .

An elementary (Euclidean) considerations give

(16) x ≥ C1(m0) > 0

for some constant C1(m0) > 0 which depends on m0.
This implies that

ϕ ≥ C2(m0) > 0

for some constant C2(m0) > 0. Thus

(17) ∂∞C(P,−j, π
2
+ C2(m0)) ⊂ ∂∞C(j,−j, π

2
).

Since the angle (at the point P ) between the hyperbolic geodesic connecting j to
P and the euclidean segment Py is less than ϕ, the above inclusion implies (15) for
δ(m0) < C2(m0). �

Lemma A.2. Let g ∈ PSL2(C) with

‖g − id‖ < 1

2

and let {z + tj, u} be a tangent vector to H3 such that

DTH3({z + tj, u}, {e−mj,−j}) ≤ δ
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for 0 ≤ δ < δ0 with δ0 > 0 fixed. Then there exist C1, C2 > 0 depending on δ0 such
that for every m > 0 we have

DTH3(g({z + tj, u}), {e−mj,−j}) ≤ C1δ + C2‖g − id‖.

Proof. Denote by g the Poincaré extension of g(z) = az+b
cz+d with ad − bc = 1 given

above. Then
∣

∣

∣
ht(g(z + tj))− e−m

∣

∣

∣
=

∣

∣

∣

t

|cz + d|2 + |c|2t2 − e−m
∣

∣

∣
≤ C1e

−mδ + C2e
−m‖g − id‖

for constants C1, C2 > 0 independent of m > 0 and for all g ∈ PSL2(C) with
‖g − id‖ ≤ 1

2 . Moreover,

∣

∣

∣
Z(g(z + tj))

∣

∣

∣
=

∣

∣

∣

ac̄|z|2 + ad̄z + bc̄z̄ + bd̄+ ac̄t2

|cz + d|2 + |c|2t2
∣

∣

∣
≤ C1δ + C2‖g − id‖.

Let u =< u1, u2, u3 >. Without loss of generality, we assume that |u1|, |u2| ≤ δ
and u3 = −j. Let v = Dg(z + tj)u =< v1, v2, v3 >. Let g = g1 + g2i + g3j be the
coordinate functions of g. Direct computations give

∣

∣

∂gi
∂x

(z + tj)
∣

∣,
∣

∣

∂gi
∂y

(z + tj)
∣

∣ ≤ C

for some C > 0 and i = 1, 2, 3, where z + tj = x+ yi+ tj. Moreover,

∣

∣

∂gi
∂t

(z + tj)
∣

∣ ≤ C1‖g − id‖

for some C1 > 0 and i = 1, 2, and

∣

∣

∂g3
∂t

(z + tj)
∣

∣ ≥ 1− C2‖g − id‖

for some C2 > 0.
The above inequalities give the following

|v1|, |v2| ≤ C′(δ + ‖g − id‖)
and

v3 ≤ −1 + C′′(δ + ‖g − id‖).
This gives that

∣

∣∠(−j, v)
∣

∣ ≤ C′′′(δ + ‖g − id‖).
The lemma is proved. �

Let L = {(0, 0, t) : t > 0} ⊂ H3 be the geodesic through j = (0, 0, 1) ∈ H3 with
the ideal endpoint 0 ∈ C ⊂ ∂∞H3.

Lemma A.3. Let h be a geodesic in H2 ⊂ H3 that intersects L between points j
and e−rj for some r ≥ 1. Given ǫ0, δ0 > 0, there exist C(r, ǫ0, δ0), C0(r, ǫ0, δ0) > 0
such that

DTH3(Rǫ
h({z, u}), {e−rj,−j}) ≤ C0δ + Cǫ

for any 0 ≤ ǫ < ǫ0, 0 ≤ δ < δ0, and {z, u} ∈ TH3 with

DTH3({z, u}, {e−rj,−j}) ≤ δ,

where Rǫ
h is the hyperbolic rotation around the axis h by the angle ǫ.



COMPLEX FENCHEL-NIELSEN COORDINATES WITH SMALL IMAGINARY PARTS 23

Proof. The quantity DTH3(Rǫ
h({z, u}), {e−rj,−j}) is the largest when h is orthog-

onal to L at the point j. In this case Rǫ
h fixes 1 and −1, and

Rǫ
h(z) =

cos ǫ
2z − i sin ǫ

2

−i sin ǫ
2z + cos ǫ

2

.

Therefore, there exists C > 0 such that

‖Rǫ
h − id‖ ≤ Cǫ.

The lemma follows by Lemma A.2. �

The following lemma is standard (cf. [3]).

Lemma A.4. Let Dr0(j) ⊂ H3 be the hyperbolic ball of radius r0 > 0 centered at
j ∈ H3. Then there exists C = C(r0) > 0 such that if h1, h2 are two hyperbolic
geodesics with a common endpoint that intersect Dr0(j) and if dr0(h1, h2) is the
hyperbolic distance between h1 ∩Dr0(j) and h2 ∩Dr0(j) then

‖Rǫ
h1
R−ǫ

h2
− id‖ ≤ Cdr0(h1, h2)ǫ

for any ǫ > 0.

Lemma A.5. Let g be a geodesic in H
2 ⊂ H

3 that intersects L = {(0, 0, t) : t > 0}
between j and e−mj at an angle ǫ > 0. Then, for any δ > 0,

DTH3({Rθ
g({e−mj,−j}), {e−mj,−j}) < δ

when ǫ = ǫ(δ) > 0 is small enough.

Proof. The angle ǫ1 > 0 between Rθ
g(L) and L satisfies

(18)
∣

∣ǫ1
∣

∣ ≤ π

2
·
∣

∣θ
∣

∣ ·
∣

∣ǫ
∣

∣.

To see this, we normalize such that g = L and L has turned into a geodesic
with endpoints a < 0 and b > 0. The the geodesic L is parametrized by γ(t) =
a+b
2 + b−a

2 cos t+ (a+b
2 + b−a

2 sin t)j and Rθ
g(L) is parametrized by γ1(t) = (a+b

2 +
b−a
2 cos t) cos θ + (a+b

2 + b−a
2 cos t) sin θi+ (a+b

2 + b−a
2 sin t)j. Thus

cos ǫ1 =
γ′(t) · γ′1(t)

‖γ′(t)‖ · ‖γ′1(t)‖
= sin2 ǫ cos θ + cos2 ǫ

which implies

|ǫ1| ≤ |2 sin−1(ǫ sin
θ

2
)| ≤ π

2
|θ| · |ǫ|.

We go back to the assumption that L = {(0, 0, t) : t > 0}. By (18), the absolute

value of the angle |ǫ1| between L and Rθ
g(L) is less than π2

2 |ǫ|. Let P = g ∩ L.
The angle (after the Euclidean parallel transport) between the tangent vector to

Rθ
g([P, e

−m′

j]) at the endpoint e−m′

j and the vector −j decreases as m′ → m for

all m′ such that ht(P ) ≥ ht(e−m′

j) ≥ ht(e−mj). Thus the angle is the largest if

P = e−mj which implies that |ǫ1| ≤ π2

2 |ǫ|.
Thus, for R large enough, we have

∣

∣∠(Rθ
g({e−mj,−j}), {e−mj,−j})

∣

∣ < δ.
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To estimate the height and z-coordinate ofRθ
g(e

−mj), we note that both |ht(Rθ
h(e

−mj))−
ht(e−mj)| and |Z(Rθ

h(e
−mj))| are the largest when g ∩ h = p = j. Then the an-

gle between g and Rθ
h(g) is ǫ1, where |ǫ1| ≤ π2

2 |ǫ|. Since g and Rθ
h(g) belong to

a hyperbolic plane embedded in H
3 which contains the g, we can restrict further

analysis to the upper half-plane H2 where we identify i ∈ H2 with j ∈ H3. Let
A ∈ PSL2(R) be an isometry of H2 which fixes i ∈ H2 and maps g into Rθ

h(g).

Then A(e−mi) = Rθ
h(e

−mj) for the embedding H2 ⊂ H3. Note that A(z) = cz+d
−dz+c

with c, d > 0 and c2 + d2 = 1. It follows that |dc | ≤ Cǫ1, for some C > 0 and for |ǫ|
small enough. Furthermore,

A(e−mi) =
e−mi+ d

c

− d
c e

−mi+ 1

which implies that
∣

∣

∣
Im(A(e−mi))− e−m

∣

∣

∣
≤ C11

(d

c

)2

e−m

and
∣

∣

∣
Re(A(e−mi))

∣

∣

∣
≤ C12

d

c
and the lemma follows. �
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