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1. Introduction

This paper is part of a project which undertakes to study Teichmüller spaces of
hyperbolic surfaces with infinite area using Liouville currents. Liouville currents
have been a useful tool in the theory of Teichmüller spaces of hyperbolic surfaces
with finite area. They were introduced by Bonahon [6] to give a more natural
description of Thurston’s boundary to the Teichmüller space of a finite surface.
Given a Liouville current, it is possible to recover almost all information on the
corresponding point in the Teichmüller space. For instance, Otal [13] uses Liouville
currents to show that the marked length spectrum of a negatively curved surface
determines its metric up to isotopy.

While the results of Bonahon [6] offer a better understanding of the geometry of
Teichmüller spaces of finite surfaces, they have yet to be extended to Teichmüller
spaces of infinite surfaces. The straightforward application of Liouville currents to
infinite surfaces is not possible because Teichmüller spaces of infinite-type surfaces
are infinite-dimensional.

In this paper, we analyze variations of Liouville currents as we vary points in
the Teichmüller space. It turns out that derivatives of Liouville currents are Hölder
distributions. In order to prove this we introduce a new topology on the space of
Hölder distributions. When restricted to measures, the new topology is different
from the standard weak* topology used by Bonahon [6]. In a related paper [15],
the author uses the new topology to propose a Thurston-type boundary for the
Teichmüller space of an infinite surface. The existence of such boundary is known
only for Teichmüller spaces of finite surfaces [9].

Consider an infinite surface X, in other words X is a Riemann surface whose
universal covering X̃ is conformally equivalent to the hyperbolic plane H2 and
which has infinite hyperbolic area. An important example is X = H2. A Liouville
current is a covering group invariant measure on the space G(X̃) of geodesics in
the universal covering X̃. The Liouville map

L : T (X) → {measures on G(X̃)}
is defined by L : m 7→ Lm where m ∈ T (X) and Lm is the Liouville current
corresponding to the class of hyperbolic metrics m. The topology on the Teichmüller
space T (X) comes from its structure as a complex Banach manifold. In the paper
[15], one of the key points was to identify a natural topology on the space of
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measures on G(X̃) for which the Liouville map is a topological embedding. When X
is a finite surface, such a topology is the classical weak* topology, but its definition
is more elaborate for an infinite surface. The construction of the natural topology
on the space of measures on G(X̃) is directly inspired by the results of the current
paper.

We investigate the differentiability of the Liouville map L. The space of geodesics
G(X̃) is a topological object associated to T (X). It has no differentiable structure,
but it has a preferred class of Hölder equivalent metrics. The class of metrics allows
us to define Hölder continuous functions on G(X̃). The space of Hölder distributions
H(X̃) is the dual to the space of Hölder continuous functions with compact supports
in G(X̃). The space of all measures on G(X̃) embeds, via integration, into H(X̃).
The space H(X) consists of all Hölder distributions in H(X̃) which are invariant
under the covering group.

We introduce a topological vector space structure on H(X̃). We fix one metric in
the preferred class of Hölder equivalent metrics on G(X̃). For the fixed metric and
for the given ν, 0 < ν ≤ 1, we introduce the space Hν(X̃) of Hölder distributions on
ν-Hölder continuous functions with compact supports in G(X̃). The space Hν(X̃)
is a Banach space for ν-norm ‖ · ‖ν , given by

‖W‖ν = sup
(ϕ,Q)∈test(ν)

|W (ϕ)|

where W ∈ Hν(X̃) and test(ν) is the space of ν-test functions. By our definitions
H(X̃) = ∩0<ν≤1Hν(X̃) and consequently H(X̃) ⊂ Hν(X̃) for each ν, 0 < ν ≤ 1.
Thus, the space H(X̃) inherits the family of ν-norms ‖ · ‖ν , 0 < ν ≤ 1, and H(X̃)
is incomplete for any ‖ · ‖ν . However, if we endow H(X̃) with the topology coming
from the family of ν-norms ‖·‖ν , 0 < ν ≤ 1, then H(X̃) is a Fréchet space. In other
words, H(X̃) is a metrizable, complete topological vector space with a translation
invariant metric and with a convex local base. The space H(X) as a subspace of
H(X̃) is also a Fréchet space.

We show the differentiability of L in the Fréchet sense.

Theorem 1. The Liouville map L : T (X) → H(X) has a tangent map at each

m0 ∈ T (X). Namely, there is a continuous linear map

Tm0L : Tm0T (X) → H(X)

such that, if B : A → T (X) is a chart locally modelling T (X) on a Banach space

and if B(q0) = m0, then

L ◦ B(q0 + h) = L ◦ B(q0) + Tm0L ◦ Tq0B(h) + o(h)

with limh→0
o(h)
‖h‖ = 0 in H(X). The tangent map varies continuously with m0 ∈

T (X).

In particular, if t 7→ mt, t ∈ (−ε, ε), is a differentiable curve in T (X) with the
tangent vector v ∈ Tm0T (X) at t = 0, and if ϕ is a Hölder continuous function with
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compact support, then the derivative d
dt

∫
G(X̃)

ϕdLmt |t=0 exists and it is equal to
Tm0L(v). The Hölder continuity of ϕ is here crucial.

We also establish an explicit formula for the tangent map Tm0L. To do so, we fix
an identification (X̃, m0) ∼= H2. Then G(X̃) ∼= R̂× R̂−∆ where ∆ is the diagonal
of R̂× R̂. We realize the tangent vector v ∈ Tm0T (X) by a Beltrami differential λ

on (X̃, m0) ∼= H2.

Theorem 2. If t 7→ mt, t ∈ (−ε, ε), is a differentiable curve in T (X) with the

tangent vector v ∈ Tm0T (X) at t = 0, and if ϕ : G(X̃) → R is a Hölder continuous

function with compact support then

Tm0L(v)(ϕ) =
d

dt
Lmt

(ϕ)
∣∣∣
t=0

= − 2
π

Re

∫

H2
λ(ζ)

[ ∫

G(H2)

ϕ(x, y)
(ζ − x)2(ζ − y)2

dxdy
]
dξdη,

where ζ = ξ+iη and the vector v ∈ Tm0T (X) is realized by the Beltrami differential
λ on H2 ∼= (X̃, m0).

For finite surfaces, Theorem 1 was proved by Bonahon and Sözen [8]. They also
gave a representation of the tangent map in terms of shear coordinates for T (X).
A key ingredient in their proof is a Poincaré series argument which does not extend
to infinite surfaces. We consequently have to develop new techniques to deal with
infinite surfaces. Our method has the advantage of simultaneously proving the
differentiability for all surfaces, finite and infinite. Also, our approach is coordinate
independent.

The paper is organized as follows. In section 2 we give necessary background
on Teichmüller theory. In section 3 we introduce the space of Hölder distributions
and give it a Fréchet space structure. In section 4 we define the Liouville map. In
section 5 we prove Theorem 1 and Theorem 2.

2. Teichmüller Theory

Let X denote a Riemann surface with the universal covering X̃ conformally
equivalent to the hyperbolic plane H2. A Riemann surface is of finite type if it is
compact, or if it is compact with finitely many points removed, and it is of infinite
type otherwise. The Teichmüller theory is different in the finite and in the infinite
case. In the finite case the Teichmüller space is finite-dimensional, and in the non-
finite case the Teichmüller space is infinite-dimensional. Our methods work in both
cases.

We fix an isometric identification of the universal covering X̃ with the hyperbolic
plane H2. The fundamental group π1(X) is then identified with a Fuchsian group
Γ, and the identification X̃ ∼= H2 induces an isometry X ∼= H2/Γ. The Teichmüller
space T (X) of the Riemann surface X is the space of equivalence classes [f ] of
quasiconformal maps f : H2 → H2 such that fΓf−1 = Γf is a Fuchsian group.
The boundary of the hyperbolic plane ∂∞H2 is identified with R̂ = R ∪ {∞}. Two
such maps f1 and f2 are equivalent if f1|R̂ = Θ ◦ f2|R̂ for some Möbius map Θ. A
quasiconformal map f which conjugates Γ to another Fuchsian group is said to be
Γ-invariant.
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A Beltrami differential µ on an open set Ω ⊂ C is a measurable function on Ω
with ‖µ‖∞ < ∞. A Beltrami coefficient µ on an open set Ω ⊂ C is a measurable
function on Ω with ‖µ‖∞ < 1. To any quasiconformal map f of H2 is associated a
Beltrami coefficient µ defined by the Beltrami equation fz = µfz. If f is Γ-invariant
then

(1) µ(γ(z))
γ′(z)
γ(z)

= µ(z)

for all γ ∈ Γ and for all z ∈ H2. Conversely, given a Beltrami coefficient µ which
satisfies (1), there exists a unique quasiconformal map fµ : H2 → H2 which is onto,
and which satisfies the Beltrami equation with the given µ, and which fixes 0, 1
and ∞. Such quasiconformal map fµ conjugates Γ onto another Fuchsian group
Γfµ . Any other quasiconformal map H2 → H2 with the same Beltrami coefficient
µ but which does not fix 0, 1 and ∞ differs from fµ by postcomposition with a
Möbius map. More details on quasiconformal maps can be found in [1], [11] and
[12], among others.

Let M(Γ) be the space of all Beltrami coefficients onH2 which satisfy (1). Solving
the Beltrami equation for each µ ∈ M(Γ) and taking the equivalence class of the
solution, we obtain a continuous map from M(Γ) onto T (X). The solution to the
Beltrami equation in the most general form was given by Ahlfors and Bers (see [3]
and [1]). For more on the Teichmüller theory see, for example, [1], [11], [2], etc.

The Teichmüller space T (X) is a complex Banach manifold. The manifold struc-
ture was given by Bers [5] in the following way.

The space B(Γ) of holomorphic quadratic differentials for Γ consists of all holo-
morphic functions q in the lower half plane H2

− which satisfy q ◦ γ(z)γ
′
(z)2 = q(z)

for all z ∈ H2
− and for all γ ∈ Γ, and define ‖q‖B(Γ) := ‖q(z)y2‖∞ < ∞ where

y = Im(z).
Fix µ ∈ M(Γ). Define a Beltrami coefficient µ̃ on C by µ̃(z) = µ(z) for z ∈ H2

and µ̃(z) = 0 for z ∈ H2
−. Solve the Beltrami equation for µ̃ in C. The solution fµ

which fixes 0, 1 and ∞ is conformal in the lower half plane H2
− because its Beltrami

coefficient is 0 on H2
−. We form the Schwarzian derivative of fµ

S(fµ)(z) = qµ(z) :=
f
′′′
µ (z)
f ′µ(z)

− 3
2

(f
′′
µ (z)

f ′µ(z)

)2

for z ∈ H2
−.

Bers defined map B̃−1 : M(Γ) → B(Γ) by B̃−1(µ) = qµ, and showed that
B̃−1(µ1) = B̃−1(µ2) if and only if [fµ1 ] = [fµ2 ]. Thus B̃−1 factors through a map
B−1 from T (X) to B(Γ), which is an embedding onto an open bounded subset A
of B(Γ). The map B−1 is consistent with a Banach manifold structure on T (X),
namely B−1 is a single chart for T (X).

Ahlfors and Weil defined a mapping from B(Γ) to Beltrami differentials on H2

which satisfy (1) by

(2) AW(q) = −2y2q(z)

for q ∈ B(Γ). Beltrami differentials λ in the image of AW are called harmonic
Beltrami differentials. Note that

(3) ‖q‖B(Γ) =
1
2
‖λ‖∞
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for λ = AW(q). By (3), if ‖q‖B(Γ) < 1
2 then AW(q) = λ ∈ M(Γ), in other words λ

is a Beltrami coefficient on H2 which satisfy (1). Ahlfors and Weil proved (see [4],
[1] or [11]) that

S(fλ) = q

for all q with ‖q‖B(Γ) < 2 where λ = AW(q). Thus the inverse image B of B−1 on
the neighborhood {q; ‖q‖B(Γ) < 1

2} of 0 ∈ B(Γ) is given by

(4) B(q) = [fλ]

where λ = AW(q).
To describe the tangent space of T (X), we consider a one parameter family of

Beltrami coefficients µ + tλ ∈ M(Γ). The equivalence classes [fµ+tλ] of the one
parameter family of solutions fµ+tλ to the Beltrami equations with coefficients
µ + tλ gives a path in T (X). For a fixed z ∈ C, the map fµ+tλ(z) is differentiable
in t. Its derivative ḟµ[λ](z) := d

dtf
µ+tλ(z)|t=0 represents a tangent vector at the

point [fµ] ∈ T (X).
A Beltrami differential λ on fµ(X) is a measurable function on H2 with ‖λ‖∞ <

∞ which satisfies

λ ◦ γ(z)
γ′(z)
γ′(z)

= λ(z)

for all γ ∈ Γfµ and for all z ∈ H2. The space of tangent vectors at [fµ] ∈ T (X)
can be identified with the space of equivalence classes of Beltrami differentials on
fµ(H2) = H2. Two Beltrami differentials λ1 and λ2 are equivalent (λ1 ∼ λ2) if

ḟµ[λ1](z) = ḟµ[λ2](z)

for all z ∈ R̂. We denote by λ/ ∼ the equivalence class of a Beltrami differential λ.
The image of the path [fµ+tλ] in the chart B−1 is a differentiable path through

the point B−1([fµ]) = qµ. The tangent vector at qµ to the path B−1([fµ+tλ]) is
a holomorphic quadratic differential qλ

µ ∈ B(Γ) and it maps to the tangent vector
λ/ ∼ at [fµ] under the tangent map TqµB.

By (2) and (4) we get
B(tq) = [f tλ]

for λ = AW(q). Thus the tangent map T0B at the base point 0 ∈ B(Γ) is given by

(5) T0B(q) = AW(q)/ ∼
for q ∈ B(Γ).

Any K-quasiconformal mapping f of Ĉ is 1
K -Hölder continuous, i.e.

(6) k(f(z1), f(z2)) ≤ C[k(z1, z2)]
1
K

for every z1, z2 ∈ Ĉ, where C is a constant and k is a Riemannian metric on the
sphere Ĉ. We say that a family of K-quasiconformal maps is uniformly Hölder
continuous if (6) holds for all mappings in the family with the fixed constant
C > 0 and with the fixed metric k. There is a useful criteria for a family of
K-quasiconformal mappings to be uniformly Hölder continuous. Namely, a family
of K-quasiconformal mappings is uniformly Hölder continuous if and only if there
exist three points z1, z2, z3 ∈ Ĉ and constant C1 > 0 such that k(f(zi), f(zj)) ≥ C1

for all mappings f in the family (see [12]).
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3. Hölder Distributions

We define an angle metric on the boundary ∂∞X̃ ∼= R̂ of the universal cover
X̃ ∼= H2. Fix a base point x̃1 ∈ X̃. The angle distance between b̃1, b̃2 ∈ ∂∞X̃ ∼= R̂
is the angle at x̃1 between the hyperbolic geodesic rays connecting x̃1 to b̃1 and b̃2.

In general, given any set M with two metrics ρ1 and ρ2 on it, we say that ρ1 is
Hölder equivalent to ρ2 if there exists C > 0 and ν, 0 < ν ≤ 1, such that

1
C

ρ1(x, y)
1
ν ≤ ρ2(x, y) ≤ Cρ1(x, y)ν

for all x, y ∈ M . If ν = 1 in the above inequality, then we say that ρ1 is Lipschitz
equivalent to ρ2.

The angle metric on the boundary ∂∞X̃ depends on the choice of x̃1 ∈ X̃.
Two different choices give Lipschitz equivalent metrics. But this is not the end of
ambiguities. Since we are interested in the Teichmüller space T (X) we also change
the hyperbolic metric on X such that the identity map on X is quasiconformal.
We can identify boundaries of universal coverings for different hyperbolic metrics
m1 and m2, ∂∞(X̃,m1) ∼= ∂∞(X̃, m2) ≡ R̂. The identifying map is Hölder bi-
continuous with respect to the angle metrics for different hyperbolic metrics. This
follows from the fact that quasiconformal maps of H2 extend to quasisymmetric
maps of R̂. Both classes of maps are Hölder continuous (see [1] or [12]). For this
reason, we consider X̃ ∼= H2 with class of metrics on ∂∞(X̃) ∼= ∂∞H2 = R̂ which are
Hölder equivalent to the standard angle metric, where the standard angle metric
on R̂ is the one corresponding to the choice of base point i ∈ H2.

By the above identifications, the space of oriented geodesics G(X̃) in X̃ is iden-
tified with R̂× R̂−∆ ∼= G(H2). Let d be the product metric on R̂× R̂−∆ coming
from the standard angle metric on R̂. We consider the class of all metrics d1 which
are Hölder equivalent to d, i.e. for each d1 there exists C > 0 and ν, 0 < ν ≤ 1,
such that

1
C

d1((x, y), (x1, y1))
1
ν ≤ d((x, y), (x1, y1)) ≤ Cd1((x, y), (x1, y1))ν

for all (x, y), (x1, y1) ∈ R̂× R̂−∆.
A function ϕ : G(X̃) → R is Hölder continuous with respect to metric d if there

exists C > 0 and ν, 0 < ν ≤ 1, such that

|ϕ(x, y)− ϕ(x1, y1)| ≤ Cd((x, y), (x1, y1))ν

for all (x, y), (x1, y1) ∈ G(X̃). If we want to specify the Hölder exponent of ϕ then
we say that ϕ is ν-Hölder continuous function.

For the standard metric d in the above class, we consider the space H(X̃) of all
Hölder continuous functions ϕ : G(X̃) → R with compact support. Since in our
class of metrics any other metric d1 is Hölder equivalent to d, it follows that any
ϕ ∈ H(X̃) is also Hölder continuous for any d1 in our class. Thus the space H(X̃)
is an invariant for the above class of metrics. The idea of considering such space
and linear functionals on it is due to Bonahon [7].
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We fix the standard metric d. If ϕ is a ν-Hölder continuous function with compact
support, then the ν-norm of ϕ is given by

‖ϕ‖ν = max{max
(x,y)

|ϕ((x, y))|,

sup
(x,y)6=(x1,y1)

|ϕ(x, y)− ϕ(x1, y1)|d((x, y), (x1, y1))−ν}

where (x, y), (x1, y1) ∈ R̂× R̂−∆.
The set test(ν) consists of all pairs (ϕ,Q) where

Q = [a, b]× [c, d]

with
(a− c)(b− d)
(a− d)(b− c)

= 2

and ϕ is a ν-Hölder continuous function with respect to d whose support is in Q
such that

‖ϕ ◦ΘQ‖ν ≤ 1,

where ΘQ is a Möbius transformation which maps −2, −1, 1 and 2 onto a, b, c
and d, respectively. Note that the existence of such ΘQ follows from the condition
(a−c)(b−d)
(a−d)(b−c) = 2.

We are ready to define our main object H(X̃) and a family of ν-norms on it
using test(ν). The set H(X̃) consists of all real linear functionals W on the vector
space H(X̃) such that sup(ϕ,Q)∈test(ν) |W (ϕ)| < ∞ for each ν with 0 < ν ≤ 1.

Further, the set H(X) consists of all Γ-invariant W ∈ H(X̃), namely W (ϕ◦γ) =
W (ϕ) for all γ ∈ Γ and for all ϕ ∈ H(X̃).

We fix ν and denote by Hν(X̃) the vector space of all functions in H(X̃) which
are ν-Hölder continuous. The space Hν(X̃) consists of all real linear functionals
W on Hν(X̃) such that sup(ϕ,Q)∈test(ν) |W (ϕ)| < ∞. We introduce the ν-norm on
Hν(X̃) by

(7) ‖W‖ν = sup
(ϕ,Q)∈test(ν)

|W (ϕ)|

for W ∈ Hν(X̃). The ν-norm is a norm on Hν(X̃) because any ϕ ∈ Hν(X̃) can be
written as a finite linear combination of functions in test(ν). It is not hard to see
that Hν(X̃) is a Banach space for the ν-norm.

The space Hν(X) consists of all functionals in Hν(X̃) which are Γ-invariant and
Hν(X) is also a Banach space for the ν-norm.

Assume ν
′
> ν. Any ν

′
-Hölder continuous function with compact support is ν-

Hölder continuous. Thus we have the inclusion Hν
′
(X̃) ⊂ Hν(X̃). For ϕ ∈ Hν

′
(X̃),

we get

(8) ‖ϕ‖ν ≤ Dν
′−ν‖ϕ‖ν′

where D is the diameter of the support of ϕ.
If (ϕ,Q) ∈ test(ν

′
) then the diameter of the support of ϕ ◦ΘQ is π

2 and by (8)

(9) test(ν
′
) ⊂

(π

2

)ν
′−ν

test(ν).
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Thus all linear functionals W ∈ Hν(X̃) restrict to functionals in Hν
′
(X̃). Using

convolutions it is easy to show that Hν
′
(X̃) is dense in Hν(X̃) for the ν-norm.

Consequently, the map Hν(X̃) → Hν
′
(X̃) obtained by the restriction of W ∈

Hν(X̃) to its action on Hν
′
(X̃) is one to one. We get the inclusion Hν(X̃) ⊂

Hν
′
(X̃). Then H(X̃) = ∩0<ν≤1Hν(X̃) and H(X) = ∩0<ν≤1Hν(X).

The restriction of W ∈ H(X̃) to the space Hν(X̃) gives inclusion H(X̃) ⊂
Hν(X̃). By the existence of this inclusion, the space H(X̃) has the ν-norm on it.
The topology on H(X̃) is the coarsest topology which makes ν-norms, 0 < ν ≤ 1,
continuous. The vector space H(X̃) is a complete topological vector space for this
topology. The topology on H(X) is the subspace topology with respect to H(X̃)
and H(X) is a complete topological vector space.

By (9), for ν
′
> ν, we conclude that

{W ∈ H(X); ‖W‖ν′ < ε} ⊃ {W ∈ H(X); ‖W‖ν <
(π

2

)−ν
′
+ν

ε}.

Thus, the family of 1
n -norms, for n = 1, 2, 3, . . ., gives the same topology on H(X)

as the family of all ν-norms with 0 < ν ≤ 1. This implies that H(X) is metrizable,
complete topological vector space. Further, the ν-norms give convex local basis.
Thus H(X) is a Fréchet space (see [14]).

A positive Radon measure α on G(X̃) defines a real linear functional on H(X̃).
For ϕ ∈ H(X̃), we set α(ϕ) =

∫
G(X̃)

ϕdα. We say that a measure α is bounded
if supα([a, b] × [c, d]) < ∞ where the supremum is over all [a, b] × [c, d] with
(a−c)(b−d)
(a−d)(b−c) = 2. If α is bounded then α ∈ H(X̃). In this case

‖α‖ν ≤ supα([a, b]× [c, d])

where the supremum is over all [a, b]× [c, d] with (a−c)(b−d)
(a−d)(b−c) = 2. If, in addition, α

is Γ-invariant then α ∈ H(X).

4. The Liouville Map

For [f ] ∈ T (X), we define the Liouville measure of [a, b]× [c, d] as

L[f ]([a, b]× [c, d]) = log
(f(a)− f(c))(f(b)− f(d))
(f(a)− f(d))(f(b)− f(c))

.

By continuity, we can set L[f ]({a} × [c, d]) = L[f ]([a, b] × {c}) = 0. The quantity
L[f ] can be extended to a positive Radon measure on G(X̃). To see this, we recall
that an elementary computation (see Bonahon [6]) gives

L[id]([a, b]× [c, d]) =
∫

[a,b]×[c,d]

dxdy

(x− y)2
.

We define the extension of L[id] to be the measure with the density dxdy
(x−y)2 . Since

L[f ]([a, b]× [c, d]) = L[id]([f(a), f(b)]× [f(c), f(d)]) we define

L[f ](A) =
∫

f(A)

dxdy

(x− y)2

for any Borel set A ⊂ G(X̃).
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Further, the measure L[f ] is bounded because f is quasiconformal (see [1] or
[12]), and it is Γ-invariant because f is Γ-invariant. We define the Liouville map

L : T (X) → H(X)

by
L([f ]) = L[f ].

Recall that the cross-ratio of a quadruple (a, b, c, d) of points in R̂ is given by

cr(a, b, c, d) =
(a− c)(b− d)
(a− d)(b− c)

.

Note that, for the base point [id] of T (X), L[id] is the logarithm of the cross-ratio.

5. Differentiability

The Liouville map L : T (X) → H(X) maps the possibly infinite-dimensional
Banach manifold T (X) to the topological vector space H(X), equipped with the
family of ν-norms (7) for 0 < ν ≤ 1. For a fixed ν, we consider the Banach
space Hν(X), which contains H(X), and we use the same letter L to denote the
extension L : T (X) → Hν(X). We consider the differentiability of L for each ν
with 0 < ν ≤ 1.

As we noted in Section 2, the Bers map B : A → T (X), where A is a bounded
neighborhood of 0 in B(Γ), gives a global chart for T (X). We want to construct
a linear map T[f ]L : T[f ]T (X) → Hν(X) such that, if q = B−1([f ]) ∈ A, the map
T[f ]L ◦ TqB : B(Γ) → Hν(X) is continuous and

(10) lim
q1→q

‖L ◦ B(q1)− L ◦ B(q)− T[f ]L ◦ TqB(q1 − q)‖ν

‖q1 − q‖B(Γ)
= 0.

We begin with the following:
Special Case: [f ] = [id]

Let [f tλ] be a variation at [id], where λ is a harmonic Beltrami differential. Let
αt = L([f tλ]). To prove the special case, it suffices to prove that T[id]L is linear,
and T[id]L ◦ T0B is continuous, and

(11) lim
q→0

‖L ◦ B(q)− L ◦ B(0)− T[id]L ◦ T0B(q)‖ν

‖q‖B(Γ)
= 0.

By (3) and by (5), to show that T[id]L ◦ T0B is continuous it is enough to show
that

(12) ‖T[id]L(λ/ ∼)‖ν ≤ C‖λ‖∞
for fixed constant C and for any harmonic Beltrami differential λ.

Let qtλ = B−1(tλ) with λ harmonic. Since λ is harmonic, tλ is harmonic and
consequently, AW(qtλ) = tλ. Then T0B(qtλ) = tλ/ ∼ by (5). By (3) and above we
get

(13) ‖tλ‖∞ = 2‖qtλ‖B(Γ).

We replace ‖qtλ‖B(Γ) with |t| · ‖λ‖∞ in (11). By the definition of map L, by (13)
and by (5), to show (11) it suffices to show that

(14) lim
t→0

sup
ϕ∈test(ν)

∣∣∣
∫

ϕdαt −
∫

ϕdα0 − tT[id]L(λ/ ∼)(ϕ)
t‖λ‖∞

∣∣∣ = 0
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uniformly in λ as long as ‖λ‖∞ is bounded.
To begin, we prove the differentiability of

∫
ϕdαt in t.

Lemma 5.1. Let [f tλ] ∈ T (X) be a variation at [id], where λ is a harmonic Bel-

trami differential. Let αt = L([f tλ]). Then there is a W ∈ Hν(X) such that

d

dt

∫
ϕdαt|t=0 = W (ϕ)

for all (ϕ,Q) ∈ test(ν).
Proof. Fix (ϕ,Q) ∈ test(ν). Let Θt be the Möbius mapping such that Θt◦f tλ◦ΘQ

fixes 0, 1 and ∞.
On [−2,−1]× [1, 2] the standard metric d1 is Lipschitz equivalent to the metric

in which the distance between (x, y) and (x1, y1) is equal to max{|x−x1|, |y− y1|}.
Thus, in our arguments, we can replace d with such.

We remind the reader that fµ stands for the unique quasiconformal map H2 →
H2 with Beltrami coefficient µ and which fixes 0, 1 and ∞. If we replace f tλ with
Θt ◦ f tλ ◦ ΘQ the Beltrami coefficient of Θt ◦ f tλ ◦ ΘQ is tλ

′
, where λ

′
(ζ) := λ ◦

ΘQ(ζ)
Θ
′
Q(ζ)

Θ
′
Q(ζ)

for ζ ∈ H2 by the chain rule. Then ‖λ‖∞ = ‖λ′‖∞ and Θt ◦f tλ ◦ΘQ =

f tλ
′

by uniqueness of the solution to the Beltrami equation.
Let us divide [−2,−1] into 2n equal size intervals [ai−1, ai], for i = 1, 2, 3, . . . , 2n.

Namely a0 = −2, a2n = −1 and ai = −2 + i
2n . Divide [1, 2] into 2n equal size

intervals [cj−1, cj ], for j = 1, 2, 3, . . . , 2n. Here c0 = 1, c2n = 2 and cj = 1 + j
2n .

This defines 4n boxes Ei,j = [ai−1, ai] × [cj−1, cj ] for i, j = 1, 2, 3, . . . , 2n. The
union of all the Ei,j is equal to [−2,−1] × [1, 2], and each pairwise intersection of
two Ei,j either is empty or is {ai} × [cj−1, cj ] or is [ai−1, ai]× {cj}. In particular,
the intersection of two distinct Ei,j has zero mass for the Liouville measure L

[ftλ
′
]
.

Define a step function approximation (ϕn, Q) to the function (ϕ,Q) by setting
ϕn ◦ΘQ =

∑2n

i,j=1 pi,jχEi,j , where pi,j = (ϕ ◦ΘQ)(xi, yj) for an arbitrary geodesic
(xi, yj) ∈ Ei,j , and where χEi,j denotes the characteristic function of Ei,j . Note
that ϕn is not defined on a set of measure zero (the pairwise intersections of the
Ei,j), which is not important for the integration. Let the measure βt = (ΘQ)∗(αt)
be the pull back of αt by ΘQ. Then by change of variable we get

∫
ϕdαt−

∫
ϕndαt =∫

ϕ ◦ΘQdβt −
∫

ϕn ◦ΘQdβt.

We want to prove that d
dt

∫
ϕdαt exists. Recall that the derivative d

dtf
tλ
′
(z)

exists, for t such that ‖tλ′‖∞ < 1 and for each fixed z ∈ C. By the definition of βt

and by the invariance of the cross ratio with respect to Möbius transformations,

βt(Ei,j) = log
[f tλ

′
(ai−1)− f tλ

′
(cj−1)][f tλ

′
(ai)− f tλ

′
(cj)]

[f tλ′ (ai−1)− f tλ′ (cj)][f tλ′ (ai)− f tλ′ (cj−1)]
.

Thus the derivative d
dtβt(Ei,j) exists because βt(Ei,j) is the composition of differ-

entiable functions. Consequently, each
∫

ϕndαt is differentiable and

d

dt

∫
ϕndαt =

2n∑

i,j=1

pi,j
d

dt
βt(Ei,j).
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We form the series
∫

ϕ1dαt +
∞∑

n=1

[ ∫
ϕn+1dαt −

∫
ϕndαt

]

and note that its n-th partial sum is
∫

ϕndαt. Using the above change of variable
and the fact that ϕ is ν-Hölder continuous we obtain

∣∣∣
∫

ϕdαt −
∫

ϕndαt

∣∣∣ ≤
2n∑

i,j=1

sup
(x,y)∈Ei,j

|ϕ ◦ΘQ(x, y)− pi,j |βt(Ei,j) ≤

1
2nν

βt([−2,−1]× [1, 2]) =
1

2nν
αt([a, b]× [c, d]).

(15)

Thus
∫

ϕndαt converges to
∫

ϕdαt as n →∞. By a familiar theorem from calculus,
to show that d

dt

∫
ϕdαt|t=0 exists it is enough to show that the series

(16)
d

dt

∫
ϕ1dαt +

∞∑
n=1

[ d

dt

∫
ϕn+1dαt − d

dt

∫
ϕndαt

]

converges uniformly for t in a small neighborhood of 0.
For this purpose we use the infinitesimal Teichmüller theory. Define ḟµ[λ](z) =

d
dtf

µ+tλ(z)|t=0 and ḟ [λ](z) = d
dtf

tλ(z)|t=0. We recall a formula of Ahlfors [2]

(17) ḟµ[λ] = ḟ [Lµλ] ◦ fµ

where

Lµλ =
{

λ
(fµ

z )2

|fµ
z |2 − |fµ

z |2
}
◦ (fµ)−1.

From Wolpert’s formula [16] for the variation of the cross ratio we get

d

dt
βt(Ei,j)|t=0 =

− 2
π

Re
∫

H2
λ(ζ)

(ai−1 − ai)(cj−1 − cj)
(ζ − ai−1)(ζ − ai)(ζ − cj−1)(ζ − cj)

dξdη
(18)

where ζ = ξ + iη.
Let at

i = f tλ
′
(ai) and ct

j = f tλ
′
(cj). By (17) and (18) we get

d

dt
βt(Ei,j) =

− 2
π

Re
∫

H2
Ltλ

′
λ
′
(ζ)

(at
i−1 − at

i)(c
t
j−1 − ct

j)
(ζ − at

i−1)(ζ − at
i)(ζ − ct

j−1)(ζ − ct
j)

dξdη.
(19)

We estimate | d
dt

∫
ϕn+1dαt − d

dt

∫
ϕndαt|. By (19) and by the definition of ϕn we

get

d

dt

∫
ϕndαt = − 2

π
Re

∫

H2
Ltλ

′
λ
′
(ζ)×

2n∑

i,j=1

pi,j(at
i−1 − at

i)(c
t
j−1 − ct

j)
(ζ − at

i−1)(ζ − at
i)(ζ − ct

j−1)(ζ − ct
j)

dξdη.

(20)
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To obtain ϕn+1 from ϕn we divide each of the intervals [ai−1, ai] and [cj−1, cj ]
into two equal subintervals. For the convenience of the notation we write Ei,j =
∪4

k=1Eik,jk where Eik,jk = [a(i−1)k, aik] × [c(j−1)k, cjk] and where aik equals ai or
ai−1 or the midpoint of [ai−1, ai] and, similarly for cjk. We fix (xik, yjk) ∈ Eik,jk

and define pik,jk = ϕ(xik, yjk). Then ϕn+1 ◦ΘQ =
∑2n

i,j=1

∑4
k=1 pik,jkχEik,jk

.
Since ϕ is ν-Hölder continuous we get |pi,j − pik,jk| ≤ 1

2nν = 1

4
nν
2

. Then by (20)
we get

∣∣∣ d

dt

∫
ϕndαt − d

dt

∫
ϕn+1dαt

∣∣∣ ≤ 4n

4
nν
2
‖Ltλ

′
λ
′‖∞×

max
i,j,k

{
|(at

(i−1)k − at
ik)(ct

(j−1)k − ct
jk)|

}
×

max
i,j,k

{ ∫

H2

dξdη

|ζ − at
(i−1)k||ζ − at

ik||ζ − ct
(j−1)k||ζ − ct

jk|
}

.

(21)

For t small, the family f tλ
′

has constant of quasiconformality close to 1. Also the
family f tλ

′
fixes 0, 1 and ∞ by the definition. Thus the family f tλ

′
is uniformly

Hölder continuous with the Hölder exponent ω close to 1. Then

(22) |at
(i−1)k − at

ik||ct
(j−1)k − ct

jk| ≤
C1

4nω

for fixed constant C1.
By an elementary integration (see Gardiner-Lakic [11, section 3.4]) we get

(23)
∫

H2

dξdη

|ζ − at
(i−1)k||ζ − at

ik||ζ − ct
(j−1)k||ζ − ct

jk|
≤ C2 + C3n

for fixed constants C2 and C3. In more details, we divide the domain of the inte-
gration H2 into four sets: A1 = {ζ ∈ H2; |ζ| > R}, A2 = {ζ ∈ H2; |ζ − at

ik| ≤ 1},
A3 = {ζ ∈ H2; |ζ−ct

jk| ≤ 1} and A4 = H2−(A1∪A2∪A3), for R large. The integral
over A1 is of the order of R−2. After using the substitution (at

ik−at
(i−1)k)z = ζ−at

ik,
the integral over A2 becomes∫

|z|≤ 1
|at

ik
−at

(i−1)k
|

dxdy

|z(z − 1)| .

Using the uniform Hölder continuity of the family f tλ
′
, the above integral is less

that or equal to C̃2 + C̃3n. A similar inequality holds for the integral over A3. The
integral over A4 is of the order of R2. For fixed R > 0, we get (23).

We choose t small enough such that ν
2 + ω − 1 > 0. By (21), (22) and (23) we

get

(24)
∞∑

n=1

∣∣∣ d

dt

∫
ϕndαt − d

dt

∫
ϕn+1dαt

∣∣∣ ≤ C‖Ltλ
′
λ
′‖∞

∞∑
n=1

n

4( ν
2 +ω−1)n

for fixed constant C > 0. It follows that the series (16) converges uniformly and
absolutely for small t, and its sum is bounded by a constant independent of (ϕ,Q) ∈
test(ν). Thus the derivative d

dt

∫
ϕdαt|t=0 =: W (ϕ) exists and W ∈ Hν(X̃). Be-

cause αt is Γ-invariant, it follows that W is Γ-invariant. Thus W ∈ Hν(X). 2

In the following Lemma, we keep the notation W (ϕ) = d
dt

∫
ϕdαt|t=0, and λ

denotes a harmonic Beltrami differential.
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Lemma 5.2. The map T[id]T (X) → Hν(X) defined by T[id]L(λ/ ∼) = W is linear

and continuous. Further,

(25) lim
t→0

sup
ϕ∈test(ν)

∣∣∣
∫

ϕdαt −
∫

ϕdα0 − tW (ϕ)
t‖λ‖∞

∣∣∣ = 0

uniformly in λ as long as ‖λ‖∞ is bounded.
Proof. In the inequality (24), we put t = 0 to obtain

|T[id]L(λ/ ∼)(ϕ)| = |W (ϕ)| ≤ C‖λ‖∞
for fixed constant C > 0 and for all (ϕ,Q) ∈ test(ν). Thus T[id]L is bounded.

The Liouville map L can be approximated by a sequence of maps Ln given by

Ln([f ])(ϕ) =
∫

ϕndα

where α = L([f ]) and (ϕn, Q) is a step function approximation to (ϕ,Q) as in
Lemma 5.1. Then the maps Ln are differentiable maps of T (X) into Hν(X).

The tangent map T[id]L is linear, because it is the limit of linear maps T[id]Ln.
Again, by the same theorem from calculus as in Lemma 5.1, to show (25) it

is enough to note that the series (16) in Lemma 5.1 when divided by ‖λ‖∞ con-
verges uniformly in λ and t for ‖λ‖∞ bounded and t in a small neighborhood of 0
independently of (ϕ,Q) ∈ test(ν). That is easily seen from the inequality (24). 2

This concludes the proof that L is differentiable at the point [id].

General Case:
Let αt = L([fµ+tλ]), where [fµ+tλ] is a variation at [fµ]. Following Ahlfors [2],

we write
fµ+tλ = fρ(t) ◦ fµ

where ρ(t) = { tλ
1−µ(µ+tλ) (

fµ
z

|fµ
z | )

2} ◦ (fµ)−1. Let α
′
t = L([fρ(t)]) = L[fρ(t)]. Then

(fµ)∗α
′
t = αt where (fµ)∗α

′
t(A) = α

′
t(f

µ(A)) for any Borel set A ⊂ G(X̃). It
follows that ∫

ϕdαt =
∫

ϕ ◦ (fµ)−1dα
′
t

for (ϕ, Q) ∈ test(ν). Let Q = [a, b]×[c, d] with cr(a, b, c, d) = 2. The quasiconformal
map fµ maps any four points on R̂ with the cross ratio 2 onto four points with
the cross ratio k1 bounded from above by constant k > 2 and bounded from below
by 1 + 1

k . The constant k depends only on the quasiconformal constant of fµ (see
[12]). Then the function ϕ ◦ (fµ)−1 has its support in fµ(Q) = [fµ(a), fµ(b)] ×
[fµ(c), fµ(d)] such that

1 +
1
k
≤ cr(fµ(a), fµ(b), fµ(c), fµ(d)) ≤ k.

Denote by Θµ
Q the Möbius mapping which maps [−k1,−1] × [1, k1] onto fµ(Q)

where 1 < k1 ≤ k. Then (ΘQ)−1 ◦ (fµ)−1 ◦ Θµ
Q maps −k1, −1, 1 and k1 onto

−2, −1, 1 and 2, respectively. As we vary over all Q = [a, b]× [c, d] in G(X̃) with
cr(a, b, c, d) = 2, we obtain a family of quasiconformal maps (ΘQ)−1 ◦ (fµ)−1 ◦Θµ

Q.
The constant of quasiconformality is bounded for the whole family because it is
equal to the constant of quasiconformality for fµ. The family is normalized to
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map −1, 1 and k1 onto −1, 1 and 2, respectively, where k1 > 1 is bounded away
from 1 and ∞. The boundedness of k1 follows from the condition cr(a, b, c, d) = 2
and the fact that fµ is quasiconformal. The family {(ΘQ)−1 ◦ (fµ)−1 ◦ Θµ

Q; Q =
[a, b]× [c, d] with cr(a, b, c, d) = 2} is uniformly Hölder continuous with the Hölder
exponent ν1 (see [12]). Therefore,

‖ϕ ◦ (fµ)−1 ◦Θµ
Q‖νν1 ≤ ‖ϕ ◦ΘQ‖ν‖(ΘQ)−1 ◦ (fµ)−1 ◦Θµ

Q‖ν
ν1

.

By the above inequality ϕ ◦ (fµ)−1 ◦Θµ
Q is νν1-Hölder continuous with

‖ϕ ◦ (fµ)−1 ◦Θµ
Q‖νν1 ≤ C

where C = maxQ ‖(ΘQ)−1 ◦ (fµ)−1 ◦Θµ
Q‖ν

ν1
.

We define testµ(ν) to be the set of all (ϕ ◦ (fµ)−1, fµ(Q)) with (ϕ, Q) ∈ test(ν).
Note that the arguments in the Special Case [f ] = [id] are still valid if we replace
test(ν) by testµ(ν). It follows that L is differentiable at any [fµ] if it is differentiable
at the base point [id] of T (X). Thus general case is proved.

Remark 5.1. We point out one surprising feature of our result. A quotient space of
Zygmund bounded functions is the tangent to the Teichmüller space. The space of
Zygmund bounded functions is a subset of the space of Hölder continuous functions.
In general, the dual of a subset contains the dual of a set. Thus, it would be expected
that in order to describe the tangent space to the Teichmüller space we need the
space of Zygmund distributions which contains the space of Hölder distributions.
However, we showed that it is enough to consider Hölder distributions.

We can use estimates and techniques of Lemmas 5.1 and 5.2 to obtain an explicit
expression for the tangent map T[id]L at the base point [id] of T (X).

Lemma 5.3. The tangent map T∗L : T∗(T (X)) → Hν(X) at the base point [id] is

given by the formula

T[id]L(λ/ ∼)(ϕ) =

− 2
π

Re

∫

H2
λ(ζ)

[ ∫

G(H2)

ϕ(x, y)
(ζ − x)2(ζ − y)2

dxdy
]
dξdη

(26)

where λ is a Beltrami differential representing a tangent vector at [id], where
(ϕ,Q) ∈ test(ν), where ζ = ξ + iη ∈ H2 and where (x, y) ∈ G(H2) = R̂× R̂−∆.
Proof. Let Ei,j = [ai−1, ai]× [cj−1, cj ] be a subset of [−2,−1]× [1, 2] as in Lemma
5.1. Note that

(27)
∫

Ei,j

dxdy

(ζ − x)2(ζ − y)2
=

(ai−1 − ai)(cj−1 − cj)
(ζ − ai−1)(ζ − ai)(ζ − cj−1)(ζ − cj)

.

Then the expression under the integral in (20), for t = 0, can be written as

(28) λ
′
(ζ)

∫

[−2,−1]×[1,2]

ϕn ◦ΘQ(x, y)
(ζ − x)2(ζ − y)2

dxdy =: gn(ζ).

Further, the series
∫

H2
|g1(ζ)|dξdη +

∞∑
n=1

∫

H2
|gn+1(ζ)− gn(ζ)|dξdη
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converges by the proof of Lemma 5.1. In more details, the right hand side of (21)
is greater than

∫
H2 |gn+1(ζ)− gn(ζ)|dξdη. By the sequence of inequalities that lead

to (24) we get that the right hand side of (21) is less than the right hand side of
(24). Thus the convergence of the above series follows.

The convergence of the above series implies the convergence of the series |g1(ζ)|+∑∞
n=1 |gn+1(ζ) − gn(ζ)| in a.e. sense. The sum g̃(ζ) = |g1(ζ)| + ∑∞

n=1 |gn+1(ζ) −
gn(ζ)| is an integrable function and |gn(ζ)| ≤ g̃(ζ) for all n and almost all ζ. Note
that gn(ζ) converges to

λ
′
(ζ)

∫

[−2,−1]×[1,2]

ϕ ◦ΘQ(x, y)
(ζ − x)2(ζ − y)2

dxdy

in a.e. sense. By the Lebesgue’s dominated convergence theorem we get that∫
H2 gn(ζ)dξdη → ∫

H2 g(ζ)dξdη as n →∞.
We define

K(ζ; ai−1, ai, cj−1, cj) =
(ai−1 − ai)(cj−1 − cj)

(ζ − ai−1)(ζ − ai)(ζ − cj−1)(ζ − cj)
.

Wolpert [17] noticed that

K(ζ; ai−1, ai, cj−1, cj) = K(Θ(ζ);Θ(ai−1),

Θ(ai), Θ(cj−1), Θ(cj))
(
Θ
′
(ζ)

)2(29)

for any Möbius transformation Θ. Then by (29) and by the definition of λ
′
, we get

gn(ζ) =
[ ∫

[−2,−1]×[1,2]

ϕn(ΘQ(x, y))
[ΘQ(ζ)−ΘQ(x)][ΘQ(ζ)−ΘQ(y)]

dxdy
]
×

× λ(ΘQ(ζ))|Θ′
Q(ζ)|2.

(30)

Note that the integral in (30) does not change if we integrate over G(X̃) because
ϕn ◦ΘQ has its support in [−2,−1]× [1, 2]. By a substitution of variable (x

′
, y
′
) =

ΘQ(x, y) in the integral in (30) and above we get

gn(ζ) =
[ ∫

G(X̃)

ϕn(x
′
, y
′
)

[ΘQ(ζ)− x′ ][ΘQ(ζ)− y′ ]
dx

′
dy

′]×

× λ(ΘQ(ζ))|Θ′
Q(ζ)|2.

(31)

To obtain(26), by (31) it is enough to do a change of variable ζ
′

= ΘQ(ζ) in the
integral − 2

π Re
∫
H2 gn(ζ)dξdη and let n →∞. 2

Remark 5.2. In the integral formula (26) the change of the order of integration is
not allowed. The double integral would diverge. We also note that the proof of the
convergence of (26) strongly depends on the fact that ϕ is Hölder continuous. The
double integral in (26) does not converge if we replace ϕ by an arbitrary continuous
function with compact support. Thus the image of the tangent map T[id]L does not
contain measures on G(X̃).

Remark 5.3. Gardiner [10] defines a map from the Beltrami differentials to the
space of distributions on G(X̃). The image of the map consists of absolutely con-
tinuous measures to the Euclidean measure dxdy on G(X̃) ∼= R × R − diag. The
formulas (20) and (21) in [10] are similar to the formula in Lemma 5.3, but the
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space of test functions in [10] consists of only smooth functions. In the same pa-
per, it is described the process of inverting the map using the Bers’s reproducing
formula [5]. We note that similar process would give the inverse of T[id]L.

Using the change of the base point of T (X) as in the discussion of the differen-
tiability in the General Case, we give the tangent map at any point [fµ] ∈ T (X).
Let [fµ+tλ] be a variation at [fµ]. Then Lµλ is a Beltrami differential on fµ(X).

Proposition 5.1. The tangent map T∗L : T∗T (X) → Hν(X) at the point [fµ] is

given by the formula

T[fµ]L(Lµλ/ ∼)(ϕ) =

− 2
π

Re

∫

H2
Lµλ(ζ)

[ ∫

G(X̃)

ϕ ◦ (fµ)−1(x, y)
(ζ − x)2(ζ − y)2

dxdy
]
dξdη.2

We establish the continuity of T[fµ]L on the Teichmüller space T (X).
Lemma 5.4. The tangent map T∗L : T∗T (X) → Hν(X) varies continuously with
[f ] ∈ T (X).
Proof. By the discussion in the General Case, it is enough to show that T[f ]L varies
continuously at [id].

Let λ be a harmonic Beltrami differential. We consider variations [f tλ] and
[fµ+tλ] at [id] and at [fµ], respectively. The tangent vectors to these variations are
λ/ ∼ and Lµλ/ ∼ at [id] and at [fµ], respectively. The tangent vector Lµλ/ ∼ is
the parallel translation of λ/ ∼ on T∗T (X). To prove that T[f ]L varies continuously
at [id] it is enough to prove that ‖T[id]L(λ/ ∼)−T[fµ]L(Lµλ/ ∼)‖ν is small for [fµ]
close to [id] independently of λ/ ∼ as long as ‖λ‖∞ is bounded.

Let (ϕ,Q) ∈ test(ν). Given n, define (ϕn, Q) ∈ test(ν) to be the step func-
tion approximation to (ϕ, Q) as in the proof of Lemma 5.1. Let αt = L([f tλ])
and let αµ

t = L([fµ+tλ]). Define βt = (ΘQ)∗(αt) and βµ
t = (ΘQ)∗(α

µ
t ). Then∫

ϕdαt =
∫

ϕ ◦ ΘQdβt and
∫

ϕdαµ
t =

∫
ϕ ◦ ΘQdβµ

t . In the proof of Lemma 5.1
we showed that d

dt

∫
ϕndαt → d

dt

∫
ϕdαt as n → ∞ uniformly in t and inde-

pendently of (ϕ, Q) ∈ test(ν). By the discussion in the General Case it is true
that d

dt

∫
ϕndαµ

t → d
dt

∫
ϕdαµ

t as n → ∞ uniformly in t and independently of
(ϕ,Q) ∈ test(ν).

In Lemma 5.2 we defined Ln([f ])(ϕ) =
∫

ϕndα where α = L([f ]). By the above
convergence,

T[id]Ln(λ/ ∼)(ϕ) → T[id]L(λ/ ∼)(ϕ)

and

T[fµ]Ln(Lµλ/ ∼)(ϕ) → T[fµ]L(Lµλ/ ∼)(ϕ)
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as n →∞ independently of (ϕ,Q) ∈ test(ν). By above and by the triangle inequal-
ity we get

∣∣∣T[id]L(λ/ ∼)(ϕ)− T[fµ]L(Lµλ/ ∼)(ϕ)
∣∣∣ ≤

∣∣∣T[id]L(λ/ ∼)(ϕ)− T[id]Ln(λ/ ∼)(ϕ)
∣∣∣+

∣∣∣T[id]Ln(λ/ ∼)(ϕ)− T[fµ]Ln(Lµλ/ ∼)(ϕ)
∣∣∣

+
∣∣∣T[fµ]Ln(Lµλ/ ∼)(ϕ)− T[fµ]L(Lµλ/ ∼)(ϕ)

∣∣∣.

(32)

To prove the lemma it is enough to show that for any n there exists a neighborhood
of [id] in T (X) which depends on n such that for [fµ] in this neighborhood

(33)
∣∣∣T[id]Ln(λ/ ∼)(ϕ)− T[fµ]Ln(Lµλ/ ∼)(ϕ)

∣∣∣

is small. To show that (33) can be made arbitrary small we estimate

(34)
∣∣∣ d

dt
βt(Ei,j)|t=0 − d

dt
βµ

t (Ei,j)|t=0

∣∣∣

where Ei,j = [ai−1, ai]× [cj−1, cj ] are defined in Lemma 5.1. Note that

d

dt
βt(Ei,j)|t=0 =

ḟ [λ](ai−1)− ḟ [λ](cj−1)
ai−1 − cj−1

−

ḟ [λ](ai−1)− ḟ [λ](cj)
ai−1 − cj

+
ḟ [λ](ai)− ḟ [λ](cj)

ai − cj
− ḟ [λ](ai)− ḟ [λ](cj−1)

ai − cj−1

and

d

dt
βµ

t (Ei,j)|t=0 =
ḟµ[λ](ai−1)− ḟµ[λ](cj−1)

fµ(ai−1)− fµ(cj−1)
− ḟµ[λ](ai−1)− ḟµ[λ](cj)

fµ(ai−1)− fµ(cj)

+
ḟµ[λ](ai)− ḟµ[λ](cj)

fµ(ai)− fµ(cj)
− ḟµ[λ](ai)− ḟµ[λ](cj−1)

fµ(ai)− fµ(cj−1)
.

To estimate (34) we estimate

(35)
∣∣∣ ḟ [λ](ai−1)− ḟ [λ](cj−1)

ai−1 − cj−1
− ḟµ[λ](ai−1)− ḟµ[λ](cj−1)

fµ(ai−1)− fµ(cj−1)

∣∣∣

and other three corresponding differences in the expressions for
d
dtβt(Ei,j)|t=0 and d

dtβ
µ
t (Ei,j)|t=0. Since fµ+tλ is an analytic function of µ and tλ

it follows that |ḟ [λ](ai−1) − ḟµ[λ](aj−1)| is small for ‖µ‖∞ small. For the same
reason |ai−1 − fµ(ai−1)| is small for ‖µ‖∞ small. Thus (35) can be made arbitrary
small for ‖µ‖∞ small independently of ai, i = 1, 2, . . . , 2n and of cj , j = 1, 2, . . . , 2n.
Then we can make (34) arbitrary small for ‖µ‖∞ small. Also, we can make (33)
small for [fµ] close enough to [id] depending on n.

Finally, to make (32) small we choose n big enough and small enough neighbor-
hood of [id] depending on n. The lemma follows. 2

Theorem 1 and Theorem 2 follow directly from Lemmas 5.1, 5.2, 5.3 and 5.4.
Acknowledgements. I would like to thank Francis Bonahon for his useful com-
ments.
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