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BENDINGS BY FINITELY ADDITIVE TRANSVERSE

COCYCLES

DRAGOMIR ŠARIĆ

Abstract. Let S be any closed hyperbolic surface and let λ be a maximal
geodesic lamination on S. The amount of bending of an abstract pleated sur-
face (homeomorphic to S) with the pleating locus λ is completely determined

by an (R/2πZ)-valued finitely additive transverse cocycle β to the geodesic
lamination λ. We give a sufficient condition on β such that the corresponding
pleating map f̃β : H2

→ H3 induces a quasiFuchsian representation of the
surface group π1(S). Our condition is genus independent.

1. Introduction

Let S be a closed hyperbolic surface and let λ be a maximal geodesic lamination
on S. The universal covering S̃ of S is isometrically identified with the hyperbolic
plane H

2 . Denote by λ̃ the lift of λ to H
2 and denote by H

3 the hyperbolic three
space. Each component of H2 − λ̃, called plaque, is an ideal hyperbolic triangle.
A pleated surface with the pleating locus λ is an immersion f̃ : H2 → H3 which
conjugates the covering group of H2 → S into a subgroup of the isometries of H3,
and is totally geodesic on plaques and on geodesics of λ̃. The pleating map f̃ is an
isometry from H2 onto its image f(H2) for the path metric on f(H2) induced by

the hyperbolic metric of H3 . The pleatings along λ̃ give rise to a finitely additive
(R/2πZ)-valued transverse cocycle to λ, and conversely any such cocycle defines a
pleated surface with the pleating locus λ (cf. Bonahon [3]). The main result in the
paper gives a sufficient condition on transverse cocycle such that the pleating map
is injective on the boundary.

1.1. Pleating maps along measured laminations. Let µ be a measured (ge-
odesic) lamination on the hyperbolic plane H2. By definition, µ is a collection
of positive Borel measures on hyperbolic arcs transverse to the support geodesic
lamination |µ|. The collection of measures is invariant under homotopies relative
the geodesics in the support |µ|. For example, µ could be the lift of a measured
lamination on a closed hyperbolic surface.

Given a closed geodesic arc I transverse to |µ|, denote by µ(I) ≥ 0 the total
mass of the measure deposited on I. The Thurston norm of µ is given by

‖µ‖ = sup
I

µ(I)

where the supremum is over all closed hyperbolic arcs of length 1.
Given a complex number t ∈ C there exists a (unique) pleated surface corre-

sponding to the complex measure tµ with the bending along |µ| determined by
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2 DRAGOMIR ŠARIĆ

the imaginary part of tµ (and the path hyperbolic metric on the immersed surface
determined by the real part of tµ). Then we have the following sufficient condition
for the pleating map to be an embedding (cf. [8], [13]).

Theorem. Let µ be a measured lamination on the hyperbolic plane H2 with finite
Thurston norm. There exist universal C > 0 and ǫ > 0 such that whenever t ∈ C

satisfies

|Im(t)| < ǫ

‖µ‖eC‖µ‖·|Re(t)|

the pleating map induced by tµ is an embedding.

The purpose of this paper is to extend the above theorem to finitely additive
transverse cocycles to (maximal) geodesic laminations on closed hyperbolic sur-
faces. Natural examples of finitely additive real valued transverse cocycles arise
from real Fenchel-Nielsen coordinates on pants decomposition of closed surfaces.
Namely, a geodesic pairs of pants decomposition of a closed hyperbolic surface can
be completed to a maximal geodesic lamination by adding three geodesics to each
pair of pants that spiral around cuffs. The obtained maximal geodesic lamination
has finitely many leaves (i.e. geodesics) and the components of the complement of
the geodesic lamination are ideal hyperbolic triangles. The Fenchel-Nielsen coordi-
nates describe the shape of the pairs of pants (i.e. the cuff lengths) and how two
pairs of pants fit together (i.e. the twist parameters) which completely describes
the hyperbolic metric on the surface. On the other hand, a finitely additive real
valued transverse cocycle to the maximal geodesic lamination describes how com-
plementary ideal triangles fit together to give the hyperbolic metric on the surface
(cf. [3]).

In their proof of the surface subgroup conjecture, Kahn and Markovic [10] used
a sufficient condition on complex Fenchel-Nielsen coordinates to obtain embedded
pleated surfaces. In [14] we obtained a sufficient condition on finitely additive trans-
verse cocycles to finite geodesic laminations that gives embedded pleated surfaces.
Our main objective is to extend the scope of this theorem to arbitrary maximal
geodesic laminations.

1.2. Finitely additive cocycles and pleating maps. Let λ be an arbitrary
maximal geodesic lamination on a closed hyperbolic surface S. The plaques of λ
are ideal hyperbolic triangles. A finitely additive real valued transverse cocycle to
λ is an assignment of a real valued finitely additive measure to each hyperbolic
arc transverse to λ that is invariant under homotopies relative the leaves of λ. A
finitely additive transverse cocycle defines Hölder distribution on all hyperbolic arcs
transverse to λ, and conversely any transverse Hölder distribution defines a finitely
additive transverse cocycle to λ (cf. Bonahon [2]).

As in the case of finite geodesic laminations, the hyperbolic metric on a closed
surface is completely determined by the induced finitely additive transverse co-
cycle. Moreover, the Teichmüller space T (S) of a closed hyperbolic surface S is
parametrized by open cone C(λ) inside the space H(λ,R) of finitely additive real
valued transverse cocycles to λ (cf. Thurston [17] and Bonahon [3]). A detailed
study of the space H(λ,R) is carried out by Bonahon (cf. [2], [4]).

A pleated surface with the pleating locus λ is an immersion

f̃ : H2 → H
3
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which is an isometry on each complementary region to λ̃ and on each geodesic of λ̃
such that

f̃Gf̃−1 = K,

where G is the covering group of H2 → S and K is a subgroup of the isometry
group of H3. A pleated surface along λ induces a (C/2πiZ)-valued transverse
cocycle to λ where the real part parametrizes the induced path metric and the
imaginary part parametrizes the amount of bending along λ. Moreover, the space
of all representations of G that realize λ is parametrized by an open subspace
C(λ) + iH(λ,R/2πZ) of the space H(λ,C/2πiZ) (cf. Bonahon [3]).

1.3. The main result. We fix a hyperbolic metric on S and give a sufficient condi-
tion on (R/2πZ)-valued transverse cocycle β to the maximal geodesic lamination λ

such that the extension to the boundary f̃β : ∂∞H2 → ∂∞H3 of the corresponding

pleating map f̃β : H2 → H3 is injective.
Let {h1, . . . , hm} be a set of closed geodesic arcs on S transversely intersecting

λ (with endpoints in the plaques of λ) such that the components of λ − ∪m
i=1hi

have finite length. In addition, if hi’s are collapsed to points and homotopic arcs
of λ − ∪m

i=1hi are identified, we obtain a trivalent (topological) train track which
carries λ.

A gap of hi is a component of hi − λ that does not contain an endpoint of hi.
Given a gap d of hi, denote by g+d and g−d two arcs of λ − {h1, . . . , hm} that pass

through endpoints of d oriented in the same direction (with respect to hi). If g
+
d and

g−d together with the gap d and another (on some arc hj ) gap form a quadrilateral,

then we say that g+d and g−d are parallel.
Since the topological train track (obtained by collapsing hi’s) is trivalent, it

follows that each hi has exactly one gap d such that g+d and g−d are not parallel in
one direction. Choose an arbitrary point in the interior of d to divide hi into two
arcs h′i, h

′′
i with hi = h′i ∪ h′′i . We form a new set of arcs by taking all hi, h

′
i, h

′′
i

and for simplicity of notation denote it by {k1, . . . , kn}, called a set of ties for λ.
(An equivalent definition for a set of ties is given using “geometric train tracks”,
cf. Bonahon [2] and §2).

Fix a set of ties {k1, . . . , kn} for λ. Two arcs ki and kj are paired if there exists
an arc in λ− {k1, . . . , kn} that connects them. Define

(1) l∗ = max
i,j

diam(ki
⋃

kj)

and

(2) l∗ = min
i,j

dist(ki, kj),

where the maximum and the minimum are over all paired arcs ki, kj , diam(ki
⋃

kj)
is the diameter of ki

⋃

kj , and dist(ki, kj) is the distance between ki and kj .
Moreover, we define

w∗ = max
1≤i≤n

|ki|

and

w∗ = min
1≤i≤n

|ki|,

where |ki| is the length of the arc ki.
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A set of ties {k1, . . . , kn} for λ is said to be geometric if each angle of the
intersection between an arc in {k1, . . . , kn} and a geodesics of λ is in the interval
[π/4, 3π/4], and

(3) w∗ ≤ 1/20.

The above quantities l∗, l∗, w∗ and w∗ give quantitative information about the
hyperbolic metric on S and the position of the geodesic lamination λ on S. We use
this information in order to give a sufficient condition on the bending cocycles such
that the bending map is injective.

We define the norm of β for the geometric family of arcs {k1, . . . , kn} by

(4) ‖β‖max = max{|β(ki)| : 1 ≤ i ≤ n}.
The norm ‖β‖max is analogous to the Thurston norm of measured laminations.

In general, a finitely additive real measure β on a closed interval I has infinite
“variation” in the sense that there exists a sequence In of subintervals of I with
|β(In)| → ∞ as n → ∞ (cf. Bonahon [4]). In order to find a sufficient condition

for the injectivity of the bending map f̃β : ∂∞H2 → ∂∞H3, we introduce (below) a
notion of “variation on large gaps” on the set of ties. (It is important to note that
if β does not have small enough variation on large gaps in order to have injectivity
of f̃β then, for |t| > 0 small enough, tβ does have small enough variation on large

gaps such that f̃tβ is injective.)
Given δ > 0, we introduce the δ-variation of β on ki as follows. Give an arbitrary

orientation to ki. Let {dj : j = 1, . . . , ji} be a finite family of gaps of ki together
with the two components of ki − λ containing the endpoints of ki. Define kdj , for
j = 1, . . . , ji, to be the subarc of ki whose initial point is the initial point of ki and
whose endpoint is a point in dj .

Then the δ-variation of β on ki is given by

(5) ‖β‖varδ,ki = max
1≤j≤ji

|β(kdj )|,

where the set {dj : j = 1, . . . , ji} is chosen such that the length of ki \ ∪ji
j=1dj is

less than δ|ki| (|ki| denotes the length of ki).
Moreover, the δ-variation of β on a geometric family {k1, . . . , kn} is given by

(6) ‖β‖varδ = max
1≤i≤n

‖β‖varδ,ki .

Our main result is a sufficient condition for the injectivity of the bending map
corresponding to a transverse cocycle β in terms of a geometric set of arcs.

Theorem 1.1. There exist ǫ > 0 and δ > 0 such that for any closed hyperbolic
surface S and a maximal geodesic lamination λ on S the following holds. Let
{k1, . . . , kn} be a geometric set of arcs for λ such that

(7) w∗ <
e−2l∗ tanh l∗

2

8π
.

If an (R/2πZ)-valued transverse cocycle β to λ satisfies

(8) ‖β‖max < ǫw∗

and

(9) ‖β‖varδ < ǫ
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then the developing map f̃β : H2 → H3 continuously extends to an injective map

f̃β : ∂∞H
2 → ∂∞H

3.

Remark 1.2. The condition (8) is the standard condition that works for the trans-
verse measures (cf. [8], [13]). The condition (9) is a new condition needed to control
the geometry of the realization of the transverse cocycle β due to the fact that the
variation of β is unbounded. Note that the condition (8) for a choice of a family
of geometric arcs does not imply similar condition on an arbitrary arc of length at
most 1. For this reason it is necessary that the arcs ki’s are on a relatively large
distance compared to their sizes which is made explicit by (7).

Remark 1.3. The quantities l∗ and l∗ depend on the lamination λ. The constants
ǫ and δ are computed in terms of l∗ and l∗ in the proof of the theorem. If a
geometric set of arcs {k1, . . . , kn} does not satisfy (7) then we can divide each
arc into several subarcs until the condition is satisfied. If λ contains short closed
geodesics then l∗ is small for any choice of a geometric set of arcs for λ. A generic
geodesic lamination λ contains no closed geodesics and the choice of a geometric
set of arcs can be made such that l∗ ≥ 1/5 and l∗ ≥ l∗/4 in which case we can
choose w∗ = 4.41719 × 10−10 and ǫ = δ = 3.61749 × 10−17. We give a table of
values for ǫ and δ when l∗ = l∗/4 for various values of l∗ (cf. Table 6.2). It seems
that the optimal value is l∗ = 0.0238523 in which case ǫ = δ = 2.01795× 10−13 and
w∗ ≤ 1.27126× 10−11.

Let α be an R-valued transverse cocycle to λ which is induced by the hyperbolic
metric on S (cf [3]). For z ∈ C, define the transverse cocycle αz by

αz(k) = (1 + z)α(k) mod (2πiZ)

for each arc k transverse to λ.
The developing shear-bend map f̃z : H2 → H3 (normalized to be the identity on a

fixed plaque of λ) corresponding to the transverse cocycle αz induces a holomorphic
family (in z) of representation of π1(S) to PSL2(C) (cf. [3]). As a corollary to the
above theorem, we obtain

Corollary 1.4. Let α be an R-valued transverse cocycle to a geodesic lamination
λ corresponding to a hyperbolic metric on a closed surface S and let f̃z be the
shear-bend map for αz. Then there exists ǫ > 0 such that the shear-bend map

f̃z : H2 → H
3

extends by continuity to a holomorphic motion of ∂∞H2 in ∂∞H3 for the parameter
{z ∈ C : |z| < ǫ}.
1.4. Outline of the proof of main theorem. It is enough to prove that any two
points x, y ∈ ∂∞H2 are mapped onto distinct points in ∂∞H3 under the bending
map f̃β . Let g be a geodesic in H2 whose endpoints are x and y.

If g is a leaf of λ̃ then f̃β(x) 6= f̃β(y) because the bending map is an isometry on

leaves and plaques of λ̃.
From now on we assume that g transversely intersects λ̃. Then g necessarily

intersects plaques of λ̃ by the maximality(of λ̃).
Consider a fixed geometric set of ties {k1, . . . , kn} for λ. If two ties are paired,

connect their vertices by hyperbolic arcs to form a quadrilateral, called a long
rectangle. The two paired ties are short sides and the other two sides are long sides
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of the long rectangle. The set of all long rectangles are edges and the set of ties are
vertices of a geometric train track τ . The geodesic lamination λ is contained in the
interior of the union of all edges (i.e. long rectangles) of τ .

Denote by λ̃ and τ̃ the lifts to H2 of the geodesic lamination λ and the geometric
train track τ . Then the geodesic lamination λ̃ is contained in the interior of the
union of edges (i.e. long rectangles) of τ̃ .

If geodesic g is completely contained in τ̃ then g is a leaf of λ̃. Therefore g
contains a point p outside τ̃ . The point p divides the geodesic g into two rays g1
and g2 with the common initial point p and endpoints x and y, respectively.

We normalize the bending map f̃β to be the identity on the plaque of λ̃ which
contains p. Form two hyperbolic cones C(p, g1, π/2) and C(p, g2, π/2) whose central
axes are g1 and g2 with angle π/2. A shadow of a cone is the set of endpoints

(on the boundary ∂∞H3) of the rays contained in the cone. We prove that f̃β(x)
stays in the (open) shadow at ∂∞H3 of the cone C(p, g1, π/2), and analogously for

f̃β(y). This implies the desired result since the open shadows of C(p, g1, π/2) and
C(p, g2, π/2) are disjoint.

We consider the ray g1 and f̃β(x). The bending map f̃β is mapping the ray

g1 to a piecewise geodesic in H3 with the bending points λ̃ ∩ g1 and the bending
amount given by the finitely additive transverse cocycle β. The idea of controlling
the position of f̃β(x) is to divide the ray g1 into finite arcs such that the finitely
additive “β-measure” on each arc is well-behaved with respect to the size of the arc.
Consequently the bending map f̃β moves the endpoints of the arcs and the tangent

vectors to g1 at these endpoints such that f̃β(g1) stays inside the cone C(p, g1, π/2).
In more details, consider the intersections of the ray g1 with the boundary sides

of the long rectangles (i.e edges of τ̃ ) in the order from the initial point p. The
first point of intersection a1 of g1 and (the union of long rectangles of) τ̃ is on a
long side of a long rectangle E1. If g1 exits E1 through other long side of E1, then
denote by b1 that point. If g1 exits an adjacent edge E2 through its long side then
denote that point by b1. If g1 exits an edge E3 adjacent to E2 through its long side
then denote the point of exit by b1. Finally if g1 exists E3 through a short side,
denote by b1 the point of exit of g1 from a short side of E2.

We obtained the first arc [a1, b1], denote by Ea1
the edge of τ̃ which g1 enters

at the point a1 and denote by Eb1 the edge which g1 leaves at the point b1. We
take a2 to be the point at which g1 enters the first edge Ea2

after the edge Eb1 . We
note that it is possible that b1 = a2 if Eb1 and Ea2

share a short edge. Then b2 is
determined analogously to b1.

We continue this process to obtain a sequence of disjoint arcs {(an, bn)} on g1
given in the increasing order for the orientation of g1. If bn 6= an+1 then the open

arc (bn, an+1) does not intersect τ̃ and the closed arc [bn, an+1] does not intersect λ̃.
According to our definition, either [an, bn] connects long sides of (possibly the same)
long rectangle(s) and intersects at most three long rectangles, or [an, bn] connects
two short sides of a long rectangle while intersecting at most three long rectangles
(cf. §6).

Consider a sequence of nested cones {C(an, g1, π/2) ⊃ C(bn, g1, π/2)}. Let Pan

and Pbn be plaques containing an and bn, respectively. Then f̃β|Pan
and f̃β |Pbn

are

hyperbolic isometries of H3 such that

f̃β|Pbn
= f̃β|Pan

◦R[an,bn]



BENDINGS BY FINITELY ADDITIVE TRANSVERSE COCYCLES 7

where R[an,bn] is a hyperbolic isometry defined using the transverse cocycle β on
the arc [an, bn] (cf. Bonahon [3] and §4).

We need to prove that

f̃β|Pan
(C(an, g1, π/2)) ⊃ f̃β |Pbn

(C(bn, g1, π/2))
for all n, which is equivalent to

(10) C(an, g1, π/2) ⊃ R[an,bn](C(bn, g1, π/2))
because the maps are hyperbolic isometries.

The core of the proof of the above theorem is bounding the isometry R[an,bn] such

that (10) holds for all possible geodesics g in H2 simultaneously. This is achieved
by careful choice of a set of ties as in the theorem. To establish (10), we consider
different possibilities for the intersection of the arc [an, bn] with the edges of τ̃ .

Assume that [an, bn] connects two long sides of a single long rectangle in τ̃ .
There is a definite lower bound on the length of [an, bn] in terms of w∗ and l∗ (cf.
Lemma 2.2). Lemma 5.2 gives a numerical bound on the distance of R[an,bn] from
the identity (which is a constant multiple of the length of [an, bn]) such that (10)
holds.

Denote by T c
g the hyperbolic isometry with the axis g and the translation length

c ∈ C. The isometry R[an,bn] is given by (cf. Bonahon [3] and §4).
R[an,bn] = lim

i→∞
B1B2 · · ·BiRPbn

where

Bj = R
β(Pan ,Pdj

)

g
Pan
dj

R
−β(Pan ,Pdj

)

g
Pbn
dj

with Pdj being the plaque containing the gap dj , β(Pan , Pdj ) being the β-mass of
a closed arc with endpoints in Pan and Pdj for j = 1, . . . , i; and where

RPbn
= R

β([an,bn])

g
Pan
Pbn

.

Lemma 5.5 and 5.4 give estimates for Bj and TPbn
which allows us to conclude

that ‖R[an,bn] − Id‖ is bounded by a linear function with variables |β([an, bn])| ≤
‖β‖max, ‖β‖varδ and δ > 0 (cf. §6). This allows us to choose universal ǫ > 0 and
δ > 0 such that the assumptions of Lemma 5.2 are satisfied and we obtain (10) in
this case.

Assume that [an, bn] enters the edge E1 at a short side, then enters the adjacent
edge E2 at a short side, and it exits E2 at a long edge. The composition

B1B2 · · ·Bi

is estimated in the same fashion as above. However, the hyperbolic rotation

RPbn

can have arbitrary large angle β([an, bn]) since β is finitely additive transverse
cocycle and [an, bn] does not cross the set of all geodesics following a single edge
of τ̃ . In order to have a control on where C(bn, g1, π/2) is mapped by RPbn

, it is

necessary that the angles of intersections between the geodesics of λ̃ and [an, bn]
are small (cf. Lemma 5.3). The angles are made small enough by the choice of w∗

and l∗ in the main theorem. Thus we have the inclusion of the cones again. All
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other cases are dealt by combining the above two case with slightly larger constants
which gives the proof of the main theorem (cf. §6).
Acknowledgements. I am grateful to F. Bonahon and V. Markovic for various dis-
cussions regarding the previous version of this article. I am also grateful to the
referee for his comments.

2. Geodesic laminations

Given a hyperbolic surface and a (maximal) geodesic lamination on the surface,
we define a “metric” train track using rectangles as edges and sides at which two
rectangles meet (called short sides of rectangle) as vertices. The geodesic lamination
will be contained in the interior of the union of rectangles and the angles at which
geodesics of the lamination meet the vertices (i.e. short sides of rectangles) are
bounded away from 0 and π. In the lemma below, we find a lower bound on the
distance between two opposite sides of a rectangle(the sides that are not short) in
terms of the diameters of the rectangle and the lengths of the short sides.

Let S be a closed hyperbolic surface and λ a maximal geodesic lamination on S.
Each component of S \ λ, called plaque of λ, is an ideal hyperbolic triangle for the
path metric of the complement. Let {h1, . . . , hm} be a set of finite geodesic arcs on
S with endpoints in the plaques of λ such that each geodesic of λ is divided into
finite length arcs by the set ∪m

i=1hi. The family of arcs λ\∪m
i=1hi consists of finitely

many homotopy classes relative {h1, . . . , hm} and we assume that after identifying
all the arcs of the homotopy classes the obtained “topological train track” has the
property that each vertex (corresponding to some hi) is either trivalent or bivalent.
The usual definition of train tracks does not allow bivalent vertices but we do allow
them. The reason is that we need more flexibility to obtain a train track which has
good geometric properties.

We form a “metric train track” τ as follows. A gap of hi (with respect to λ)
is a connected component of hi \ λ. If hi corresponds to a trivalent vertex of the
corresponding topological train track, we divide arc hi into two subarcs h1i and
h2i with a division point in a gap of hi such that the endpoints of the arcs of
λ \ ∪m

i=1hi which belong to different homotopy classes lie in different subarcs. For

the convenience of notation, denote by {k1, . . . , kn} the set of all arcs hi, h
j
i for

i = 1, . . . ,m and j = 1, 2.
We connect the endpoints of {k1, . . . , kn} by geodesic arcs inside the plaques of

λ (whenever this is possible) to obtain a finite collection of geodesic quadrilaterals
whose two sides are among ki’s and the other two sides are obtained by connecting
the chosen points on ki’s inside the components of S \ (λ ∪⋃n

i=1 ki). We call these
quadrilaterals, somewhat improperly, long rectangles. The sides of the rectangles
which are among ki’s are said to be short and the other two sides are said to be long.
The finite collection of long rectangles forms a (metric) train track τ on S such that
the long rectangles are the edges of τ and the switches of τ are the arcs {k1, . . . , kn},
where we allow switches to be either trivalent or bivalent. The geodesic lamination
λ is a subset of the interior of (the union of the edges of) the train track τ and it is
said that λ is carried by τ . The train tack τ is homotopic to the topological train
track. This kind of train tracks were introduced by Bonahon (cf. [2]).

Definition 2.1. Let l∗ be the maximum of the diameters of the long rectangles of
τ and let l∗ be the shortest distance between two short sides of the long rectangles.
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Let w∗ be the minimum of the lengths of the short sides over all long rectangles of τ
and let w∗ be the maximum of the lengths of the short sides over all long rectangles
of τ .

We impose two conditions on τ . Namely we require that the angles at the vertices
of each long rectangle lie in the interval [π/4, 3π/4] and that

w∗ ≤ 1

20
.

A (metric) train track which satisfies these conditions is said to be geometric and
the corresponding collection of arcs {k1, k2, . . . , kn} is said to be geometric. We
note that the angles are given by the choice of the arcs {h1, . . . , hm} above and
that w∗ can be made small enough by further subdividing the arcs {h1, . . . , hm}, if
necessary.

Lemma 2.2. Let R be a long rectangle of a geometric train track τ with short sides
k1 and k2. Then the distance d between the long sides of R satisfies

d ≥ 1

20el∗
min{|k1|, |k2|},

where |ki| is the length of ki.

Proof. Let k1 and k2 be the short sides of R, and let l1 and l2 be the long sides of R.
Denote by h1 and h2 orthogonal arcs from k1 ∩ l2 and k2 ∩ l2 onto l1, respectively.
The hyperbolic sine formula, the bounds on the angles at the vertices of R and the
mean value theorem give

|hi| cosh 1 ≥ sinh |hi| ≥
1√
2
sinh |ki| ≥

1√
2
|ki|

which gives

|hi| ≥
1√

2 cosh 1
|ki|.

By possibly decreasing R, we can assume that h1 and h2 have the same length
|h1| = |h2| ≥ 1√

2 cosh 1
min{|k1|, |k2|}. Let h be the arc which is orthogonal to both

l1 and l2. An elementary hyperbolic geometry formula applied to the rectangle
whose two sides are h1 and h gives

|h| cosh 1 ≥ sinh |h| ≥
sinh min{|k1|,|k2|}√

2 cosh 1
√

sinh2 l∗+4min{|k1|,|k2|}
2 cosh2(min{|k1|, |k2|}) + 1

which in turn gives

d ≥ |h| ≥ 1

2(cosh2 1)el∗+1
min{|k1|, |k2|}.

�

3. Transverse cocycles to geodesic laminations

In this section we define finitely additive transverse cocycles to a geodesic lam-
ination λ on the surface S (cf. Bonahon [2]). The transverse cocycles that we
consider are R-valued, (R/2πZ)-valued and (C/2πiZ)-valued.
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Definition 3.1. [3] A real valued transverse cocycle α to λ is an assignment of a
finitely additive real valued measure to each arc k transverse to λ which is invariant
under homotopies relative λ. Namely, α assigns a real number α(k) to each closed
arc k transverse to λ whose endpoints are in S−λ such that if k′ is an arc homotopic
to k relative λ then α(k) = α(k′). Moreover if k = k1 ∪ k2, where k1 and k2 are
transverse arcs to λ with disjoint interiors, then α(k) = α(k1) + α(k2).

Remark 3.2. Let α be a finitely additive transverse cocycle to a geodesic lami-
nation λ. Let k be a closed arc transverse to λ such that |α(k)| 6= 0 and α is not
countably additive on k. Then there exists a sequence of subarcs {kn} of k such
that

|kn| → 0

and

|α(kn)| → ∞
as n → ∞. This phenomenon does not appear for the countably additive trans-
verse cocycles and it forces delicate arguments when working with finitely additive
cocycles (cf. [2], [3], [4]).

A hyperbolic metric on S induces a real valued transverse cocycle to a maximal
geodesic lamination λ as follows (cf. [3]).

Each complementary triangle (i.e. plaque) of λ can be partially foliated by three
families of horocyclic arcs with centers at the vertices of the complementary triangle
such that the portion which is not foliated is a finite triangle containing the center
of the complementary ideal hyperbolic triangle.

Every point of every boundary geodesic of a plaque lies in exactly one horocyclic
leaf of the partial foliation except for the vertices of the finite triangle where two
horocyclic leaves meet (cf. Bonahon [2]). The partial foliation of the plaques
extends to the leaves of λ by the continuity and the surface is foliated except for
the finite triangles (with horocyclic boundaries) inside the plaques. Note that the
boundary geodesics of the plaques are leaves of λ. However, in general, geodesic
laminations can have uncountably many leaves and the extension of the foliation is
non trivial (cf. [3]).

Lift a maximal geodesic lamination λ to maximal geodesic lamination λ̃ of the
hyperbolic planeH2. Given a closed hyperbolic arc k on S with endpoints in plaques
of λ which transversely intersects λ, denote by k̃ its lift to H

2. Let P1 and P2 be
the plaques of λ̃ which contain the endpoints of k̃. Let pi be the vertex of the
central triangle of Pi on the boundary of Pi facing Pi+1, for i = 1, 2 (where i + 1
is taken modulo 2). Let p′1 be the point where the leaf of the (lifted) horocyclic
foliation through the point p1 meets the boundary of P2 facing P1. The value of
the transverse cocycle to the arc k is the signed distance between p2 and p′1 when
the geodesic through them is oriented as a part of the boundary of P2 (cf. [3]).

A finitely additive real valued transverse cocycle to a maximal geodesic lami-
nation λ induces a transverse Hölder distribution to λ (i.e. a linear functional on
Hölder continuous functions on each transverse arc to λ that is invariant under
homotopies relative λ). Conversely, a transverse Hölder distribution to λ induces a
real valued finitely additive transverse cocycle to λ (cf. [4]).

Denote by H(λ,R) the space of real valued finitely additive transverse cocycles
to λ. The subset of transverse cocycles which arise from hyperbolic metrics on S
is an open cone in H(λ,R) denoted by C(λ) (cf. [3]). In fact, C(λ) parametrizes
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the Teichmüller space T (S) of the closed surface S (cf. [3]). Given a point in C(λ),
there is a procedure of recovering the corresponding metric on S by constructing the
corresponding representation of the fundamental group π1(S) using the transverse
cocycle (cf. [3]).

We will also need finitely additive transverse cocycles which take values in R/2πZ
and in C/2πiZ.

Definition 3.3. [3] An (R/2πZ)-valued transverse cocycle β for λ is an assignment
of β(k) ∈ R/2πZ to each transverse arc k to λ which is invariant under homotopy
relative λ and which is finitely additive. For example, an (R/2πZ)-valued transverse
cocycle β is obtained by taking a real valued transverse cocycle α and setting
β(k) := α(k) mod (2πZ).

Similarly, a (C/2πiZ)-valued transverse cocycle β for λ is an assignment of β(k) ∈
R/2πZ to each transverse arc k to λ which is invariant under homotopy relative λ
and which is finitely additive.

A pleated surface with the pleating locus λ is a continuous map

f̃ : H2 → H
3

which is an isometry on each leaf and on each plaque of the lift λ̃ = π−1(λ) for the
universal covering π : H2 → S, and which conjugates the covering group G of S
into a subgroup fGf−1 of PSL2(C).

Each plaque of λ̃ is isometrically mapped by f̃ to an ideal hyperbolic triangle in
H3 and the amount of bending along λ̃ is measured by an (R/2πZ)-valued finitely

additive transverse cocycle to λ̃. The pleating map can be recovered from an
(R/2πZ)-valued finitely additive transverse cocycle by constructing the isometries
of H3 which are equal to the restriction of the pleating map on the given plaque
(cf. Bonahon [2] and §4). Moreover, a pleating map with the pleating locus λ

induces a (C/2πiZ)-valued finitely additive transverse cocycle to λ̃ with the real

part determining the path metric on f̃(H2)(when considered as a subset of the
hyperbolic three space H

3) and the imaginary part giving the amount of bending

along λ̃.

Let α be either an R-valued or an (R/2πZ)-valued transverse cocycle for λ and let
τ be a geometric train track that carries λ. Given an edgeE ∈ τ , let kE be a geodesic
arc which connects the two long boundary sides of E. Define α(E) := α(kE). Note
that α(E) is independent of the choice of kE by the invariance of α under homotopy
relative λ. The transverse cocycle α is completely determined by the values α(E),
E ∈ τ(cf. [2]).

4. The realizations of R-valued and (R/2πZ)-valued transverse

cocycles

The purpose of this section is to recall the procedure of constructing the real-
izations of R-valued and (R/2πZ)-valued transverse cocycle to a maximal geodesic
lamination on a closed surface S (cf. [3]). In the former case we obtain a represen-
tation of π1(S) into PSL2(R) which gives a hyperbolic metric on S. In the later
case, we start from a hyperbolic metric on S and obtain a pleated surface with
the pleating locus λ and the bending amount given by the (R/2πZ)-valued trans-
verse cocycle. The core argument in the proof of the main theorem is estimating
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the pleating map arising from an (R/2πZ)-valued transverse cocycle which satisfies
certain geometric conditions.

We consider a hyperbolic surface S and a maximal geodesic lamination λ of S.
Bonahon [3] defined an injective map from the Teichmüller space T (S) of S into
the space H(λ,R) of all R-valued transverse cocycles to a fixed maximal geodesic
lamination λ which is a homeomorphism onto an open cone C(λ) of H(λ,R).

Denote by σ0 a fixed hyperbolic metric on S. Then σ0 represents the base point
in T (S) and let α0 ∈ H(λ,R) be the corresponding transverse cocycle. Then [3,
Proposition 13] any other real-valued cocycle α ∈ H(λ,R) which is close enough to
α0 is also in the image of T (S) in H(λ,R). Namely, when the difference α − α0 is
small in the sense that the norm ‖α− α0‖max is small, where

‖α‖max := max
E

|α(E)|

and the maximum is over all edges E of a train track τ that carries λ then α
determines a point in T (S).

The proof of the above statement is given by constructing the realization of
α1 starting from the realization of α0. We recall that λ is a maximal geodesic
lamination for the metric σ0. We lift λ to a geodesic lamination λ̃ of the universal
covering H2. Components of H2 \ λ̃ are called plaques of λ̃ and they are lifts of

plaques (i.e. connected components of S \ λ) of λ. Each plaque of λ̃ is an ideal
hyperbolic triangle.

Let k be an oriented geodesic arc in H2 from plaque P to plaque Q of λ̃.
Denote by PP,Q be the set of all plaques of λ̃ that separate P and Q, and by
P = {P1, P2, . . . , Pn} a finite subset of PP,Q such that the indices increase from

P to Q. Let gPi and gQi be the geodesics on the boundary of the plaque Pi that
separate Pi from P and Q, respectively. Let gPQ be the geodesic on the boundary

of Q that separates P and Q. Define α = α1 − α0. Let α(P, Pi) denote the α-mass
of a geodesic arc with endpoints in P and Pi; similar definition for α(P,Q).

Let

DPi = T
α(P,Pi)

gP
i

T
−α(P,Pi)

g
Q
i

where T
α(P,Pi)

gP
i

, T
−α(P,Pi)

g
Q
i

are hyperbolic translations(inH2) with axes gPi , g
Q
i which

are oriented to the left as seen from P , Q and with the translation lengths α(P, Pi),
−α(P, Pi). Let

TQ = T
α(P,Q)

gP
Q

.

A finite approximation ϕP to the realization of the transverse cocycle α1 corre-
sponding to a finite set of plaques P is given by

ϕP = DP1
DP2

· · ·DPnTQ.

The realization ϕP,Q of the transverse cocycle α is given by (cf. [3])

ϕP,Q = lim
P→PP,Q

ϕP .

Let

ψP = DP1
DP2

· · ·DPn

and let

ψP,Q = lim
P→PP,Q

ψP .
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It follows that

ϕP,Q = ψP,Q ◦ Tα(P,Q)

gP
Q

.

The quantity ψP,Q is the difference from TQ of the realization ϕP,Q of hyperbolic
metric σ on S. Bonahon [3] proved that for a fixed surface S and small norm

‖α1 − α0‖max = max
E∈τ

|α1(E)− α0(E)|

the difference ψP,Q always lies in a compact subset of PSL2(R).

Our main interest are bending pleated surfaces. The bending of (abstract)
pleated surfaces with the pleating locus λ is completely determined by an (R/2πZ)-
valued transverse cocycles for the geodesic lamination λ on S and each (R/2πZ)-
valued transverse cocycle to λ is realized by an abstract pleated surface with pleat-
ing locus λ (cf. [3]). Denote by H(λ,R/2πZ) the space of all (R/2πZ)-valued
finitely additive transverse cocycles to the lamination λ. The space of all abstract
pleated surfaces with the pleating locus λ is parametrized by C(λ)⊕ iH(λ,R/2πZ),
where C(λ) is the open cone in H(λ,R) which parametrizes the Teichmüller space
T (S) (cf. [3]).

Let β ∈ H(λ,R/2πZ) and denote by Ra
g hyperbolic rotation in H3 with the axis

g and the rotation angle a ∈ R. Let PP,Q be the set of all plaques of λ̃ separating
plaques P and Q, and let P = {P1, P2, . . . , Pn} be a finite subset of PP,Q.

Define

BPi = R
β(P,Pi)

gP
i

R
−β(P,Pi)

g
Q
i

where Pi ∈ P , β(P, Pi) the β-mass of a geodesic arc connecting P and Pi, g
P
i the

geodesic on the boundary of Pi facing P , and g
Q
i the geodesic on the boundary of

Pi facing Q. Define

RQ = R
β(P,Q)

gP
Q

.

A finite approximation ϕP of the realization of the bending cocycle β is defined
by

ϕP = BP1
BP2

· · ·BPnRQ

and the realization PP,Q of β is defined by (cf. [3])

ϕP,Q = lim
P→PP,Q

ϕP

Note that the realization exists for all β ∈ H(λ,R/2πZ) because of the compact-
ness of R/2πR. The difference from RQ of the realization of β is given by

(11) ψP,Q = lim
P→PP,Q

ψP

where

(12) ψP = BP1
BP2

· · ·BPn .

The bending map f̃ : H2 → H3 is defined by fixing a plaque P and setting
f̃ |Q = ϕP,Q for any plaque Q. Note that f̃ |P = id.

Let f̃ : H2 → H3 be the bending map for the bending pleated surface defined
by β, where H

2 is identified with the (xz)-half-plane in the upper half-space H
3 =

{(z, t) : z ∈ C, t > 0}. Then f̃ does not necessarily extend to an injective map from
∂∞H

2 into ∂∞H
3. The core argument in the proof of the main theorem establishes
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that the geometric conditions on β guarantee injectivity of the continuous extension
f̃ : ∂∞H2 → ∂∞H3 (which is achieved in §6).

5. The nested cones

In this section we prove several lemmas needed in the proof of the main theorem
in §6. As discussed in Introduction, the main argument establishes the injectivity
of the bending map f̃ : H2 → H3. Namely, given x, y ∈ ∂∞H2 with x 6= y, we need
to prove that f̃(x) 6= f̃(y). We consider the geodesic g in H2 whose ideal endpoints

are x and y, and prove that the image of g under the bending map f̃ behaves well
enough to have distinct endpoints in ∂∞H3 (cf. §6).

Let p ∈ g be a point in a plaque of λ̃, and let g1, g2 be the two geodesic rays that g
is divided into by the point p. We consider two hyperbolic cones both having vertex
p, angle π/2 and axes g1 and g2. The open shadows of the two cones are disjoint (in
fact, each open shadow is a component of the complement of the boundary circle
of an embedded hyperbolic plane in H

3 containing point p and orthogonal to g),
and x belongs to one and y belongs to the other shadow. In order to prove that
f̃(x) 6= f̃(y), we normalize f̃ to be the identity on the plaque containing p and

prove that the image f̃(gi), for i = 1, 2, stays in the corresponding hyperbolic cone.
To do so, we divide gi into disjoint subarcs and consider a sequence of nested

cones at the endpoints of these subarcs with the same angle π/2. The goal is to

prove that the image under f̃ of the nested sequence of cones remains nested. It is
enough to consider the consecutive hyperbolic cones and prove they stay embedded.

There are essentially two different phenomenon that can occur for the transverse
cocycle β along the sequence of arcs on gi. Each arc either intersects an edge E of
the geometric train track such that it connects the long sides of the long rectangle
E(in which case the arc intersects exactly the set of geodesics of λ̃ traversing E) or
it connects two short sides of a long rectangle E while intersecting only a portion
of geodesic that traverse E.

In Lemma 5.2, we prove that if an isometry A of H3 is close to the identity
then the image of the inside cone stays in the outside cone as long as the distance
between the vertices of the two cones is comparable to the size of ‖A− id‖. Lemma
5.1 is used in the proof of Lemma 5.2.

In the former case, the realization of the cocycle β is on the distance from the
identity comparable to the quantities ‖β‖max and ‖β‖varδ by Lemma 5.4 and 5.5.
Since the arc connects two long sides of a long rectangle, Lemma 2.1 applies to
conclude that there is a lower bound on the length of the arc. Then Lemma 5.2
implies the desired nesting of the cones.

In the later case, the β-mass of the arc can be arbitrary large. In order to
estimate the realization ϕP,Q where P and Q are plaques containing the endpoints
of the arc, we recall ϕP,Q = ψP,QRQ. The isometry ψP,Q is approximated by
ψP = B1B2 · · ·Bn and the above argument proves that ψP,Q is close enough to the
identity when ‖β‖max and ‖β‖varδ are small enough. The rotation RQ does not
have small angle since the β-mass can be large on the arc and Lemma 5.4 does not
apply. Instead, since the distance between the short sides of each long rectangle is
long, Lemma 5.3 gives the nesting of the cones in this case. We note that we do
not have this phenomenon when the transverse cocycle is countably additive (i.e.
it is a measure).
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Let g ⊂ H3 be a geodesic ray with initial point p0, and let p be a point on
the ray g. For 0 < θ < π, the cone C(p, g, θ) with vertex p, axis g and angle θ
is the set of all w ∈ H3 such that the angle at p between the positive direction
of g and the geodesic ray from p through w is less than θ. A non-zero vector
(p, v) ∈ T 1(H3) uniquely determines a geodesic ray g with the basepoint p tangent
to v. By definition C(p, v, θ) is C(p, g, θ). The shadow of the cone C(p, g, θ) is the
set ∂∞C(p, g, θ) of endpoints at ∂∞H3 of all geodesic rays starting at p and inside
C(p, g, θ).

For d > 0, let pd ∈ g be the point on g which is on the distance d from p0 = p.
Let η > 0 be the maximal angle such that C(pd, g, η) ⊂ C(p0, g, θ). Then η = η(d, θ)
is a continuous function of d and θ. For a fixed 0 < θ < 2π, we have η(d, θ) > θ
and η(d, θ) → θ as d→ 0 (cf. [9]).

We use quaternions to represent the upper half-space model H3 = {z + tj :
z ∈ C, t > 0} of the hyperbolic three-space H3 (cf. Beardon [1]). The space of
isometries of H3 is identified with PSL2(C) which is equipped with the norm

‖A‖ = max{|a|+ |b|, |c|+ |d|}

where A(z) = az+b
cz+d

∈ PSL2(C) and ad− bc = 1. The Poincaré extension to H3 of

the action of A ∈ PSL2(C) on Ĉ is computed in [1] to be

A(z + tj) =
(az + b)(cz + d) + ac̄t2 + tj

|cz + d|2 + |c|2t2 .

An isometry of H3 which is close to the identity moves points on a bounded
distance from j ∈ H3 by a small amount and the tangent vectors are rotated by a
small angle with respect to the Euclidean parallel transport in R3. In Lemma 5.1,
we give a quantitative statement of the above fact including the situation when the
points are not on the bounded distances from j ∈ H3.

Given p = z + tj ∈ H
3, we define

ht(p) = t

and

Z(p) = z.

Denote by TpH
3 the tangent space at the point p ∈ H3. The unit tangent space

T 1
pH

3 at the point p is the quotient (TpH
3 − {0})/R+ of non-zero tangent vectors

TpH
3 − {0} by the positive real numbers R+. If (p, u) ∈ TpH

3, then (p, u)/ ∼=
{(p, tu)|t ∈ R+} is the corresponding unit tangent vector. For simplicity of notation,
we denote by (p, u) the unit tangent vector corresponding to (p, u). Denote by T 1H3

the unit tangent space to H3.
Given (p, v), (q, w) ∈ T 1H3, define the distance on TH3 by

DT 1H3((p, u), (q, v)) = max{|ht(p)− ht(q)|, |Z(p)− Z(q)|, |∠(u, v)|}

where ∠(u, v) is the angle between the vectors u and the euclidean parallel translate
of v at the point p.

If an isometry of H3 is close to the identity, then the unit tangent vectors in a
compact subset of T 1H3 are moved by a small amount. In the lemma below, we
give a quantitative statement which will be used in the proof of Lemma 5.2.
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Lemma 5.1. Letm0 > 0 and C > 0 be fixed. Define η′(m0, C) = min{ 1
10(C+1)m0

, 14}.
If 0 ≤ η < η′, 0 < m ≤ m0, A ∈ PSL2(C) with

‖A− Id‖ < ηm

and (p, u) ∈ T 1H3 such that

DT 1H3((p, u), (e−mj,−j)) < Cηm

then

DT 1H3(A(p, u), (e−mj,−j)) < C1ηm

where C1 = 2π(60C + 9).

Proof. Let ht(p) = h and Z(p) = z. Let p1 = A(p), and ht(p1) = h1 and Z(p1) =
z1. For A ∈ PSL2(C), the Poincaré extension (cf. [1]) of A is given by the formula

A(P ) =
(az + b)(cz + d) + ac̄h2

|cz + d|2 + |c|2h2 +
h

|cz + d|2 + |c|2h2 j.

By the assumption, |Z(p) − Z(e−mj)| = |Z(p)| = |z| < Cηm and |ht(p) −
ht(e−mj)| = |h− e−m| < Cηm. We set

η′(m0, C) = min
{ 1

10(C + 1)m0
,
1

4

}

.

If η ≤ η′(m0, C) then Cηm ≤ 1
10 and ηm ≤ 1

10 . Moreover, ‖A− Id‖ < ηm implies
that |b|, |c|, |a− 1|, |d− 1| < ηm.

For p1 = A(p), the above inequalities together with some elementary computa-
tions give

|ht(p1)− e−m| ≤ (2C + 1)ηm

and

|Z(p1)| ≤ 4(C + 1)ηm.

Let v = v1 + v2i − j and w = A′(p)v = w1 + w2i + w3j. The assumption
|∠(v,−j)| < Cηm implies that |v1|, |v2| < π

2Cηm. Note that

wk =
∂Ak

∂x
v1 +

∂Ak

∂y
v2 +

∂Ak

∂h
v3

for k = 1, 2, 3, where A = A1 +A2i+A3j.
Some more elementary (and long) computations give

|∂A1

∂x
|, |∂A1

∂y
|, |∂A2

∂x
|, |∂A2

∂y
| ≤ 15,

|∂A1

∂h
|, |∂A2

∂h
| ≤ 9ηm,

|∂A3

∂x
|, |∂A3

∂y
| ≤ 12ηm,

and

|∂A3

∂h
| ≥ 1− 6ηm

at the point p.
The above estimates provide

|w1|, |w2| ≤ (60C + 9)ηm
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and

|w3| ≥ 1− (4C + 6)ηm.

Then

|∠(w,−j)| ≤ π(60C + 9)

1− (4C + 6)ηm
ηm.

Since η ≤ 1
(4C+6)m0

we obtain

(13) |∠(w,−j)| ≤ 2π(60C + 9)ηm.

�

Consider cone C(j,−j, π2 ) with the vertex j and the central geodesic ray in the
direction of the tangent vector −j. Then cone C(e−mj,−j, π2 ) is a subset of the
above cone. If (p, u) is close enough to (e−mj,−j) and if A ∈ PSL2(R) is close
enough to the identity, then the cone C(A(p), A′(p)u, π2 ) is a subset of C(j,−j, π2 ).

The following lemma establishes a sufficient quantitative bound on the size of a
hyperbolic isometry A ∈ PSL2(C) and on the distance of (p, u) to (e−mj,−j) such
that C(j,−j, π2 ) ⊃ C(A(p), A′(p)u, π2 ).

Lemma 5.2. Fix m0 > 0 and C > 0. Let η′′(m0, C) = min{ e−m0

32(C+1)m0

, e−m0

66π(60C+9)}.
Then for each 0 ≤ η < η′′(m0, C), for each 0 < m ≤ m0 and for each A ∈ PSL2(C)
with

‖A− Id‖ < ηm

we have

∂∞C(j,−j, π
2
) ⊃ ∂∞C(A(p), A′(p)u,

π

2
),

where (p, u) ∈ T 1H3 is such that

DT 1H3((p, u), (e−mj,−j)) < Cηm.

Proof. Let p1 = A(p); write h1 = ht(P1) and z1 = Z(P1). By the proof of Lemma
5.1 we have

e−m − (2C + 1)ηm ≤ h1 ≤ e−m + (2C + 1)ηm

and

|z1| ≤ 4(C + 1)ηm.

Let y = |z1|. Note that z1 is the foot in C of the vertical line through p1
perpendicular to C. Let x ∈ C be the center of the euclidean hemisphere in H3

which passes through p1 and is tangent to the unit radius euclidean hemisphere
centered at 0 ∈ C. Let ϕ be the angle at p1 between the radius of the hemisphere
centered at x and the vertical line through p1 (cf. Figure 1).

From Figure 1, we have

(1− x)2 = (x− y)2 + h21 ≤ x2 + h21

which implies

x ≥ 1− h21
2

≥ 1− h1
2

≥ 1− e−m − (2C + 1)ηm

2
≥ 1− (2C + 1)η

2
m.

If η satisfies

η ≤ 1

2(2C + 1)
,
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Figure 1.

then

(14) x ≥ 1

4
m.

This gives

tanϕ =
x− y

h1
≥

1
4m− 4(C + 1)ηm

e−m + (2C + 1)ηm
≥ 1

16
m

when η ≤ 1
32m0(C+1) .

Let ϕ0 be the angle at p1 in Figure 1 when m = m0. Then we have

(15) ϕ ≥ ϕ0

tanϕ0
tanϕ ≥ ϕ0

tanϕ0

1

16
m.

We need an upper bound on tanϕ0

ϕ0

. Let x0 and y0 be the values of x and y when

m = m0. Similar to the above, we have

(1 − x0)
2 = (x0 − y0)

2 + h2 ≥ (x0 − y0)
2

which gives

x0 ≤ 1 + y0
2

≤ 11

20
because y0 ≤ Cηm ≤ 1

10 . Then

tanϕ0 =
x0 − y0
h

≤ x0
h

≤
11
20

e−m0 − (2C + 1)ηm0
≤ 11

10
em0

for η ≤ e−m0

2m0(2C+1) . Since

tanϕ0

ϕ0
≤ 1

cosϕ0
=

√

tan2 ϕ0 + 1 ≤ 2em0

by (15) we obtain

(16) ϕ ≥ e−m0

32
m.

Let ϕ∗
0 = e−m0

33 m. It follows that

∂∞C(p1,−j,
π

2
+ ϕ∗

0m) ⊂ ∂∞C(j,−j, π
2
).
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By Lemma 5.1, |∠(w,−j)| ≤ 2π(60C+9)ηm when 0 ≤ η ≤ η′(m0, C). Thus we get

∂∞C(p1, w,
π

2
) ⊂ ∂∞C(p1,−j,

π

2
+ ϕ∗

0m)

when η ≤ e−m0

66π(60C+9) which implies the desired nesting of the cones. By putting

the bounds on η together, we define η′′ = min{ e−m0

32(C+1)m0

, e−m0

66π(60C+9)}. �

The above lemma established nesting of a cone and the image of another cone
under an isometry A when the isometry is close enough to the identity. In the
following lemma the only type of an isometry that we consider is a hyperbolic
rotation of H3 around a geodesic h intersecting the central geodesic ray of the
outside cone. Unlike above, the rotation is not necessarily close to the identity
since we allow the rotation angle to be arbitrary. The additional condition on the
rotation is that its axis h subtends a small angle with the central axis of the outside
cone which implies the nesting.

Lemma 5.3. Let m0 > 0 be fixed. Let g be the positive z-axis in H3 and let h be
the geodesic in the xz-plane that intersects g at the point e−mj ∈ H

3 subtending

the angle θ. Then for any m with 0 ≤ m ≤ m0, any θ with 0 ≤ θ < e−m0

16 , and any

(p, u) ∈ T 1H3 with

DT 1H3((p, u), (e−mj,−j)) = δ <
1

4
we have

DT 1H3(Rϕ
h (p, u), (e

−mj,−j)) ≤ 20δ + 40
√
2em0θ

for any ϕ ∈ R, where Rϕ
h is the rotation of H3 with the angle ϕ around the axis h.

Proof. Let b < 0 and a > 0 be the endpoints of h. Since the angle between g and h
is θ, it follows a = −b tan2 θ. Moreover h intersects g in the geodesic arc [j, e−m0 ]
which gives e−m0 ≤

√
−2ab ≤ 1. Consequently

(17)
√
2e−m0

1

θ
≤ |b| ≤ π√

2

1

θ

and

(18)
e−2m0

√
2π

θ ≤ a ≤ em0

2
√
2
θ.

Note that

Rϕ
h (z) =

a−eiϕb
eiϕ/2(a−b)

z + ab(eiϕ−1)
eiϕ/2(a−b)

1−eiϕ

eiϕ/2(a−b)
z + eiϕa−b

eiϕ/2(a−b)

and let Rϕ
h(z + tj) be the extension of Rϕ

h to H3. Then

Z(Rϕ
h (z + tj)) =

[

a−eiϕb
eiϕ/2(a−b)

z + ab(eiϕ−1)

eiϕ/2(a−b)

][

1−eiϕ

eiϕ/2(a−b)
z + eiϕa−b

eiϕ/2(a−b)

]

∣

∣

1−eiϕ

eiϕ/2(a−b)
z + eiϕa−b

eiϕ/2(a−b)

∣

∣

2
+
∣

∣

1−eiϕ

eiϕ/2(a−b)

∣

∣

2
t2

+

+

a−eiϕb
eiϕ/2(a−b)

ab(e−iϕ−1)

e−iϕ/2(a−b)
t2

∣

∣

1−eiϕ

eiϕ/2(a−b)
z + eiϕa−b

eiϕ/2(a−b)

∣

∣

2
+
∣

∣

1−eiϕ

eiϕ/2(a−b)

∣

∣

2
t2

and

ht(Rθ
h(p, u)) =

t
∣

∣

1−eiϕ

eiϕ/2(a−b)
z + eiϕa−b

eiϕ/2(a−b)

∣

∣

2
+
∣

∣

1−eiϕ

eiϕ/2(a−b)

∣

∣

2
t2
.
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The bounds on δ and θ give that a < 1
8 , |z| < 1

4 and |b| > 4. Similar to the proof
of Lemma 5.1 we obtain the desired estimates. �

In the following lemma we estimate the size of a hyperbolic rotation in terms of
the distance of its axis to j ∈ H3 and the rotation angle.

Lemma 5.4. Let A be a rotation in H3 by an angle ǫ around geodesic la,b with
endpoints a, b ∈ R̄ = ∂∞H2 ⊂ ∂∞H3. If the geodesic with endpoints a and b
intersects the ball of radius m0 > 0 centered at j ∈ H3, then

‖A− Id‖ ≤ (1 + e2m0)
|ǫ|
2
.

Proof. We prove the lemma when both a and b are finite points. When a or b is
∞, the proof is left to the reader.

Note that

A(z) =

a−beiǫ

(a−b)ei
ǫ
2

z + ab(eiǫ−1)

(a−b)ei
ǫ
2

1−eiǫ

(a−b)ei
ǫ
2

z + aeiǫ−b

(a−b)ei
ǫ
2

.

Assume that |a| ≤ |b|. Since la,b intersects the ball of radius m0 centered at
j ∈ H3, it follows that |a| ≤ em0 and |a− b| ≥ 2em0. Then

∣

∣

∣

a− beiǫ

(a− b)ei
ǫ
2

− 1
∣

∣

∣
=

|1− ei
ǫ
2 | · |a+ bei

ǫ
2 |

|a− b| ≤ (1 +
2|a|

|a− b| )
ǫ

2
≤ (1 + e2m0)

ǫ

2
.

Further, we claim that

∣

∣

∣

ab(eiǫ − 1)

a− b

∣

∣

∣
≤ |ab|

|a− b|ǫ ≤
e2m0

4
ǫ.

To see this, note that j ∈ H3 is on the distance at most m0 from the geodesic la,b.
Then [1, formula (7.20.4)] gives

sinhm0 ≥ cosh2m0 + ab

|(b− a)|coshm0

which implies the above. In a similar fashion, we obtain

∣

∣

∣

aeiǫ − b

(a− b)ei
ǫ
2

− 1
∣

∣

∣
≤ (1 + e2m0)

ǫ

2

and
∣

∣

∣

1− eiǫ

(a− b)ei
ǫ
2

∣

∣

∣
≤ em0ǫ.

�

The following lemma is well-known [3] and we estimate the constant involved.

Lemma 5.5. Let g1 and g2 be geodesics in H2 ⊂ H3 that have a common endpoint
and that intersect the ball Bm0

(i) of radius m0 > 0 centered at i ∈ H2. Let s be a
geodesic arc that connects g1 and g2 inside Bm0

(i). Then

‖Rǫ
g1

◦R−ǫ
g2

− Id‖ ≤ 2em0(1 + em0)|s| · |ǫ|,
where |s| is the hyperbolic length of the geodesic arc s.
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Proof. Let A(z) = cos θz+sin θ
− sin θz+cos θ be a rotation of H2 around i. Note that ‖A‖ ≤

√
2.

For the given embedding of H2 into H
3, we have that i ∈ H

2 is identified with
j ∈ H3 and that the mapping A acts as a rotation in H3 around the geodesic with
endpoints i,−i ∈ ∂∞H3 = C̄. The geodesic of the rotation passes through j ∈ H3

and H2 is orthogonal to this geodesic(thus setwise preserved by A).
Let t ∈ R∪{∞} be the common endpoint of the geodesics g1 and g2. We choose

the rotation A such that A(t) = ∞. Then A ◦Rǫ
gj

◦ A−1 = Rǫ
g′

j
, where g′j = A(gj)

for j = 1, 2. Note that

‖Rǫ
g1

◦R−ǫ
g2

− Id‖ ≤ ‖A−1‖ · ‖Rǫ
g′

1

◦R−ǫ
g′

2

− Id‖ · ‖A‖ = 2‖Rǫ
g′

1

◦R−ǫ
g′

2

− Id‖.
Let a and b be the endpoints of g′1 and g′2, respectively. A short computation

gives

‖Rǫ
g′

1

◦R−ǫ
g′

2

− Id‖ = 2|a− b| · | sin ǫ
2
| ≤ |a− b| · |ǫ|.

Let P1 ∈ g′1 and P2 ∈ g′2 be the endpoints of s. Without loss of generality, assume
that ht(P1) ≥ ht(P2). Let l

′ be the arc issued from P2 that is orthogonal to g′1. Let
x = ht(P2). A direct computations gives

(19) |l′| = log
[ |a− b|

x
+

√

1 +
( |a− b|

x

)2]

Note that h = |a−b|
x

is the length of the horocyclic arc centered at ∞ between g′1
and g′2 at the height x. Let h0 be the maximum of the lengths of horocyclic arcs
with the center at ∞ and inside the ball of radius m0 centered at i ∈ H2. Then we
obtain

|l′| ≥ log(1 + h) ≥ 1

1 + h0
h

which implies
|a− b| ≤ x(1 + h0)|l′| ≤ em0(1 + em0)|l′|

and the lemma follows. �

6. Injectivity on the boundary

Recall that the embedding of H2 in H3 given by the mapping z = x+yi 7→ x+yj,
for y > 0 and x ∈ R. In this section, we prove that the bending map of a pleated
surface realizing a transverse cocycle β ∈ H(λ,R/2πZ) induces an injective map
from ∂∞H2 into ∂∞H3 under geometric conditions on the bending transverse cocycle
β given in Theorem 1.1.

6.1. Outline of the proof. For any x, y ∈ ∂∞H2 with x 6= y we need to prove
that f̃(x) 6= f̃(y). Let g be a hyperbolic geodesic in H2 ⊂ H3 whose endpoints are

x and y. If g is a leaf of λ̃ then f̃(g) ⊂ H3 is a geodesic. Thus f̃(x) 6= f̃(y) in the

case when g is a leaf of λ̃.
The main work is in proving f̃(x) 6= f̃(y) when g is not a leaf of λ̃. Let p be a point

on g contained in a plaque of λ̃. The geodesic g is divided by p into two geodesic
rays g1 and g2. We form two hyperbolic cones C(p, g1, π/2) and C(p, g2, π/2) whose
shadows on ∂∞H3 are disjoint and contain x and y, respectively. The idea is to
prove that f̃(gi) stays in the cone C(p, gi, π/2), for i = 1, 2. It is enough to restrict

ones attention to f̃(g1) and the proof for the other ray is analogous.
We start by considering all the intersection points of g1 with the boundary sides

of the long rectangles of τ̃ . We form a division of g1 into arcs {(an, bn)}n such
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that an < bn ≤ an+1 < bn+1 for all an, where an, bn are (some of the) points
of the intersection of g1 with the boundary sides of long rectangles and the arc
(bn, an+1), if bn < an+1, is outside of the geometric train track τ̃ . Moreover, each
(an, bn) is chosen such that either it connects two long sides of a long rectangle; or it
connects a long side of one long rectangle with a long side of its immediate neighbor
rectangle; or it connects one long side of a long rectangle with another long side of
a rectangle while passing through another rectangle; or it connects a short side of
one rectangle to the other short side of the same rectangle; or it connects a short
side of one rectangle with a long side of the adjacent rectangle. In short, any arc
(an, bn) intersects at most three long rectangles; and it either intersects the family
of all geodesics crossing a long rectangle E while connecting the long sides of E, or
it intersects the family of arcs intersecting a subarc of a short side of rectangle E
while connecting the short sides of E.

We simplify the considerations by assuming that (an, bn) either connects two long
sides or it connects two short sides of a single long rectangle E. The arguments for
these two cases also prove the theorem in other case with slightly smaller ǫ and δ.

Assume first that (an, bn) connects two long sides of a long rectangle E. Let P

and Q be plaques of λ̃ which contain an and bn. Recall that the realization ϕP,Q is
given by

ϕP,Q = ψP,QRQ

where

ψP,Q = lim
P→PP,Q

B1B2 · · ·Bn

for P = {P1, P2, . . . , Pn}.
Recall that

BPi = R
β(P,Pi)

gP
i

R
−β(P,Pi)

g
Q
i

where Pi ∈ P , β(P, Pi) the β-mass of a geodesic arc connecting P and Pi, g
P
i the

geodesic on the boundary of Pi facing P , and g
Q
i the geodesic on the boundary of

Pi facing Q. Moreover

RQ = R
β(P,Q)

gP
Q

.

Using the fact that ‖β‖max is small, we get that RQ is close to the identity by
Lemma 5.4. Moreover, since ‖β‖varδ is small when δ is fixed, a repeated use of
Lemma 5.5 gives that B1B2 · · ·Bn is close to the identity independently of n which
implies that ϕP,Q is close to the identity for ǫ > 0 and δ > 0 small enough. Then

Lemma 5.2 guarantees that the image (under normalized f̃ which is the identity on
P ) of the cone at bn is contained in the cone at an.

Assume next that the arc (an, bn) connects two short sides of a long rectangle E.
In this case |β([an, bn])| might not be small. The above estimates on ψP,Q still hold
by the same method using the fact that ‖β‖varδ is small when δ is fixed and small
enough. However, the rotation RQ might not have small angle which makes RQ

bounded away from the identity. This is a new phenomenon which does not appear
in the case when the bendings are by measured (i.e. countably additive) transverse
cocycles. Since the arc (an, bn) connects two short sides of a long rectangle, it

follows that the angles of the intersections of the arc (an, bn) with the leaves of λ̃
are small. Then Lemma 5.3 implies that the cone at bn is mapped by RQ to a
nearby cone. Further, the nearby cone is mapped by ψP,Q to a cone contained in



BENDINGS BY FINITELY ADDITIVE TRANSVERSE COCYCLES 23

the cone at an by Lemma 5.2. This finishes the proof of the nesting of cones in
both cases and the proof of the theorem.

6.2. The first step in proof of Theorem 1.1. Let {k1, . . . , kn} be a set of
geometric arcs for the geodesic lamination λ satisfying all the properties given in
§2. Let τ be the corresponding geometric train track. Let λ̃ and τ̃ be lifts to H

2

of the geodesic lamination λ and the geometric train track τ . For simplicity, we
denote by kj any lift of an arc kj and by E any lift of an edge E.

Let g be an arbitrary geodesic in H
2. Our goal is to show that the endpoints

of g in ∂∞H2 are mapped to distinct points in ∂∞H3 under the bending map f̃
corresponding to the transverse cocycle β. If g is contained in τ̃ then it coincides
with a geodesic of λ̃. Since the bending map f̃ sends a geodesic in λ̃ to a geodesic
in ∂∞H3, it follows that the endpoints of g are mapped to distinct points.

The main case to consider is when g transversely intersects λ̃. Then there exists
p ∈ g ∩ (H2 − τ̃) because if g is completely contained in τ̃ then it is a geodesic of λ̃.
The point p divides the geodesic g into two geodesic rays g1 and g2 with endpoints
x and y, respectively. We consider the geodesic ray g1 and similar conclusions hold
for g2.

First divide the geodesic ray g1 into subarcs using the points of intersections of g1
with the boundary sides of the edges of τ̃ (i.e. boundary sides of long rectangles) as
follows. The point p is the initial point of g1. The first point a1 of the intersection
of g1 with τ̃ is at a long side of an edge E of τ̃ . We consider the next point p1
of the intersection of g1 with a boundary side of an edge E of τ̃ . If p1 is on the
long side of E then we set b1 = p1 and [a1, b1] is the first subarc in the division of
g1. If p1 is on the short side of the edge E then we consider the next point q1 of
the intersection of g1 with boundary sides of the edges of τ̃ . If q1 is on a long side
of an edge then we set b1 = q1. If q1 is on a short side and the next point of the
intersection of g1 with the boundary sides of τ̃ is also on a short side, then we set
q1 = b1. If q1 is on a short side and the next point of the intersection r1 is on long
side, then we set b1 = r1. Note that the arc [a1, b1] intersects interiors of at most
three edges of τ̃ .

Assume that we have defined first n arcs {[a1, b1], . . . , [an, bn]} and we proceed
to define (n + 1)-st arc. If bn is on the boundary of two edges of τ̃ , then we set
an+1 = bn; otherwise we let an+1 to be the first intersection point of g1 with the
boundary sides of the edges of τ̃ that comes after bn. Then bn+1 is chosen in a same
fashion as b1 above. We continue this process indefinitely. Thus we obtain a family
of arcs {[an, bn]}n∈N. If an does not belong to a plaque of λ̃ then we replace it with
a nearby point on g1 which belongs to a plaque and call the new point an again.
Do the same for bn. This situation occurs when an or bn belong to the intersections
of a short side of an edge of τ̃ and the geodesic lamination λ̃. The complement in
g1 of the union of arcs [an, bn] does not intersect λ̃.

We consider a sequence of nested cones C(an, g1, π2 ) ⊃ C(bn, g1, π2 ) for n ∈ N.

When the bending map f̃ is normalized to be the identity at the plaque containing
an, it is enough to prove that

∂∞f̃(C(bn, g1,
π

2
)) ⊂ ∂∞C(an, g1,

π

2
).

Because this property is geometric, it is independent under the post-compositions
by the isometries of the bending map and it can be repeated along the sequence of
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arcs {[an, bn]}. Thus we obtain that the sequence of the images under the bending

map of the shadows of the cones is nested and in particular, the image under f̃ of
the endpoint of g1 is contained in ∂∞C(p, g1, π2 ). Similarly, the image under f̃ of the
endpoint of g2 is contained in ∂∞C(p, g2, π2 ). Since ∂∞C(p, g1, π2 )∩∂∞C(p, g2, π2 ) = ∅,
the bending map f̃ sends the endpoints of g into distinct points of ∂∞H3.

To finish the proof, it remains to show that

(20) ∂∞f̃(C(bn, g1,
π

2
)) ⊂ ∂∞C(an, g1,

π

2
)

where the bending map f̃ : H2 → H
3 is normalized to be the identity at the point

an. The rest of the proof is divided into cases depending on the combinatorics of
the intersection of [an, bn] with the edges of τ̃ .

6.3. Case I: [an, bn] connects two long sides of an edge E. Recall that l∗ is
the maximum of the diameters of the edges of the train track τ̃ . Then each [an, bn]
has length less than or equal to 3l∗ since it intersects at most three edges of τ̃ .

Assume that [an, bn] intersects interior of a single edge E of τ̃ and that it connects
the two long sides of E. Let P and Q be the plaques that contain an and bn,
respectively. By pre-composing the bending map with an isometry of H2, we can
assume that an = i ∈ H2. Note that H2 is identified with {(z, t) : Im(z) = 0, t >
0} ⊂ H3 and under this identification i ∈ H2 corresponds to j ∈ H3.

Let s(E) be a short side of E (which means that it is a lift to H2 of an arc in
{k1, . . . , kn}, cf. §2). Then |s(E)| ≤ w∗ ≤ 1

20 . Note that s(E) is contained in ball

of radius l∗ centered at an = i ∈ H2 because the diameter of E is at most l∗.
Recall that

ψP,Q = lim
Pl→PP,Q

ψl

where P = {P1, P2, . . . , Pn} is a set of plaques between P and Q in the given order,

ψl = B1B2 . . . Bn

and

Bi = R
β(P,Pi)

gP
Pi

R
−β(P,Pi)

g
Q
Pi

where gPPi
is the geodesic on the boundary of Pi which separates Pi from P ; similar

for gQPi
; and Ra

g is a hyperbolic rotation with the axis g and the rotation angle a.

Since points of s(E) are on the distance at most l∗ from i ∈ H
2, it follows by

Lemma 5.5 that

(21) ‖Bi − Id‖ ≤ 2el
∗

(1 + el
∗

)|β(P, Pi)| · |di|

where |di| is the length of the gap di = E ∩ Pi and β(P, Pi) is taken to be in the
interval (−π, π].

We estimate the norm of
∏l

i=1Bi for arbitrary l. By (21), we have that

‖
l

∏

i=1

Bi‖ ≤
l

∏

i=1

‖Bi‖ ≤
∏

d

(1 + 2πel
∗

(1 + el
∗

)|d|)
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where the last product is over all gaps d of s(E) with respect to λ̃. Then

log

l
∏

i=1

‖Bi‖ ≤
∑

d

log(1 + 2πel
∗

(1 + el
∗

)|d|) ≤

≤
∑

d

2πel
∗

(1 + el
∗

)|d| ≤ 2πel
∗

(1 + el
∗

)|s(E)|.

Since |s(E)| ≤ 1
20 , we have

‖
l

∏

i=1

Bi‖ ≤ e2πe
l∗ (1+el

∗

)|s(E)| ≤ C(l∗)

where

(22) C(l∗) = ee
l∗

.

This implies

‖ψP,Q − Id‖ ≤ C(l∗)
∑

d

‖Bd − Id‖,

where the sum is over all gaps d of s(E) (i.e. components of s(E)\ λ̃) except the two
components which contain the endpoints of s(E); Pd is the plaque which contains

d; and Bd = R
β(P,Pd)

gP
Pd

◦R−β(P,Pd)

g
Q
Pd

.

We divide
∑

d ‖Bd−Id‖ into two sums as follows. The first sum
∑′ is over finitely

many gaps {di : i = 1, . . . , ns(E)} of s(E) used in the definition of ‖β‖varδ,s(E) and

the second sum
∑′′

is over the remaining (infinitely many) gaps of s(E).
Each term of

∑′
corresponding to a gap d of s(E) is bounded from above by

2el
∗

(1 + el
∗

)|d| · ‖β‖varδ by (21). Thus

′
∑

≤ 2el
∗

(1 + el
∗

)|s(E)| · ‖β‖varδ .

The term of the second sum
∑′′ which corresponds to a gap d of s(E) is bounded

by 2πel
∗

(1+ el
∗

)|d| by (21). Since the sum of the lengths of all d in
∑′′

is less than
δ|s(E)|, we obtain

′′
∑

≤ 2πel
∗

(1 + el
∗

)δ|s(E)|.
Taking the two estimates together, we have

‖ψP,Q − Id‖ ≤ C′(l∗)(‖β‖varδ + δ)|s(E)|
where

C′(l∗) = 2πel
∗

(1 + el
∗

)ee
2l∗

.

By Lemma 5.4 and by β(P,Q) = β(s(E)), we get that

‖RQ − Id‖ ≤ (1 + e2l
∗

)|β(s(E))|/2 ≤ 1 + e2l
∗

2
‖β‖max

where RQ = R
β(P,Q)

gP
Q

as in the definition of ϕP,Q.

Thus

‖RQ‖ ≤ 1 +
1 + e2l

∗

2
‖β‖max ≤ 3 + e2l

∗

2
if we restrict to β with ‖β‖max ≤ 1.
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Consequently, we obtain

‖ϕP,Q − Id‖ ≤ C′(l∗)
3 + e2l

∗

2
(‖β‖varδ + δ)|s(E)| + 1 + e2l

∗

2
‖β‖max ≤

≤ C′′(l∗)(‖β‖varδ + δ)|s(E)|+ 1 + e2l
∗

2
‖β‖max

(23)

where

C′′(l∗) = C′(l∗)
3 + e2l

∗

2
= π(1 + el

∗

)(3 + e2l
∗

)el
∗+e2l

∗

.

The inequality (23) holds for both short sides s1(E) and s2(E) of the edge
E. Without loss of generality we assume that |s1(E)| = min{|s1(E)|, |s2(E)|}.
Lemma 2.2 implies that |[an, bn]| ≥ 1

20el∗
|s1(E)|, where |[an, bn]| is the length of the

hyperbolic arc [an, bn]. Let η
′′(l∗, 0) be the constant from Lemma 5.2 for the given

l∗ and C = 0. Lemma 5.2 implies the desired nesting of the cones if the right side
of (23) is less than η′′(l∗, 0)|[an, bn]|. To achieve this, it is enough to set

ǫ =
1

2
min{ η′′(l∗, 0)

60el∗C′′(l∗)
,
2η′′(l∗, 0)

3(1 + e2l∗)
} =

η′′(l∗, 0)

120el∗C′′(l∗)

and

δ =
η′′(l∗, 0)

120el∗C′′(l∗)

for η′′(l∗, 0) given by Lemma 5.2. The nesting of the cones at an and bn is guaran-
teed by Lemma 5.2 because |[an, bn]| ≤ l∗.

6.4. Case 2: [an, bn] connects long side of an edge to a long side of an

adjacent edge. Assume that [an, bn] enters an edge E1 through a long side, then
enters an edge E2 through a short side in common with E1 and exists E2 through
a long side of E2.

Since the train track τ is bivalent we have that the set of geodesics of λ̃ which
intersect the arc [an, bn] is either the set of geodesics which traverses the edge E1

or the set of geodesics which traverses the edge E2. For definiteness, assume that
we are in the former case.

Let s(E1) be the short side of E1 that contains one short side of E2 and let
cn = [an, bn] ∩ s(E1). Normalize such that an = i ∈ H2. Let s(E1)

1 and s(E1)
2

be the two arcs obtained by dividing s(E1) with the point cn such that the arcs
[an, cn] and s(E1)

1 have endpoints on the same long side l1 of E1, and that the arcs
[cn, bn] and s(E1)

2 have endpoints on the same long side l2 of E2. Let h1 and h2
be two arcs from cn orthogonal to l1 and l2, respectively.

It is immediate that |[an, cn]| ≥ |h1| and |[cn, bn]| ≥ |h2|. The hyperbolic sine
rule and the fact that |s(E1)| ≤ 1

20 give |s(E1)
1| ≤ cosh 1

20 |h1| ≤ cosh 1
20 |[an, cn]|

and |s(E1)
2| ≤ cosh 1

20 |h2| ≤ cosh 1
20 |[cn, bn]|. We obtain

|s(E1)| ≤ cosh
1

20
|[an, bn]|.

Similar to Case 1, we get

‖ϕP,Q − Id‖ ≤ C′′(2l∗)(‖β‖varδ + δ)|s(E1)|+
1 + e4l

∗

2
‖β‖max

where we use 2l∗ instead of l∗ because the diameter of E1 ∪ E2 is 2l∗.
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Figure 2.

The nesting of the cones at an and bn follows as in Case 1 with the constants

ǫ = δ =
η′′(2l∗, 0)

120e2l∗C′′(2l∗)

for η′′(2l∗, 0) given by Lemma 5.2. The later case is dealt with in the same fashion
with the same constants.

6.5. Case 3: [an, bn] connects two short sides of an edge. Assume that [an, bn]
enters a short side of an edge E1, then it enters a short side of an edge E2 which
is in common with E1 and it exists a long side of E2. See Figure 2 and Figure 3
for different possibilities of the relative positions of E1, E2 and g1. Let P and Q
be the plaques that contain an and bn, respectively.

For the position in Figure 2 we argue as follows. Let E1
1 be the incoming edge

which meets E2 at the same short side as E1. Let Q
′ be the plaque that separates

the geodesics of λ̃ that traverse E1 from the geodesics of λ̃ that traverse E1
1 . Then

we have

ϕP,Q = ϕP,Q′ ◦ ϕQ′,Q.

Note that β(Q′, Q) = β(E1
1 ) which implies that |β(Q′, Q)| ≤ ‖β‖max.

By reasoning as in Case 1, we obtain

‖ϕQ′,Q − Id‖ ≤ C′′(2l∗)(‖β‖varδ + δ)|s(E1
1 )|+

1 + e4l
∗

2
‖β‖max

where s(E1
1) is the short side of E1

1 contained in a short side of E2. Recall that
we normalized such that an = j and bn = e−mj for 0 ≤ m ≤ 2l∗. Since [an, bn]
connects the short sides of the edge E1, it follows that |[an, bn]| ≥ l∗ > 0.

We apply Lemma 5.1 to (e−mj,−j) ∈ T 1H3 with the constants 2l∗, C = 0 and
m ≥ l∗ > 0. We get

DT 1H3(ϕQ′,Q(e
−mj,−j), (e−mj,−j)) ≤ 18π[C′′(2l∗)(‖β‖varδ + δ)|s(E1

1 )|+

+
1+ e4l

∗

2
‖β‖max] < η′(2l∗, 0)

(24)
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whenever

(25)
C′′(2l∗)(‖β‖varδ + δ)|s(E1

1 )|+ 1+e4l
∗

2 ‖β‖max

l∗
<
η′(2l∗, 0)

18π
.

Recall that

ϕP,Q′ = ψP,Q′ ◦Rβ(P,Q′)

gP
Q′

where, in general, β(P,Q′) 6= β(E1) since an belongs to a short side of E1. In fact
|β(E1)| might not be even close to 0.

Let cn be the point of the intersection between [an, bn] and the common boundary
s(E1

1) of E1 and E2. It follows that the arc [an, cn] and the subarc of any geodesic

of λ̃ that traverses E1 are remaining close for the length l∗. This implies that they
intersect at small angles. We give a numerical statement.

Lemma 6.1. Let E be an edge of a train track such that the shortest geodesic
connecting the short sides has length at least l > 0 and the maximum of the lengths
of the short sides is at most x. Let a1 and a2 be geodesic arcs in E connecting the
short sides intersecting at an angle φ. Then

φ ≤ π

2
(coth

l

2
)x.

Proof. Let A = a1 ∩ a2. Then A divides a1 into two sub arcs a′1 and a′2. Without
loss of generality, we can assume that the length of a′1 is at least

1
2 l. Then the length

of the subarc a′2 of the arc a2 which connects the short side of E which contains an
endpoint of a′1 to the point A is at least 1

2 l − x. Let h be the geodesic arc issued
from the endpoint of a′1 on a short side of E orthogonal to a′2. The length of h is
at most x. We obtained a right angled triangle with one angle ϕ whose opposite
side has length at most x, and the side opposite to the right angle has the length
at most 1

2 l. The hyperbolic sine rule gives

sinφ =
sinhx

sinh 1
2 l

which implies

φ ≤ π

2
(coth

l

2
)x.

�

We apply R
β(P,Q′)

gP
Q′

to ϕQ′,Q(e
−mj,−j). By Lemma 6.1, the angle of intersection

φ between gPQ′ and g1 satisfies

(26) φ ≤ π

2
(coth

l∗
2
)w∗.

By Lemma 5.3, we have

DT 1H3([R
β(P,Q′)

gP
Q′

◦ ϕQ′,Q](e
−mj,−j), (e−mj,−j)) ≤

20DT 1H3(ϕQ′,Q(e
−mj,−j), (e−mj,−j)) + 40

√
2e2l

∗

φ
(27)

when DT 1H3(ϕQ′,Q(e
−mj,−j), (e−mj,−j)) < 1

4 and φ < e−2l∗

16 . The former condi-

tion is satisfied because DT 1H3(ϕQ′,Q(e
−mj,−j), (e−mj,−j)) < η′(2l∗, 0) ≤ 1

4 . To
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achieve the later condition we require that π
2 (coth

l∗
2 )w

∗ < e−2l∗

16 which implies that

(28) w∗ <
e−2l∗ tanh l∗

2

8π
.

By (24), (26) and (27) we have

DT 1H3([R
β(P,Q′)

gP
Q′

◦ ϕQ′,Q](e
−mj,−j), (e−mj,−j)) ≤

560π

l∗
[C′′(2l∗)(‖β‖varδ + δ)|s(E1

1 )|+
1 + e4l

∗

2
‖β‖max]l∗+

+
20

√
2πe2l

∗

coth l∗
2

l∗
w∗l∗

Let η′′(2l∗, 1) be the constant from Lemma 5.2. If

(29) δ, ‖β‖varδ ≤ l∗
4 · 560π|k1|C′′(2l∗)

η′′(2l∗, 1),

(30) ‖β‖max ≤ l∗
4 · 560π3e4l∗ η

′′(2l∗, 1)

and

(31) w∗ ≤ l∗

20
√
2πe2l∗ coth l∗

2

η′′(2l∗, 1),

then

(32) DT 1H3([R
β(P,Q′)

gP
Q′

◦ ϕQ′,Q](e
−mj,−j), (e−mj,−j)) ≤ η′′(2l∗, 1)l∗.

By Case 1, we immediately obtain the estimate

‖ψP,Q′ − Id‖ ≤ C′(2l∗)(‖β‖varδ + δ)|s(E1
1 )|.

It follows that

‖ψP,Q′ − Id‖ ≤ η′′(2l∗, 1)

if

δ, ‖β‖varδ ≤ l∗
2C′(2l∗)|s(E1

1 )|
which is satisfied because C′(2l∗) ≤ C′′(2l∗) and by (29). Therefore, Lemma 5.2
and w∗ ≤ 1/20 implies the nesting of the cones if

ǫ =
l∗η′′(2l∗, 1)

130πC′′(2l∗)
≤ min{ l∗η′′(2l∗, 1)

4 · 560πC′′(2l∗)|s(E1
1 )|
,
l∗η′′(2l∗, 1)

4 · 560π 1+e4l
∗

2

}

and

δ ≤ l∗η′′(2l∗, 1)

130πC′′(2l∗)

and (31) holds.

We consider the positions in Figure 3. The top left position in Figure 3 is a
subcase of the position in Figure 3 where we set ϕQ′Q = Id and the nesting follows
for the same choices of ǫ, δ and w∗. The top right position is exactly dealt as
with the top left position. The bottom position in Figure 3 is exactly equal to the
position in Figure 2 and the nesting is achieved by choosing the same constants.
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Figure 3.

6.6. All other cases for [an, bn].

Case 4. Assume that [an, bn] enters E on a short edge and that it exists E on
the opposite short edge. The argument in this case is contained in the second part
of Case 3 and the bounds are the same.

Case 5. Assume that [an, bn] enters an edge E1 of τ̃ through a long side, enters
another edge E2 through a short side in common with E1 and then enters an edge
E3 through a short side in common with E2, and then exists E3 through a long
side. Let P and Q be the plaques of τ̃ which contain an and bn, respectively.
Note that the arc [an, bn] has length at least m∗ because it traverses the edge E2.
Moreover, since the arc [an, bn] connects two long sides of different edges of τ̃ it
follows that the set of geodesics of τ̃ that intersect [an, bn] is disjoint union of at
most three sets of geodesics each of them traversing an edge of τ̃ . The situation
in Figure 4 illustrates the case when this union consists of the geodesics traversing
the edge above E2, the edge E2 and the edge below E2. Note that the short
sides of these three geodesics are on the distance at most 3l∗ from an = i. Other
possibilities can be easily checked by drawing pictures. It always happen that the
set of geodesics of λ̃ intersecting [an, bn] is the disjoint union of at most three sets
of geodesics traversing three edges of τ̃ whose short sides are on the distance at
most 3l∗ from an. Therefore ϕP,Q is the composition of at most three Möbis maps
ϕE′

i
, for i = 1, 2, 3, each corresponding to an edge E′

i of τ̃ .
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Figure 4.

We use the argument from Case 1 to estimate ‖ϕE′

i
− Id‖. Namely, it is enough

to replace l∗ with 3l∗ to obtain

(33) ‖ϕE′

i
− Id‖ ≤ C′′(3l∗)(‖β‖varδ + δ)|s(E′

i)|+
1 + e6l

∗

2
‖β‖max.

Consequently, we have

‖ϕP,Q − Id‖ ≤ 3
(

1 + C′′(3l∗)(‖β‖varδ + δ)|s(E′
i)|+

1 + e6l
∗

2
‖β‖max

)2×

×
(

C′′(3l∗)(‖β‖varδ + δ)|s(E′
i)|+

1 + e6l
∗

2
‖β‖max

)

.

(34)

Assume that δ, ‖β‖varδ ≤ 1
2 and ‖β‖max ≤ 1. Then 1 + C′′(3l∗)(‖β‖varδ +

δ)|s(E′
i)|+ 1+e6l

∗

2 ‖β‖max ≤ 1 + C′′(3l∗) + 1+e6l
∗

2 because |s(E′
i)| ≤ 1

20 . We choose

ǫ = δ =
m∗η′′(3l∗, 0)

18C′′(3l∗)(1 + C′′(3l∗) + 1+e6l
∗

2 )2
.

6.7. The end of the proof. We established that the cones are nested along the
sequence {[an, bn]}n∈N. Thus the bending map f̃ is injective on ∂∞H2 as claimed.
We choose ǫ and δ to be the minimum over all cases and the nesting is guaranteed
always. This ends the proof of Theorem 1.1.

Remark 6.2. The size of ǫ, δ and w∗ depends on the above constants l∗ and l∗ (cf.
Table 6.2). The minimum l∗ of the distances between short sides of the edges of τ̃
can be arbitrary small. In fact, when there are short closed geodesics contained in
the geodesic lamination λ then the train track τ cannot be modified such that l∗
is bigger than a universal positive constant. This fact forces us to include l∗ as a
part of the geometric information for the geodesic lamination λ.

If λ does not contain closed geodesics then there exists a choice of a geometric
train track τ which carries λ such that l∗ ≥ 1/20 and l∗ = 1/5. In this case we
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m0 ǫ = δ w∗

.000001 2.20317× 10−17 2.45816× 10−20

.00001 2.20241× 10−16 2.45807× 10−18

.0005 1.08066× 10−14 6.13315× 10−15

.001 2.1201× 10−14 2.44836× 10−14

.0015 3.1194× 10−14 5.4978× 10−14

.002 4.07961× 10−14 9.75434× 10−14

.0025 5.00174× 10−14 1.52107× 10−13

.003 5.8868× 10−14 2.18597× 10−13

.005 9.07579× 10−14 6.02374× 10−13

.01 1.4901× 10−13 2.36178× 10−12

.05 1.33635× 10−13 5.03139× 10−11

.1 2.06663× 10−14 1.64768× 10−10

.25 3.41015× 10−19 5.6501× 10−10

.5 9.94507× 10−43 8.30612× 10−10

1 5.6123380× 10−550 4.479× 10−10

2 1.90389× 10−212091 3.23146× 10−11

Table 1. Values of ǫ, δ and k∗ for the given m0.

explicitly compute the constants in Theorem 1.1 to be

w∗ = 4.41719× 10−10

and

ǫ = δ = 3.61749× 10−17.

7. Holomorphic motions and shear-bend cocycle

Given a fixed hyperbolic surface S and a maximal geodesic lamination λ on S, we
defined a geometric train track τ that carries λ (cf. §6). Then we found universal
ǫ > 0 and δ > 0 such that when an (R/2πZ)-valued transverse cocycle β satisfies

‖β‖max < ǫw∗ and ‖β‖varδ < ǫ then the bending map f̃ with the bending cocycle

β extends by continuity to an injection f̃ : ∂∞H2 → ∂∞H3.
We are considering holomorphic motions in this section, and injectivity of a

family of maps is an essential part of the definition. To establish injectivity of
a family of bending maps, we use the sufficient condition on β obtained in the
previous section. When the hyperbolic metric on S is slightly changed, the metric
quantities of the geometric train track τ are slightly changed. This fact is used
to prove that there is an open neighborhood of any R-valued transverse cocycle
representing a hyperbolic metric on S in the space of (C/2πiZ)-valued transverse
cocycles whose points induce injective pleating maps.

Let K ⊂ Ĉ and let D = {w ∈ C : |w| < 1}. A holomorphic motion of a set K is
a map

f : K × D → Ĉ

such that

f(·, w) : K → Ĉ
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is injective for each w ∈ D, f(z, 0) = z for all z ∈ K, and

f(z, ·) : D → Ĉ

is holomorphic in w ∈ D for each z ∈ K (see [12]). The variable w ∈ D is called the
parameter of the holomorphic motion of K. It is also possible to define holomorphic
motions over simply connected regions of C when we specify the point where the
motion is the identity.

The lambda lemma states that a holomorphic motion of K extends to a holo-
morphic motion of the closure K̄ of K (see [12]). Slodkowski [15] proved that a
holomorphic motion of a closed set K which contains at least three points extends

to a holomorphic motion of Ĉ. In fact, if a holomorphic motion of K is invariant
under a subgroup G of PSL2(C) then the extension of the holomorphic motion can

be chosen to be G-equivariant on Ĉ [6].

A shear-bend transverse cocycle β for a geodesic lamination λ on a closed hyper-
bolic surface S assigns to each arc k transverse to λ (with endpoints of k in the
plaques of λ) a number β(k) ∈ C/2πiZ such that if k = k1 ∪ k2 and k1, k2 have
disjoint interiors then β(k) = β(k1) + β(k2). Denote by H(λ,C/2πZ) the space
of all shear-bend transverse cocycles for λ. Bonahon [3] proved that the space of
all representations of the fundamental group π1(S) of S in PSL2(C) which realize
λ is homeomorphic to an open subset of H(λ,C/2πiZ), where the real part is re-
stricted to belong to the image of T (S) in H(λ,R) and there is no restrictions on
the imaginary part.

Let α ∈ H(λ,R) be in the image of the Teichmüller space T (S). For w = u+iv ∈
C, we define βw(k) = (wα(k)) (mod 2πiZ) for each arc k transverse to λ. Then
βw ∈ H(λ,C/2πiZ). Let fw : H2 → H3 be the shear-bend map corresponding to
βτ as in [3].

Theorem 7.1. Let α ∈ H(λ,R) be in the image of T (S) and let f(1+w) be the
shear-bend map for β(1+w) ∈ H(λ,C/2πiZ). Then there exists r > 0 such that the
shear-bend map

f(1+w) : H
2 → H

3

extends by continuity to a holomorphic motion of ∂∞H2 in ∂∞H3 for the parameter
{w ∈ C : |w| < r}.
Proof. For w = u + iv, consider the hyperbolic surface S1+u obtained by shearing
along the real part of β1+w which is (1 + u)α ∈ H(λ,R). By [3], the image of T (S)
is a cone in H(λ,R) and therefore S1+u exists for r small enough. Note that S1 is
the original hyperbolic surface S.

Let τ be the train track that carries λ used in the proof of Theorem 1.1. We

choose τ such that w∗ = 1
2 · e−2l∗ tanh l∗

2

8π . For |u| small enough, the endpoints of
the switches of τ under the shear map f(1+u) are close to the switches of τ . By
connecting the switches with geodesics for the hyperbolic metric of (1 + u)α we
construct a train track τ1+u which is homotopic to τ . For |u| small enough, we
have the constants l∗(τ1+u), l∗(τ1+u) and w

∗(τ1+u) are as close as we need to the
original constants l∗, l∗ and w∗ of the train track τ = τ1. The constants w∗(τ1+u)
and ǫ(τ1+u) = δ(τ1+u) from the proof of Theorem 1.1 depend continuously on
l∗(τ1+u), l∗(τ1+u) and w∗(τ1+u). Thus they depend continuously on u and are
bounded away from 0 for u small enough. Then the proof of Theorem 1.1 applies
to each β1+w to obtain an injective map map for |w| small enough where the bound
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on |Im(w)| is obtained from Theorem 1.1. It is clear that when w = 0, we have
f(1+0) = id.

Finally, we fix z ∈ ∂∞H2 and consider w 7→ f(1+w)(z). Bonahon [3] proved
that the shear-bend map is holomorphic in the transverse cocyle when restricted
to a single plaque of λ̃′. Since the endpoints of the plaques are dense in ∂∞H, it
follows that w 7→ f(1+w)(z) is holomorphic in w for z in a dense subset of ∂∞H. By
the lambda lemma, this is enough to claim that f(1+w) extends to a holomorphic

motion of ∂∞H2 for w in the described neighborhood of 0 ∈ C. �
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