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DRAGOMIR ŠARIĆ

Abstract. Consider a hyperbolic surface X of infinite area. The Liouville
map L assigns to any quasiconformal deformation of X a measure on the
space G(X̃) of geodesics of the universal covering X̃ of X. We show that the
Liouville map L is a homeomorphism from the Teichmüller space T (X) onto
its image, and that the image L(T (X)) is closed and unbounded. The set of
asymptotic rays to L(T (X)) consists of all bounded measured laminations on
X. Hence, the set of projective bounded measured laminations is a natural
boundary for T (X). The action of the quasiconformal mapping class group on
T (X) continuously extends to this boundary for T (X).

1. Introduction

Teichmüller spaces are studied extensively. At this point, we have a good un-
derstanding of the geometry of Teichmüller spaces of finite area hyperbolic surfaces
as well as of infinite area hyperbolic surfaces. However, little is known about the
geometry at infinity of Teichmüller spaces of infinite surfaces.

The geometry at infinity of Teichmüller spaces of finite area hyperbolic surfaces
is well-developed. Thurston [15], [7] introduced a natural boundary to Teichmüller
spaces of finite surfaces. In the case of a finite surface, Thurston’s closure of the
Teichmüller space is a compact space homeomorphic to the closed unit ball in
Euclidean space of an appropriate dimension. The action of the mapping class group
on the Teichmüller space extends continuously to an action by homeomorphisms
on Thurston’s compactification.

In this paper we study the asymptotic geometry at infinity of Teichmüller spaces
of infinite area hyperbolic surfaces. We introduce a Thurston-type boundary to
Teichmüller spaces of infinite surfaces. At present such boundary was known to
exist only for finite surfaces. The action of the mapping class group continuously
extends to Thurston-type closure of the Teichmüller space of an infinite surface,
but the closure is not compact.

The crucial ingredients in proofs of the above results for finite surfaces were
lengths of simple closed geodesics and intersection numbers. These techniques
cannot be used in Teichmüller spaces of infinite surfaces. The notion of Liouville
currents is the essential tool that allowed us to introduce a Thurston-type boundary
for Teichmüller spaces of infinite surfaces.

Liouville currents for finite surfaces were introduced by Bonahon [2]. He used
Liouville currents to give a different description of Thurston’s boundary for the
Teichmüller space of a finite surface. Liouville currents are also defined for infinite
surfaces. However, this is where the similarity between the finite and the infinite
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case stops. The infinite case requires more saddle topology on the space of Liouville
currents than the finite case. Our considerations, in a related paper [13], has led
us to such topology. Equipped with the new topology and using new techniques
adapted for the infinite case we prove the existence of a Thurston-type boundary
for infinite surfaces.

From now on, we assume that X is an infinite surface. In other words, X is a
Riemann surface which has an infinite area hyperbolic metric compatible with the
complex structure. The Teichmüller space T (X) is infinite-dimensional as opposed
to the Teichmüller space of a finite surface which is finite-dimensional. Consequently
T (X) is not locally compact and any closure of T (X) by adding points at ”infinity”
cannot be compact.

Liouville currents on X are positive measures on the space of geodesics G(X̃) of
the universal covering X̃ of X which are covering group invariant. By the definition,
the Liouville map associates to any point of T (X) a Liouville current on X. The
image of the Liouville map is contained in the space of bounded measures on G(X̃).
Bonahon [2] used classical weak* topology on the space of measures on G(X̃) for
the case of a finite surface. The fact that T (X) is locally non-compact suggests
that we need a more delicate topology on the space measures on G(X̃) when the
surface X is infinite.

In a related paper [13], we proved that the Liouville map is differentiable in the
appropriate sense. To describe the derivative of the Liouville map, we introduced
the space of Hölder distributions H(X) as follows. The space of geodesics G(X̃)
is identified to S1 × S1 − diag. The identification is not unique and any two
identifications are Hölder equivalent. Thus, S1×S1−diag comes equipped with the
family of Hölder equivalent metrics. The space H(X̃) of Hölder continuous functions
with compact supports in G(X̃) is well-defined independently of a particular metric
in the family. For a fixed metric in the family, we introduce the space test(ν) of
ν-Hölder continuous test functions, 0 < ν ≤ 1. The space H(X̃) is the dual
to H(X̃) such that W ∈ H(X̃) if sup(ϕ,Q)∈test(ν) |W (ϕ)| < ∞ for each Hölder
exponent ν, 0 < ν ≤ 1. The space H(X) of Hölder distributions for X consists
of all W ∈ H(X̃) that are covering group invariant. For a fixed ν, we introduce
the ν-norm ‖W‖ν = sup(ϕ,Q)∈test(ν) |W (ϕ)| on H(X). The family of ν-norms gives
H(X) the structure of a complete metrizable vector space. The author [13] proved
that the Liouville map

L : T (X) → H(X)
is differentiable for the topology on H(X) coming from the family of ν-norms.

The space of measures on G(X̃) embeds into H(X̃) via integration. This sug-
gested that the proper topology on the space of measures is the restriction of the
topology on H(X).

We use the family of ν-norms in analyzing global properties of the Liouville map
L. As first result, we proved that L : T (X) → H(X) is a topological embedding
whose image is closed and unbounded.

Theorem 1. The Liouville map L : T (X) → H(X) is a homeomorphism onto its
image. The image L(T (X)) of T (X) is closed and unbounded in H(X).

The space L(T (X)) has no ”new” natural boundary points in H(X) because it
is closed. On the other hand, since L(T (X)) is unbounded we can define a natural
boundary at ”infinity” to be the set of equivalence classes of ”controlled” paths



GEODESIC CURRENTS AND TEICHMÜLLER SPACE 3

that leave every bounded subset of L(T (X)). Since H(X) is a topological vector
space, we instead define a boundary of T (X) to be the set of rays asymptotic to
unbounded paths in L(T (X)). We say that a ray tW , t > 0 and W ∈ H(X), is
asymptotic to L(T (X)) if there exists a path αt ∈ L(T (X)) such that 1

t αt → β as
t →∞ in the topology of H(X). The path αt ∈ L(T (X)) asymptotically converges
to the ray tW , t > 0. The set of asymptotic rays to L(T (X)) in H(X) forms a
natural boundary for T (X).

In the next theorem we identify asymptotic rays to L(T (X)) with the space of
projective bounded measured lamination PMLb(X) of X. We define a Thurston-
type boundary for the Teichmüller space T (X) of an infinite surface X to be equal
to PMLb(X).

Theorem 2. The Teichmüller space T (X) has a Thurston-type boundary which is
equal to PMLb(X).

More precisely, if tW ∈ H(X) is an asymptotic ray to L(T (X)) then W = β for
some β ∈ MLb(X) − {0} and conversely, given β ∈ MLb(X) − {0} there exists
a path αt ∈ L(T (X)) such that 1

t αt converges to β as t → ∞ in the topology of
H(X).

We say that L(T (X)) is asymptotic to MLb(X). In order to specify the topol-
ogy on the closure T (X) ∪ PMLb(X) of the Teichmüller space T (X), we use the
projection map π from H(X)−{0} onto the unit sphere S1

ν for a fixed ν-norm. The
space L(T (X)) is homeomorphic to its image under π on the unit sphere S1

ν . To
each element of PMLb(X), there is exactly one corresponding element on S1

ν . The
topology on T (X) ∪ PMLb(X) is by the definition the induced topology from S1

ν .
We prove that the topology of the closure is independent of the chosen sphere S1

ν ,
0 < ν ≤ 1.

For a finite surface, Thurston [7] showed that the action of the mapping class
group extends continuously to the boundary of the Teichmüller space. We show
that this is also true in the infinite case.

Theorem 3. The action of the quasiconformal mapping class group QMCG(X)
extends continuously to the boundary of T (X) and each element of QCMG(X) is
a homeomorphism of the closure of T (X).

Given a bounded measured lamination β ∈ MLb(X) and [f0] ∈ T (X) there
exists an earthquake path in T (X) with the initial point [f0] and with the measure
tβ, t > 0. It is natural to expect that the endpoint of the above earthquake path is
[β] ∈ PMLb(X).

Theorem 4. Let [ft] ∈ T (X) be an earthquake path with the initial point [f0] ∈
T (X) and with the measure tβ, t > 0. Then the earthquake path [ft] converges to
[β] ∈ PMLb(X) as t →∞ in the topology of the closure of T (X).

We make a connection between going to infinity in T (X) toward a boundary
point [β] ∈ PMLb(X) and the lengths of simple closed geodesics on X that intersect
β. Namely, in Theorem 4.5 we show that if [ft] → [β] as t →∞ then the length of
simple closed geodesics on ft(X) which intersect β goes to infinity. However, the
converse is not true due to the fact that on an arbitrary X we do not have enough
simple closed geodesics.
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The paper is organized as follows. In Section 2 we introduce the space of Hölder
distributions and remind the reader about measured laminations, earthquakes and
Teichmüller spaces. In Section 3 we define the Liouville map, describe its basic
properties and prove Theorem 1. In Section 4 we define asymptotic rays to the
image of the Teichmüller space to be boundary points and give a topology for the
closure. Then we proceed to prove Theorems 2,3 and 4. In Appendix we give basic
lemmas on the distortion of the Liouville mass of a box under simple earthquakes.
These lemmas are heavily used in the proof of Corollary 4.1 which gives the second
part of Theorem 2.

2. Preliminaries

The unit disk, the complex plane and the Riemann sphere are only simply con-
nected Riemann surfaces, up to conformal equivalence. The Uniformization The-
orem states that any Riemann surface X has exactly one of the three as a holo-
morphic universal covering space. We consider only Riemann surfaces which have
the unit disk ∆ for the universal covering. The unit disk admits a canonical hyper-
bolic metric and this metric projects to the unique hyperbolic metric on X which
is compatible with the complex structure. Conversely, given a hyperbolic metric on
X there exists a complex structure on X unique up to conformal equivalence which
is compatible with the metric. A Riemann surface is finite if the unique hyperbolic
metric compatible with the complex structure has finite area. A Riemann surface
is infinite if the hyperbolic metric has infinite area.

2.1. Angle Metrics. A hyperbolic metric on a surface X lifts to a unique hyper-
bolic metric on the universal covering X̃ of X. Given a hyperbolic metric on X̃ we
define the boundary ∂∞X̃ of X̃ as follows. Fix a point x̃ ∈ X̃. The boundary ∂∞X̃
is the set of geodesic rays from x̃. It can be shown that this definition does not
depend on the choice of x̃ (see [6]). The boundary ∂∞X̃ is homeomorphic to S1

and the homeomorphism can be obtained by continuously extending an isometry
between X̃ and ∆ to their boundaries.

A geodesic for a hyperbolic metric on X̃ has two distinct endpoints on ∂∞X̃.
Conversely, given two distinct points on ∂∞X̃ there exists a unique geodesic in X̃
whose endpoints are equal to them. Thus, the space G(X̃) of oriented geodesics
in X̃ is identified with ∂∞X̃ × ∂∞X̃ − diag, where diag denotes the diagonal of
∂∞X̃ × ∂∞X̃.
Definition 2.1. Let M be any set. Let d1 and d2 be two metrics on M . Then
metric d1 is Hölder equivalent to metric d2 if there exists C > 0 and ν, 0 < ν ≤ 1,
such that

1
C

d2(x, y)−ν ≤ d1(x, y) ≤ Cd2(x, y)ν

for all x, y ∈ M . If ν = 1 in the above inequality then d1 is Lipschitz equivalent to
d2.

We define an angle metric on ∂∞X̃. Fix x̃ ∈ X̃. The distance between ã and b̃
on ∂∞X̃ is given by the angle at x̃ between the geodesic rays with the initial point x̃
and with the terminal points ã and b̃. This metric depends on the choice of x̃ ∈ X̃.
The metrics that arise from two different choices are Lipschitz equivalent.

However, there are more ambiguities in the definition of an angle metric to
consider. Let X1 be a Riemann surface and let f : X1 → X be a quasiconformal
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map. A lift f̃ : X̃1 → X̃ of f is a quasiconformal mapping and hence a quasi-
isometry for the hyperbolic metrics on X̃1 and X̃ (see [5]). Then f̃ maps geodesics
in X̃1 onto quasi-geodesics in X̃. The mapping f̃ extends to a Hölder bi-continuous
map between ∂∞X̃1 and ∂∞X̃ for the angle metrics on X̃1 and on X̃ (see [1] or
[9]).

An angle metric on ∂∞X̃ gives the product metric on G(X̃) ∼= ∂∞X̃×∂∞X̃−diag.
The lift f̃ maps G(X̃1) onto G(X̃) and it is Hölder bi-continuous for the product
metric. Thus we can identify G(X̃1) with G(X̃) if we consider the class of Hölder
equivalent product metrics to a fixed product metric on G(X̃).

From now on we fix identification X̃ ∼= ∆. Then ∂∞X̃ ∼= S1 and G(X̃) ∼=
S1 × S1 − diag. The unit circle S1 has the standard angle metric. The distance
between x, y ∈ S1 in the standard angle metric is the angle at the origin between
the radius which ends at x and the radius which ends at y. We denote by d the
standard product metric induced on S1 × S1 − diag by the standard angle metric.
Then we consider G(X̃) ≡ S1 × S1 − diag with the class of product metrics d1

which are Hölder equivalent to d.

2.2. Hölder Distributions. If a function ϕ : G(X̃) → R is Hölder continuous
with respect to one metric in the above class then it is Hölder continuous with
respect to any other metric. Therefore, the Hölder continuity of functions from
G(X̃) to R is independent of the specific metric. The space H(X̃) consists of all
Hölder continuous functions ϕ : G(X̃) → R with compact support. For a ν-Hölder
continuous function ϕ in H(X̃), in the standard product metric d, we define its
ν-norm by

‖ϕ‖ν = max{max |ϕ(x, y)|, sup |ϕ(x, y)− ϕ(x1, y1)|d((x, y), (x1, y1))−ν}

where the maximum inside the brackets is over all (x, y) in G(X̃) and where the
supremum is over all distinct (x, y), (x1, y1) ∈ G(X̃). The space Hν(X̃) consists
of all ν-Hölder continuous functions ϕ : G(X̃) → R in the metric d with compact
support. Then H(X̃) = ∪0<ν≤1H

ν(X̃).
Definition 2.2. The cross-ratio of a quadruple (a, b, c, d) is given by cr(a, b, c, d) =
(a−c)(b−d)
(a−d)(b−c) .

For our purposes it will be convenient to consider a subset of the set of Hölder
continuous functions with compact support. We consider ν-Hölder continuous func-
tions in the metric d whose support is in a box Q := [a, b] × [c, d] ⊂ G(X̃) with
cr(a, b, c, d) = 2. Let ΘQ be the Möbius transformation which maps −i, 1, i and
−1 onto a, b, c and d, respectively. Such ΘQ exists because cr(a, b, c, d) = 2.
We introduce the set of test functions test(ν) to be the set of all (ϕ,Q), where
ϕ : G(X̃) → R is a ν-Hölder continuous functions on G(X̃) whose support is in
Q = [a, b]× [c, d] with cr(a, b, c, d) = 2 and such that ‖ϕ ◦ΘQ‖ν ≤ 1.

We introduce the space H(X̃) of Hölder distribution on X̃ using test(ν). The
space H(X̃) consists of all real linear functionals W on H(X̃) such that

sup
(ϕ,Q)∈test(ν)

|W (ϕ)| < ∞
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for all 0 < ν ≤ 1. The supremum depends on the Hölder exponent ν in general.
For a fixed ν, we define ν-norm of W ∈ H(X̃) by

‖W‖ν = sup
(ϕ,Q)∈test(ν)

|W (ϕ)|.

The family of ν-norms makes H(X̃) into a topological vector space.
The space Hν(X̃) consists of all real linear functionals W on Hν(X̃) such that

‖W‖ν = sup(ϕ,Q)∈test(ν) |W (ϕ)| < ∞. The ν-norm makes Hν(X̃) into a Banach
space. By restricting the elements W ∈ H(X̃) to the space Hν(X̃) we obtain
an inclusion of H(X̃) into Hν(X̃). Further H(X̃) = ∩0<ν≤1Hν(X̃) and the space
H(X̃) is a Frechét space. The idea of introducing above spaces comes from a related
paper [13]. For the proofs of properties of these spaces see the above paper.

The action π1(X) on X̃ is by isometry. Since we fixed isometry X̃ ∼= ∆ we
identify π1(X) with a Fuchsian group Γ such that X ∼= ∆/Γ. The space H(X) of
Hölder distributions on X consists of all W ∈ H(X̃) such that W (ϕ ◦ γ) = W (ϕ)
for all γ ∈ Γ and for all ϕ ∈ H(X̃). The space Hν(X) consists of all W ∈ Hν(X̃)
such that W (ϕ◦γ) = W (ϕ) for all γ ∈ Γ and for all ϕ ∈ Hν(X̃). The space Hν(X)
is a Banach subspace of Hν(X̃) and the space H(X) is a Fréchet subspace of H(X̃).

We define the Liouville measure L on G(X̃). Let

L([a, b]× [c, d]) := log
(a− c)(b− d)
(a− d)(b− c)

= log cr(a, b, c, d)

for a box Q = [a, b]× [c, d] ⊂ G(X̃) ≡ S1 × S1 − diag and let

L({a} × [c, d]) = L([a, b]× {c}) = 0.

It is possible to extend the quantity L to a positive Radon measure on G(X̃).
Bonahon [2] showed that L is extendible to a smooth measure with the density

dαdβ
|eiα−eiβ |2 . Note that the definition of L is independent of an identification X̃ ≡ ∆
because the cross-ratio is invariant under Möbius transformations.

In the light of the definition of the Liouville measure we can define test(ν) to
consists of all (ϕ, Q) where ϕ : G(X̃) → R is ν-Hölder continuous function with
support in a box Q = [a, b]× [c, d] whose mass is log 2 with respect to the Liouville
measure and such that ‖ϕ ◦ΘQ‖ν ≤ 1.

Consider a positive Radon measure α on G(X̃). The measure α is bounded if

sup α(Q) < ∞
where the supremum is over all boxes Q = [a, b]× [c, d] ⊂ G(X̃) with L(Q) = log 2.
We introduce the norm of a bounded measure α as

‖α‖ = sup α(Q)

where the supremum is over all boxes Q = [a, b] × [c, d] with L(Q) = log 2. For
ϕ ∈ H(X̃) we define

α(ϕ) =
∫

G(X̃)

ϕdα.

It is easy to see that if α is a bounded measure then α ∈ H(X̃). Thus the space of
positive bounded measures α naturally embeds into the space of Hölder distribu-
tions H(X̃). If α is Γ-invariant then α ∈ H(X).



GEODESIC CURRENTS AND TEICHMÜLLER SPACE 7

2.3. Measured Laminations. If the support of a positive measure β on G(X̃)
consists of non-intersecting geodesics then β is called a measured lamination. For
technical reasons we require that measured laminations are invariant under the
self map of G(X̃) which changes the direction of each geodesic. The support of β
is a geodesic lamination, namely a closed set which can be written as a union of
non-intersecting geodesics. The space of all bounded measured laminations on X̃
is denoted by MLb(X̃). The space MLb(X) consists of all Γ-invariant elements
of MLb(X̃). In MLb(X̃) − {0} we define the projective equivalence relation by
λ1 ∼ λ2 if there exists t > 0 such that λ1 = tλ2. The projective class of λ is
denoted by [λ]. The set of all projective bounded measured laminations is denoted
by PMLb(X̃). The set of all projective bounded measured laminations invariant
under Γ is denoted by PMLb(X).

2.4. Teichmüller Space. Using the identification X̃ ∼= ∆ it is customary to define
the Teichmüller space T (X) as a space of all quasiconformal maps f : ∆ → ∆ such
that f ◦ γ ◦ f−1 is a Möbius transformation for all γ ∈ Γ modulo an equivalence
relation. Two such quasiconformal maps f1 and f2 are equivalent if there exists a
Möbius mapping Θ such that Θ ◦ f1|S1 = f2|S1 . We write [f ] for the equivalence
class of f .

Equivalently, we can define T (X) to be the space of all quasisymmetric maps h
of S1 fixing −i, 1 and i, and such that hγh−1 is a Möbius map for all γ ∈ Γ.

2.5. Earthquakes. Thurston [14] introduced left (and right) earthquakes. We
consider only left earthquakes. The (left) earthquake map E is a mapping from
MLb(X)×T (X) onto T (X) (see [14], [8] or [12]). The restriction of the earthquake
map to {β} × T (X) is called a left earthquake with the measure β ∈ MLb(X).
For a fixed [f ] ∈ T (X) and for a fixed β ∈ MLb(X) the image of {(tβ, [f ]) ∈
MLb(X) × T (X); t ≥ 0} under the earthquake map is called an earthquake path
with the measure tβ and with the parameter t > 0. The above earthquake path
has the initial point [f ].

An earthquake for a finite measured lamination is called a finite earthquake.
A simple earthquake is an earthquake for a measured lamination whose support
consists of only one geodesic.

We define E(β, [id]) : ∆ → ∆, where [id] ∈ T (X̃) is the base point. By taking
the restriction of E(β, [id]) to S1 we obtain a point in T (X̃). Assume first that the
support of β has finitely many geodesics {g1, g2, . . . , gn}. The connected compo-
nents of the complement of the support of β are called gaps of β. Finite measured
lamination β has finitely many gaps {G1, G2, . . . , Gk}. We fix one gap, say G1.
Finite earthquake Eβ := E(β, [id]) is the identity on this gap. For any other gap
Gj we connect it to G1 by a geodesic arc s. The arc s intersects finitely many
geodesics gji , i = 1, 2, . . . r of the support of β given in order from G1 to Gj . We
orient gji to the left as seen from G1. Denote by Aji the hyperbolic translation
with the oriented axis gji and with the translation length β(gji). Earthquake Eβ

on Gji is given by Eβ |Gji = Aj1 ◦Aj2 ◦ · · · ◦Ajr . Note that finite earthquake Eβ is
not continuously extendible to gj . To make earthquake defined on the whole ∆ we
set Eβ on gj to be equal to Eβ |Gj , where Gj is the gap adjacent to gj from the left
as seen from G1. Then Eβ : ∆ → ∆ is onto and one to one but it is not continuous.
The extension of Eβ to S1 is continuous and moreover it is a quasisymmetric map.
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We normalize Eβ by postcomposing it with a Möbius transformation such that it
fixes −i, 1 and i, and we obtain an element of T (X̃).

The earthquake Eβ := E(β, [id]) for non-finite bounded measured lamination
β is defined as the limit of finite earthquakes with finite measures approximating
non-finite measure β. By taking the Teichmüller class of a Γ-invariant extension of
Eβ |S1 we get a point in T (X).

If [f ] ∈ T (X) is not the base point [id] then we define E(β, [f ]) = f ◦E(β, [id]).
It is easy to see that E(β, [f ]) = E(f∗(β), [id]) ◦ f where f∗(β) is the push-forward
of β to f(X̃) ∼= ∆.
Definition 2.3. We say that some quantity bn is of the order an if there exists
C ≥ 1 such that

1
C

an ≤ bn ≤ Can.

3. Embedding of T (X)

In this section we define the Liouville map L : T (X) → H(X) and investigate
its global properties.

Given [f ] ∈ T (X) we construct a measure α on G(X̃). Denote by h the extension
of f to S1 and note that h is a bi-Hölder continuous map of S1 onto itself. Thus h
maps Borel sets in G(X̃) = S1 × S1 − diag onto Borel sets in G(X̃). Define

(1) α(B) = L(h(B))

for all Borel sets B ⊂ G(X̃). The measure α is called a Liouville current. By the
definition, the Liouville map L : T (X) → H(X) is given by L([f ]) = α.

Given two different [f ] and [f1] in T (X) it is easy to see that we get different
measures on G(X̃). Consequently, the Liouville map is injective.

Bonahon [2] proved that any Liouville current α = L([f ]), [f ] ∈ T (X), satisfies

(2) e−α([a,b]×[c,d]) + e−α([b,c]×[d,a]) = 1

for all boxes Q = [a, b]× [c, d] ⊂ G(X̃).
Conversely, if α is a measure which satisfies (2) then α is obtained as in (1)

from some homeomorphism h of S1 (see [2]). The homeomorphism h is unique
up to post-composition with a Möbius map. If α is a bounded measure which
satisfies (2) then h is obviously a quasisymmetric map. Consequently h extends to
a quasiconformal map f of ∆ onto itself and α is a Liouville current.
Remark 3.1. One might expect to have a bound from below to the set {α(Q); L(Q) =
log 2} in the definition of a bounded measure α in order to be able to claim that
h is quasisymmetric. But, for α obtained from some homeomorphism h of S1 as
in (1), if supα(Q) = M < ∞ then inf α(Q) = M1 > 0 where the supremum and
the infimum are over all boxes Q with L(Q) = log 2. This fact is easily proved by
considering Q = [a, b]× [c, d] and Q̃ = [b, c]× [d, a], simultaneously.

We show that f : ∆ → ∆ can be chosen to be Γ-invariant if α is Γ-invariant.
By the existence of Barycentric extension [4] it is enough to show that hγh−1 is a
Möbius map, for all γ ∈ Γ. Since α is Γ-invariant we obtain that α(γ(Q)) = α(Q)
for all boxes Q = [a, b]× [c, d] ⊂ G(X̃) and for all γ ∈ Γ. By the definition of α and
by the above invariance we get

L(hγ(Q)) = L(h(Q))
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for all boxes Q ⊂ G(X̃).
The above inequality is equivalent to

L(hγh−1(Q1)) = L(Q1)

for all boxes Q1 ⊂ G(X̃). Thus the map hγh−1 preserves the cross-ratios hence it
is a Möbius map. Consequently [f ] ∈ T (X).

We gather above results into a theorem.
Theorem 3.1. The Liouville map L : T (X) → H(X) is well-defined and one to
one. The image of T (X) consists of all bounded Γ-invariant measures α ∈ H(X)
which satisfy (2) for all boxes [a, b]× [c, d] ⊂ G(X̃). 2

We need the following technical lemma:
Lemma 3.1. Let [f0] ∈ T (X), k > 1 and ε > 0 be given and let L([f0]) = α0.
Then there exists a neighborhood N([f0]; k, ε) of [f0] in T (X) such that

|α(Q)− α0(Q)| < ε

for all α = L([f ]) with [f ] ∈ N([f0]; k, ε) and for all Q = [a, b]× [c, d] with log(1 +
1
k ) ≤ L(Q) ≤ log k.
Proof. By definition, a K-quasiconformal map f satisfies

(3)
1
K

m(a, b, c, d) ≤ m(f(a, b, c, d)) ≤ Km(a, b, c, d)

where m(a, b, c, d) is the module of the quadrilateral whose sides lie on S1 and whose
vertices are elements of (a, b, c, d), and where f(a, b, c, d) = (f(a), f(b), f(c), f(d))
(see [1] or [9]).

The module m(a, b, c, d) is a continuous function of the cross-ratio cr(a, b, c, d)
and vice versa. In particular, the cross-ratio cr(a, b, c, d) is a uniform function of
m(a, b, c, d), for m(a, b, c, d) in a compact set. Consequently, if 1+ 1

k1
≤ cr(a, b, c, d) ≤

k1 then

(4)
1

C(k1)
≤ m(a, b, c, d) ≤ C(k1)

where C(k1) is a constant depending on k1. Also m(a, b, c, d) → 0 if and only if
cr(a, b, c, d) → 1, and m(a, b, c, d) = 1 if and only if cr(a, b, c, d) = 2.

By (3) and by (4) we can choose k1 big enough such that

(5) {Q : log(1 +
1
k

) ≤ L(Q) ≤ log k} ⊆ {Q : log(1 +
1
k1

) ≤ L(f−1
0 Q) ≤ log k1}.

Let g be a (1+δ)-quasiconformal map. By (3), for δ small enough, the difference
m(g(a, b, c, d)) −m(a, b, c, d) is small for all (a, b, c, d) which satisfy (4). Thus, for
δ small enough, by the uniform continuity of cr(a, b, c, d) in m(a, b, c, d) and by (4)
we get

(6) |cr(g(a, b, c, d))− cr(a, b, c, d)| < ε

2
for all (a, b, c, d) which satisfy 1 + 1

k1
≤ cr(a, b, c, d) ≤ k1. The constant δ > 0

depends on k and ε.
We choose a neighborhood N([f0]; k, ε) of [f0] in T (X) such that [f ] ∈ N([f0]; k, ε)

if f ◦ f−1
0 is a (1 + δ)-quasiconformal. From (6) we get that

(7)
∣∣∣cr(f ◦ f−1

0 (a, b, c, d))− cr(a, b, c, d)
∣∣∣ <

ε

2
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for all a, b, c and d satisfying (4). We divide (7) with cr(a, b, c, d) and get

1
1 + ε

≤ cr(f ◦ f−1
0 (a, b, c, d))

cr(a, b, c, d)
≤ 1 + ε

for all (a, b, c, d) satisfying 1 + 1
k1
≤ cr(a, b, c, d) ≤ k1 and for all [f ] ∈ N([f0]; k, ε).

From the above inequality we get

(8)
1

1 + ε
≤ cr(f(ã, b̃, c̃, d̃))

cr(f0(ã, b̃, c̃, d̃))
≤ 1 + ε

for all (ã, b̃, c̃, d̃) = f−1
0 (a, b, c, d) with 1 + 1

k1
≤ cr(a, b, c, d) ≤ k1 and for all f ∈

N([f0]; k, ε).
By taking the logarithm in (8) and noting (5) we get the conclusion. 2

We proceed to prove the continuity of the Liouville map.
Theorem 3.2. The Liouville map L : T (X) → H(X) is continuous.
Proof. Let [f0] ∈ T (X) and let L : [f0] 7→ α0. Fix 0 < ν ≤ 1 and fix ε > 0. Let
(ϕ,Q) ∈ test(ν) where Q = [a, b]× [c, d] with L(Q) = log 2. Then ΘQ : S1 → S1 is
the Möbius mapping which maps −i, 1, i and −1 onto a, b, c and d, respectively. We
define β0 to be the pull-back of the measure α0 by ΘQ, i.e. β0 = (ΘQ)∗α0 = α0◦ΘQ.

Let N([f0]; 1

e
C
n2 −1

, 1
n3 ) be a neighborhood of [f0] in T (X) as in Lemma 3.1. In

particular, [f ] ∈ N([f0]; 1

e
C
n2 −1

, 1
n3 ) implies that

(9) |α0(Q̃)− α(Q̃)| < 1
n3

for all boxes Q̃ which satisfy C
n2 ≤ L(Q̃) ≤ log 2 where constant C > 0 is to be

given later, and where L : [f ] 7→ α. Let β = (ΘQ)∗α.
Divide arc [−i, 1] ⊂ S1 into n equal subarcs [ai−1, ai], for i = 1, 2, . . . , n with

a0 = −i and an = 1. Divide arc [i,−1] ⊂ S1 into n equal subarcs [cj−1, cj ], for
j = 1, 2, . . . , n with c0 = i and cn = −1. We form boxes Eij = [ai−1, ai]× [cj−1, cj ]
for i, j = 1, 2, . . . n. Note that ∪n

i,j=1Eij = [−i, 1] × [i,−1] and each pairwise
intersection of two Eij either is empty or is {ai} × [cj−1, cj ] or is [ai−1, ai]× {cj}.
Thus, the intersection of two distinct Ei,j has zero mass for the measures β0 and
β.

The diameter of each [ai−1, ai] and of each [cj−1, cj ] in the standard angle metric
on S1 is π/2

n . Since the arcs [ai−1, ai] lie in the fixed interval [−i, 1] and the arcs
[cj−1, cj ] lie in the fixed interval [i,−1] the Liouville measure of Eij = [ai−1, ai] ×
[cj−1, cj ] is comparable to 1

n2 . By (9) we get

(10) |β(Eij)− β
′
(Eij)| < 1

n3
.

Note that

(11)
∫

ϕdα0 =
∫

ϕ ◦ΘQdβ0∫
ϕdα =

∫
ϕ ◦ΘQdβ.

We define a step function approximation ϕn◦ΘQ =
∑n

i,j=1 pijχEij to ϕ◦ΘQ, where
pij = ϕ ◦ΘQ(gij) for a fixed geodesic gij ∈ Eij . By the Hölder continuity of ϕ ◦ΘQ

we obtain

(12) |ϕ ◦ΘQ −
∑

pijχEij | ≤
(π/2)ν

nν
.
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Integrating the expression ϕ ◦ΘQ −
∑

pijχEij and using inequality (12) we get
∣∣∣
∫

ϕ ◦ΘQdβ0 −
∫

ϕn ◦ΘQdβ0

∣∣∣ ≤ (π/2)ν

nν
β0([−i, 1]× [i,−1])

∣∣∣
∫

ϕ ◦ΘQdβ −
∫

ϕn ◦ΘQdβ
∣∣∣ ≤ (π/2)ν

nν
β([−i, 1]× [i,−1]).

(13)

We estimate
∣∣∣
∫

ϕndα0 −
∫

ϕndα
∣∣∣. Using the definition of ϕn we get

(14)
∣∣∣
∫

ϕndα0 −
∫

ϕndα
∣∣∣ ≤

∑
|pij | · |β0(Eij)− β(Eij)|.

Further by (10) we get

(15)
∑

|pij | · |β0(Eij)− β(Eij)| <
n∑

i,j=1

1
n3

=
1
n

.

From (14) and (15) we obtain

(16)
∣∣∣
∫

ϕndα0 −
∫

ϕndα
∣∣∣ <

1
n

.

Using the triangle inequality

(17)

∣∣∣
∫

ϕdα0 −
∫

ϕdα
∣∣∣ ≤

∣∣∣
∫

ϕdα0 −
∫

ϕndα0

∣∣∣+∣∣∣
∫

ϕndα0 −
∫

ϕndα
∣∣∣ +

∣∣∣
∫

ϕndα− ∫
ϕdα

∣∣∣
and inequalities (13) and (16) we obtain

(18)
∣∣∣
∫

ϕdα0 −
∫

ϕdα
∣∣∣ ≤ (π/2)ν

nν
[α0(Q) + α(Q)] +

1
n

.

Since [f0] is fixed, there exists a constant C2 > 0 such that α0(Q) ≤ C2 and for any
α as above α(Q) ≤ C2 + 1 by inequality (9). Thus the right side of (18) is smaller
than ε for n big enough. Hence

∣∣∣
∫

ϕdα0 −
∫

ϕdα
∣∣∣ < ε

for all α in the image under L of a sufficiently small neighborhood of [f0] and for
all (ϕ,Q) ∈ test(ν). This means that α is close to α0 in the topology of H(X̃).
Thus L is continuous. 2

It remains to prove the continuity of L−1.
Theorem 3.3. The map L−1 : L(T (X)) → T (X) is continuous.
Proof. Fix α0 ∈ L(T (X)). We show the continuity of L−1 at α0. By the definition
of the topology on H(X̃) it is enough to show the continuity of L−1 for one ν-norm.

Fix 0 < ν ≤ 1. Let L : [f0] 7→ α0 and fix ε(ν) > 0. Let Uε(ν) be the ε(ν)-
neighborhood of α0 in L(T (X))) for the ν-norm, namely α ∈ Uε(ν) if

sup
∣∣∣
∫

ϕdα0 −
∫

ϕdα
∣∣∣ < ε(ν)

where the supremum is over all (ϕ,Q) ∈ test(ν).
First, we show that L−1(Uε(ν)) is bounded in T (X). To see this it is enough to

show that there exists a constant M > 0 such that

α(Q) ≤ M
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for any α ∈ Uε(ν) and for all boxes Q = [a, b]× [c, d] with L(Q) = log 2. Assume on
the contrary that there exists a sequence of measures αn ∈ Uε(ν) and a sequence of
boxes Qn = [an, bn]× [cn, dn] ⊂ G(X̃) with L(Qn) = log 2 such that αn(Qn) →∞
as n →∞. Then we can subdivide [an, bn]×[cn, dn] such that we get a new sequence
of boxes Q

′
n = [a

′
n, b

′
n] × [c

′
n, d

′
n] ⊂ Qn for which L(Q

′
n) → 0 and αn(Q

′
n) → ∞ as

n →∞. Let Θn be a Möbius transformation such that Θ−1
n maps [a

′
n, b

′
n]× [c

′
n, d

′
n]

close to the geodesic (ei 7π
4 , ei 3π

4 ) ∈ G(X̃) in the sense that Θ−1
n (a

′
n) and Θ−1

n (b
′
n)

converge to ei 7π
4 , and Θ−1

n (c
′
n) and Θ−1

n (d
′
n) converge to ei 3π

4 as n → ∞ for the
standard angle metric. It is obvious that for n large we can find a sequence of
functions ϕn such that the support of ϕn ◦ Θn is in [−i, 1] × [i,−1], ϕn ≥ 0,
ϕn = 1 on Θ−1

n (Q
′
n) and ‖ϕn ◦Θn‖ν ≤ 2. Thus (ϕn

2 ,Θn([−i, 1]× [i,−1])) ∈ test(ν).
Consequently

∫
ϕn

2 dαn ≥ 1
2αn(Q

′
n) → ∞ as n → ∞. But this is a contradiction

with αn ∈ Uε(ν). Thus L−1(Uε(ν)) is bounded in T (X).
Let Dδ = [−ieiδ, 1e−iδ]× [ieiδ,−1e−iδ] and Bδ = [−i, 1]× [i,−1]−Dδ for δ > 0

small. Let Q = [a, b] × [c, d] be any box such that L(Q) = log 2. As in Section
2, ΘQ is the Möbius transformation which maps −i, 1, i and −1 onto a, b, c
and d, respectively. We define function ϕ as follows: ϕ ◦ ΘQ(eix, eiy) = 1 for
(eix, eiy) ∈ Dδ; ϕ ◦ΘQ(eix, eiy) = 0, outside [−i, 1]× [i,−1]; and ϕ ◦ΘQ(eix, eiy) =
min{|x− 3π

2 |,|x−2π|,|y−π
2 |,|y−π|}

δ for (eix, eiy) ∈ Bδ.
It is clear that ‖ϕ ◦ ΘQ‖ν = δ−ν . We define ϕδ,ν ◦ ΘQ = δνϕ ◦ ΘQ. Then

‖ϕδ,ν ◦ΘQ‖ν = 1 and consequently (ϕδ,ν , Q) ∈ test(ν).
Let L : [f ] 7→ α and let β = (ΘQ)∗α for α ∈ Uε(ν). We proved above that

[f ] lies in a bounded subset of T (X), i.e. there exists a bound on the constant of
quasiconformality for all such f . Consequently we can choose δ small enough such
that

(19) β0(Bδ) + β(Bδ) <
ε

4
.

Since α0, α ∈ Uε(ν) and (ϕδ,ν , Q) ∈ test(ν) we get

(20)
∣∣∣
∫

ϕδ,νdα0 −
∫

ϕδ,νdα
∣∣∣ < ε(ν).

By the definition of ϕδ,ν

(21)

∣∣∣
∫

ϕδ,νdα0 −
∫

ϕδ,νdα
∣∣∣ ≥

∣∣∣
∫

Bδ
ϕδ,ν ◦ΘQdβ0 −

∫
Bδ

ϕδ,ν ◦ΘQdβ
∣∣∣−

δν · |β0(Dδ)− β(Dδ)|
∣∣∣.

The right side of the above inequality is greater than or equal to

(22) δν · |β0(Dδ)− β(Dδ)| − δν · (β0(Bδ) + β(Bδ)).

Combining (20), (21) and (22) we obtain

|β0([−i, 1]× [i,−1])− β([−i, 1]× [i,−1])| ≤ ε(ν)
δν

+ 2[β0(Bδ) + β(Bδ)].

By the above inequality and by (19) we get

|α0(Q)− α(Q)| ≤ ε

for ε(ν) = εδν

2 . This implies that [f ] is close to [f0] for ε small enough. Thus L−1

is continuous. 2

Theorem 3.4. The image L(T (X)) of L is closed and unbounded.
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Proof. In the proof of Theorem 3.3 we showed that L−1(U) is bounded for U
bounded subset of L(T (X)). Hence L(T (X)) is unbounded because T (X) is un-
bounded.

We show that L(T (X)) is closed. By the same method as in the proof of Theorem
4.1 one can show that an element β in the closure of L(T (X)) is a positive measure.
The measure β is bounded because it is an element of H(X̃) and it is Γ-invariant
because it is the limit of a Γ-invariant measures αt. Because αt → β as t → ∞,
there exists t0 > 0 such that {αt; t ≥ t0} is a bounded set in H(X̃).

Let [ft] ∈ T (X) such that L([ft]) = αt. Then {ft; t > t0} have a bounded
constant of quasiconformality. We choose representatives ft of [ft] such that ft fixes
−i, 1 and i. Then a subsequence of ft converges uniformly on compact subsets to
a quasiconformal map g which fixes −i, 1 and i.

Let β1 = L([g]) and let Q = [a, b] × [c, d] be any box. Then αt(Q) → β1(Q)
as t → ∞ by the pointwise convergence of ft to g. Consequently, αt(ϕ) → β1(ϕ)
as t → ∞ for all ϕ ∈ Hν(X̃). By the uniqueness part of Riesz Representation
Theorem, we get β = β1. Thus β ∈ L(T (X)) and L(T (X)) is closed. 2

Theorem 1 follows directly from Theorems 3.1, 3.2, 3.3 and 3.4.

4. Closure of T (X)

In this section we use the embedding of T (X) into H(X) to define a natural
boundary to the Teichmüller space. By Theorem 3.4, the image L(T (X)) is closed
and unbounded. The idea is to use asymptotic rays to L(T (X)) in H(X) to intro-
duce a boundary at infinity for L(T (X)). By the definition, this boundary will be
a boundary for T (X).

A ray tW , for W ∈ H(X) and for t > 0, is asymptotic to L(T (X)) if there exists
a path αt ∈ L(T (X)) such that 1

t αt converges to W as t → ∞ in the topology of
H(X). A different parametrization of the path αt might give a path α

′
t such that

1
t α

′
t does not converge in H(X).
To avoid ambiguities which arise from reparametrizations and to give a topology

on the closure of T (X), we introduce the projectivization of H(X). Namely, the
space of projective Hölder distributions PH(X) consists of equivalence classes of
elements in H(X) − {0} where W1 ∼ W2 if there exists λ > 0 such that W1 =
λW2. Let π : H(X) − {0} → PH(X) be the natural projection map given by
π(W ) = W/ ∼. The space PH(X) has the quotient topology. There is a one to
one correspondence between PH(X) and the unit sphere S1

ν in H(X) for a fixed ν-
norm, 0 < ν ≤ 1, given by I(W/ ∼) = W

‖W‖ν
. The unit sphere S1

ν has the subspace
topology inherited from H(X).

Proposition 4.1. The map I from the projective Hölder distributions PH(X) to
the unit sphere S1

ν in H(X) for a fixed ν-norm, 0 < ν ≤ 1, is a homeomorphism.
Proof. The map I is one to one and onto. It remains to show that I is continuous
and open.

To show that I is continuous, it suffices to show that I ◦ π : H(X) − {0} → S1
ν

is continuous. The map I ◦ π : W 7→ W
‖W‖ν

is continuous if it is continuous for a
sequence of νn-norms where νn → 0 as n → ∞. In a related paper [13], we prove
that

(23) ‖ϕ‖µ ≤
(π

2

)ν−µ

‖ϕ‖ν
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for all (ϕ,Q) ∈ test(ν) and for all µ < ν. By (23), if (ϕ,Q) ∈ test(ν) then
((π

2 )µ−νϕ,Q) ∈ test(µ) for µ < ν. We fix W ∈ H(X) − {0} and νn < ν. A
neighborhood of W consists of all W1 such that ‖W −W1‖νn

< ε. By the remark
following (23), ‖W − W1‖ν < (π

2 )ν−νnε. This implies that ‖W‖ν and ‖W1‖ν are
close depending on ε. By the triangle inequality

∥∥∥ W

‖W‖ν
− W1

‖W1‖ν

∥∥∥
νn

≤ ‖W‖νn(
1

‖W‖ν
− 1
‖W1‖ν

) +
1

‖W1‖ν
‖W −W1‖νn

.

The right hand side of the above inequality is as small as we want for νn fixed and
for ε > 0 small enough. This proves the continuity of I ◦ π. Consequently, I is
continuous.

We show that I is open. Let U/ ∼ be an open subset of PH(X) where U =
π−1(U/ ∼) is an open subset of H(X). Let W/ ∼ be any point in U/ ∼. Let
W ∈ U be one point in π−1(W/ ∼). Since U is open, there exists ν1, 0 <
ν1 ≤ 1, and ε > 0 such that NW = {W1; ‖W − W1‖ν1 < ε} ⊂ U . Then the
set 1

‖W‖ν
NW = { W1

‖W‖ν
; ‖W − W1‖ν1 < ε} is an open neighborhood of W

‖W‖ν
in

H(X). Thus, ( 1
‖W‖ν

NW ) ∩ S1
ν is an open neighborhood of W

‖W‖ν
in S1

ν and it is
contained in the image of U/ ∼ under I. The map I is open. 2

The map I ◦ π : H(X) − {0} → S1
ν when restricted to L(T (X)) is one to

one. To see this note that any α ∈ L(T (X)) satisfies equation (2). Then λα, for
λ 6= 1 cannot satisfy (2). We show that the restriction of I ◦ π to L(T (X)) is a
homeomorphism onto its image.

Proposition 4.2. The map I ◦π when restricted to L(T (X)) is a homeomorphism
onto its image.
Proof. Since I ◦ π is one to one, it is enough to show that I ◦ π is continuous and
open.

By Proposition 4.1, I ◦ π : H(X)− {0} → S1
ν is continuous and consequently its

restriction is continuous. The arguments in the proof of Proposition 4.1 show that
I ◦ π is open. Thus, the restriction of I ◦ π is open in the relative topology of the
restricted domain. Consequently, the map I ◦π is a homemorphism onto its image.
2

We introduce a boundary for T (X) using the image of L(T (X)) on the unit
sphere S1

ν . Namely, a boundary point for T (X) is by the definition a boundary
point of (I ◦ π)(L(T (X))) on S1

ν . Since S1
ν is identified with PH(X) the boundary

is a subset of projective Hölder distributions PH(X). Because L(T (X)) is closed,
each boundary point corresponds to an asymptotic ray to L(T (X)).

In the definition of the boundary there is a choice of a Hölder exponent ν,
0 < ν ≤ 1. We show that the boundary is well-defined, namely independent of
ν. Assume that ν and ν1 are two different Hölder exponents. Proposition 4.1
gives two homeomorphisms Iν : PH(X) → S1

ν and Iν1 : PH(X) → S1
ν1

. Then
Iν1 ◦ (Iν)−1 : S1

ν → S1
ν1

is a homeomorphism under which we identify images
of L(T (X)) in S1

ν and S1
ν1

. Then the boundary of (Iν ◦ π)(L(T (X))) in S1
ν is

homeomorphically identified with the boundary of (Iν1 ◦ π)(L(T (X))) in S1
ν1

.
The closure of T (X) equals the closure of (I ◦ π)(L(T (X))) in S1

ν where T (X)
is homeomorphically identified with its image (I ◦ π)(L(T (X))) in S1

ν . We just
observed that two closures obtained by taking different Hölder exponents are home-
omorphic.
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An interesting property of the topology on H(X) is that when restricted to
positive measures it can be described by using only one ν-norm. More precisely,

Proposition 4.3. Let ‖ · ‖ν be a fixed norm on H(X). When restricted to subspace
of positive measures, the topology induced by the ν-norm is the same as the induced
topology from H(X).
Proof. Let α be a fixed positive measure and let ν1 < ν. In the proof of Theo-
rem 3.2, we showed that we can approximate in the supremum norm any (ϕ,Q) ∈
test(ν1) by step functions ϕn with supports again in Q. Each ϕn can be approx-
imated in the supremum norm by differentiable function ψn which has derivative
bounded in terms of n and sup |ϕn−ψn|. Thus we established a ”uniform” density
of Hν(X̃) in Hν1(X̃). More precisely, each (ϕ,Q) ∈ test(ν1) can be approximated
by ψn ∈ Hν(X̃) where ‖ψn‖ν is bounded in terms of n. By again the proof of The-
orem 3.2, this is enough to claim that any neighborhood of α in ν1-norm contains
a neighborhood of α in ν-norm. 2

In the following theorem we show that the boundary of T (X) is a subset of
PMLb(X).
Theorem 4.1. The boundary for T (X) is contained in the space of projective
bounded measured laminations PMLb(X).
Proof. In what follows, it will be convenient to consider asymptotic rays to L(T (X))
as boundary points. Let ν be a fixed Hölder exponent. We assume that tW , t > 0
and W ∈ H(X), is an asymptotic ray to L(T (X)). There is no loss of generality if
we assume that ‖W‖ν = 1. Then there exists a path [ft] ∈ T (X) with the following
properties. The path αt = L([ft]) satisfies 1

‖αt‖ν
αt → W as t → ∞ in the ν-norm

and ‖αt‖ν →∞ as t →∞. The fact that L(T (X)) is closed forces ‖αt‖ν →∞ as
t →∞. Otherwise, ‖αt‖ν being bounded imply that a positive multiple of W is in
L(T (X)). For convenience of notation we assume that ‖αt‖ν = t.

Then 1
t αt → W as t → ∞ in the ν-norm. Namely, for any ε > 0 there exists t0

such that

(24)
∣∣∣1
t

∫
ϕdαt −W (ϕ)

∣∣∣ < ε

for t > t0 and for all (ϕ, Q) ∈ test(ν). The inequality (24) holds for any ϕ ∈
Hν(X̃) but the constant t0 = t0(ϕ) depends on the function ϕ, if ϕ is not a test
function. This follows from the fact that any ϕ ∈ Hν(X̃) can be written as a linear
combination of finitely many elements of test(ν).

By the definition of H(X), the set {W (ϕ); (ϕ,Q) ∈ test(ν)} is bounded. We
show that there exists M > 0 such that

(25)
1
t
αt(Q) < M

for all boxes Q = [a, b] × [c, d] with L(Q) = log 2 and for t > 1. Assume not.
Then we can find sequences {Qn = [an, bn] × [cn, dn]}∞n=1 and {tn}∞n=1 such that
1
tn

αtn(Qn) → ∞, L(Qn) → 0 and tn → ∞ as n → ∞. Thus, for n big enough we
can find (ϕn, Qn) ∈ test(ν) with ϕn = 1

2 on Qn ⊂ Qn and ϕn ≥ 0. Then, by (24),
for tn > t0 we have

W (ϕn) ≥ 1
tn

∫
ϕndαtn − ε ≥ 1

2tn
αtn(Qn)− ε
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and consequently W (ϕn) → ∞ as n → ∞. This gives contradiction with W ∈
H(X). Thus (25) holds.

We show that W can be extended to act on real continuous functions with
compact support in G(X̃). Let ψ be a continuous function on G(X̃) with compact
support. We use a sequence of convolutions with ”bump” functions with supports
around the ”origin” (1, 1) in S1×S1 shrinking to (1, 1) to get a sequence of smooth
approximations ϕn to ψ in the topology of L∞(G(X̃)). This could be made precise
by choosing identification S1 × S1 ≡ R̂ × R̂ and bump functions with supports
around (0, 0). We note that the support of each ϕn is compact subset of G(X̃) and
all supports of the sequence {ϕn} are contained in a fixed compact set K if we choose
the supports of ϕn small enough. Denote by supp(ϕ) the support of a function ϕ.
Thus ‖ψ − ϕn‖∞ → 0 as n → ∞ where ϕn ∈ Hν(X̃) with supp(ϕn) ⊂ K. Taking
ϕn in inequality (24) we get

(26)
∣∣∣1
t

∫
ϕndαt −W (ϕn)

∣∣∣ < ε

for t > t0(n). Given n and m, we define tn,m = max{t0(n), t0(m)}. Then
∣∣∣W (ϕn)−W (ϕm)

∣∣∣ ≤
∣∣∣W (ϕn)− 1

tn,m

∫
ϕndαtn,m

∣∣∣+
∣∣∣ 1
tn,m

∫
ϕndαtn,m − 1

tn,m

∫
ϕmdαtn,m

∣∣∣ +
∣∣∣ 1
tn,m

∫
ϕmdαtn,m −W (ϕm)

∣∣∣.

The fixed compact set K can be covered by finitely many boxes Qi, i = 1, 2, . . . , r
with L(Qi) = log 2 for each i. Then by (26) and by (25) the right hand side of the
above inequality is less than 2ε+ M ·r·L(K)

tn,m
· ‖ϕn−ϕm‖∞. Thus W (ϕn) is a Cauchy

sequence. We define W̃ (ψ) = limn→∞W (ϕn). The extension W̃ of W is a linear
functional on the set of continuous functions with compact support. The functional
W̃ is positive on all ϕ ≥ 0, ϕ ∈ Hν(X̃) because it is the limit of 1

t

∫
ϕdαt ≥ 0.

Further, W̃ is positive on all ψ ≥ 0, ψ continuous with compact support, because
W̃ (ψ) is the limit of W̃ (ϕn) ≥ 0 as n →∞ with ϕn ∈ Hν(X̃) and W̃ (ϕn) ≥ 0. Thus
W̃ is a positive linear functional on the set of continuous functions with compact
support. By the Riesz Representation Theorem (see [10]) there exists a unique
positive Radon measure β on G(X̃) which represents W .

The measure β is bounded. To see this we take an arbitrary Q = [a, b] × [c, d]
with L(Q) = log 2. There exists ϕ ∈ Hν(X̃) such that 0 ≤ ϕ ≤ 1, ϕ = 1 on Q and
L(supp(ϕ)) ≤ 1. The support of ϕ can be covered by two boxes whose Liouville
mass is log 2. By (24) and by (25) and by the above, there exists t0(ϕ) such that
for t > t0(ϕ)

W (ϕ) =
∫

ϕdβ ≤ 1
t

∫
ϕdαt + ε ≤ 2M + ε.

Since β(Q) ≤ ∫
ϕdβ ≤ 2M + ε the measure β is bounded.

It remains to show that the support of β consists of a geodesic lamination.
Assume on the contrary that geodesics g1 and g2 in the support of β intersect.
We find Q = [a, b] × [c, d] such that Q contains g1 in its interior and such that
Q1 = [b, c] × [d, a] contains g2 in its interior. Let ϕ ≥ 0, ϕ ∈ Hν(X̃) is nonzero
on g1. Then

∫
ϕdβ is nonzero. Consequently αt(Q) → ∞ as t → ∞ otherwise∫

ϕdβ = limt→∞ 1
t

∫
ϕdαt = 0. Similarly αt(Q1) → ∞ as t → ∞. Since αt is in
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the image of T (X), by Theorem 3.1 we have

e−αt(Q) + e−αt(Q1) = 1.

The above equality together with αt(Q) → ∞ and αt(Q1) → ∞ as t → ∞ gives
contradiction. Thus the support of β consists of non-intersecting geodesics. 2

We proceed to prove that every [β] ∈ PMLb(X) is in the boundary of T (X). Let
[ft] be the earthquake path in T (X) starting at the identity with the earthquake
measure tβ. Denote by αt the image of [ft] in H(X).

We prove several lemmas which are needed for the proof of the above.
For the box [−i, 1] × [i,−1] of geodesics we consider the first coordinate in the

product to be the horizontal direction and the second coordinate to be the vertical
direction.

Lemma 4.1. Let β be a geodesic lamination with ‖β‖ = 1. There exists a subset
En of [−i, 1]× [i,−1] with the following properties:
1. β(En) is of the order 1

n
2. En is a union of n− 1 vertical and n− 1 horizontal strips of the widths of order
1

n2

3. Each vertical and each horizontal strip intersect in a small box; we take centers
of all such boxes, and the centers of the intersections of strips with the sides of
[−i, 1] × [i,−1], and the vertices of [−i, 1] × [i,−1] to form the boxes Ai,j. We
obtain n2 boxes Ai,j and L(Ai,j) is of the order 1

n2 for each (i, j).
Proof. We use the upper half plane model H2. We replace [−i, 1] × [i,−1] by
[−2,−1] × [1, 2]. If we prove the Lemma for [−2,−1] × [1, 2] it will follow for
[−i, 1]× [i,−1] because the standard angle metric on S1 is Lipschitz equivalent to
the Euclidean metric on a compact set of R̂. We divide segments [−2,−1] and [1, 2]
into n segments of the same length using the division points x0 = −2, xn = −1,
xi = −2 + i

n , i = 1, 2, . . . , n− 1 for [−2,−1] and the division points y0 = 1, yn = 2,
yj = 1 + j

n , j = 1, 2, . . . , n − 1 for [1, 2]. Further, we divide each of the segments
[xi−1, xi] and [yj−1, yj ] into n segments of the same size with the division points
x0

i = xi−1, xn
i = xi, xk

i = xi−1+ k
n2 , k = 1, 2, . . . , n−1 for [xi−1, xi] and the division

points y0
j = yj−1, yn

j = yj , yh
j = yj−1 + h

n2 , h = 1, 2, . . . , n − 1 for [yj−1, yj ]. We
form n vertical strips Vk = ∪n

i=1[x
k−1
i , xk

i ]×[1, 2] for k = 1, 2, . . . , n and n horizontal
strips Hh = ∪n

j=1[−2,−1] × [yh−1
j , yh

j ] for h = 1, 2, . . . , n. The union of Vk covers
[−2,−1] × [1, 2] and each point is covered at most twice. Hence

∑n
k=1 β(Vk) ≤ 2.

There exists at least one k such that β(Vk) ≤ 2
n . Fix such k. The same holds

for some h, i.e. β(Hh) ≤ 2
n . We define En as the union of Hk and Vh. Then

β(En) ≤ 4
n . Let ai = xk−1

i +xk
i

2 be the midpoint of [xk−1
i , xk

i ] for i = 1, 2, . . . , n− 1;

and let a0 = −2 and an = −1. Let cj =
yh−1

j +yh
j

2 be the midpoint of [yh−1
j , yh

j ] for
j = 1, 2, . . . , n− 1; and let c0 = 1 and cn = 2.

The points (ai, cj), (ai, cj+1), (ai+1, cj) and (ai+1, cj+1) are vertices of the rect-
angles Ai,j for i, j = 0, 1, 2, . . . , n − 1. The difference between the x-coordinates
of the vertices of Ai,j is of the order 1

n . The same holds for y-coordinates of the
vertices of Ai,j . Thus we get that L(Ai,j) is of the order 1

n2 . 2
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Figure 1. Case β(Ai,j) 6= 0

We keep the notation of the previous lemma and compare 1
t αt(Ai,j) to β(Ai,j)

for i, j = 1, 2, . . . , n − 2. Note that we consider only on the ”inside” boxes Ai,j of
the above division of [−i, 1]× [i,−1]. The next two lemmas give essential estimates.

Lemma 4.2. Let En and Ai,j be as above. Then

1
t αt(Ai,j)− β(Ai,j) ≤ 1

t L([ai, y
h−1
j ]× [cj , x

k−1
i ]) + β([xk−1

i , ai]× [cj , cj+1])
+β([ai, ai+1]× [yh−1

j , cj ]) + β([xk−1
i , ai]× [yh−1

j , cj ]).

for all t > 0 and for all i, j = 1, 2, . . . , n− 2.
Proof. We use the upper half plane model H2 and replace [−i, 1] × [i − 1] with
[−2,−1] × [1, 2]. Let ft denotes the earthquake path for the measure tβ and let
αt = L([ft]). We divide our reasoning into several cases.

Case 1: β(Ai,j) 6= 0.
By our assumption the support of β does not contain geodesics with one endpoint

in the interval (ai+1, cj) and the other endpoint in the interval (cj+1, ai). The
intervals are taken with respect to the orientation of R̂ as the boundary of the
upper half plane H2. We divide the support of β into six groups (see figure 1):
1. The geodesics which belong to Ai,j = [ai, ai+1]× [cj , cj+1].
2. The geodesics which belong to (cj+1, ai)× [ai, ai+1].
3. The geodesics which belong to [cj , cj+1]× (cj+1, ai).
4. The geodesics which belong to [ai, ai+1]× (ai+1, cj).
5. The geodesics which belong to (ai+1, cj)× [cj , cj+1].
6. The geodesics which does not belong to any of the above five groups.
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We normalize the earthquake path ft to be the identity on the stratum I which
separates the geodesics of group 1 from the geodesics of groups 2 and 3. If groups
2 and 3 are empty then we normalize the earthquake path to be the identity on the
strata which separates group 1 from (cj+1, ai). Note that boxes in our division of
the support of β are written such that the first coordinate is the repelling fixed point
and the second coordinate is the attracting fixed point of the hyperbolic translation
along the geodesic for the given normalization in the definition of earthquake path
ft.

We analyze the effect of earthquake path ft on the Liouville measure of Ai,j . We
divide the measure β into six measures βi, i = 1, 2, . . . 6; by taking its restriction to
the above six groups. Each newly obtained measured lamination βi has stratum Ii

which contains I. Define six earthquake paths f i
t , i = 1, 2, . . . , 6; for the measures βi

such that they are all identity on stratum Ii which contains I. Then ft = f1
t ◦· · ·◦f6

t .
Note that f5

t ,f4
t , f3

t and f2
t commute with each other.

Earthquake f6
t fixes Ai,j and we can disregard it.

By Lemma A.1, the Liouville mass of Ai,j is an increasing function of the dis-
tance between the geodesics with endpoints ai and cj+1, and the geodesic with the
endpoints ai+1 and cj .

Because of our normalization, earthquake path f2
t moves ai closer to ai+1 and

fixes ai+1, cj and cj+1. Earthquake path f5
t moves cj closer to cj+1 and fixes cj+1,

ai and ai+1. Thus the Liouville mass of Ai,j is decreasing under earthquake paths
f2

t and f5
t . Since we are interested in the upper bound we can disregard earthquake

paths f2
t and f5

t .
Consider earthquake path f3

t . We divide the measure β3 into two measures. The
first measure β1

3 equals the restriction of β3 to [cj , cj+1]× (cj+1, x
k−1
i ). Earthquake

path for the measure β1
3 moves cj+1 at most to xk−1

i and leaves ai, ai+1 and cj

fixed. The second measure β2
3 equals the restriction of β3 to [cj , cj+1]× [xk−1

i , ai).
By Lemma A.2, if we replace earthquake path for the measure β2

3 by the hyperbolic
translation with the repelling fixed point cj , with the attracting fixed point ai and
with the translation length tβ([cj , cj+1]× [xk−1

i , ai)) then the Liouville mass of the
image of Ai,j increases. By Lemma A.1, we increase the Liouville mass of the image
of Ai,j by not more than tβ([cj , cj+1]× [xk−1

i , ai)). Let us denote by α
′
t the image

in H(X) of earthquake path f3
t . From above we get that

α
′
t(Ai,j) ≤ L([ai, ai+1]× [cj , x

k−1
i ]) + tβ([cj , cj+1]× [xk−1

i , ai)).

Similar conclusions can be made for the Liouville mass of the image of f3
t (Ai,j)

under earthquake path f4
t .

We compose earthquake paths f3
t and f4

t . Denote by α”
t the image in H(X) of

[f3
t ◦ f4

t ]. Then

α”
t (Ai,j) ≤ L([ai, y

h−1
j ]× [cj , x

k−1
i ])+

t
{

β([cj , cj+1]× [xk−1
i , ai)) + β([ai, ai+1]× [yh−1

j , cj))
}

.

We are left to consider the image of f3
t ◦ f4

t (Ai,j) under earthquake path f1
t . By

Lemmas A.4 and A.5, we increase the Liouville measure of the image of f3
t ◦f4

t (Ai,j)
if we replace earthquake path f1

t by the hyperbolic translation with the repelling
fixed point ai, with the attracting fixed point cj and with the translation length
tβ(Ai,j). We combine all earthquake paths to obtain original earthquake path ft.
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Figure 2. Case β(Ai,j) = 0, β([xk−1
i , ai]× [yh−1

j , cj ]) 6= 0

By Lemma A.1 and by the above discussion we get

αt(Ai,j) ≤ L([ai, y
h−1
j ]× [cj , x

k−1
i ]) + tβ(Ai,j)+

t
{

β([cj , cj+1]× [xk−1
i , ai)) + β([ai, ai+1]× [yh−1

j , cj))
}

.
(27)

We divide inequality (27) by t which concludes the proof in Case 1.
Case 2: β(Ai,j) = 0 and β([ai+1, cj ]× [cj+1, aj ]) = 0.
By a similar argument as in Case 1 we get inequality (27) without the second

term on the right.
Case 3: β(Ai,j) = 0, β([ai+1, cj ]×[cj+1, ai]) 6= 0 and β([xk−1

i , ai]×[yh−1
j , cj ]) 6= 0.

As a consequence of the above conditions we get β([cj+1, x
k−1
i )× [ai+1, y

h−1
j )) =

0. In this case we divide the support of β into the following six groups (see figure
2):
1. The geodesics which belong to [xk−1

i , ai]× [yh−1
j , cj ].

2. The geodesics which belong to [xk−1
i , ai]× [ai+1, y

h−1
j ).

3. The geodesics which belong to [yh−1
j , cj ]× [cj+1, x

k−1
i ).

4. The geodesics which belong to (cj , cj+1)× (cj+1, ai] ∪ {cj} × (cj+1, x
k−1
i ).

5. The geodesics which belong to (ai, ai+1)× (ai+1, cj ] ∪ {ai} × (ai+1, y
h−1
j ).

6. All other geodesics.
We normalize earthquake path ft to be the identity on the strata I which sep-

arates group 1 from group 3. If group 3 is empty then we normalize ft to be the
identity on the stratum I which separates group 1 and group 4. If groups 3 and 4
are empty then we use the stratum I which separates group 1 from cj+1. We change
measured lamination β to new measured lamination β

′
which gives new earthquake
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path f
′
t such that the Liouville mass of ft(Ai,j) is smaller than the Liouville mass

of f
′
t (Ai,j).

The geodesics in group 1 are replaced by the geodesic with endpoints ai and
cj , and with the weight tβ([xk−1

i , ai] × [yh−1
j , cj ]). Any geodesic in group 2 with

endpoints a ∈ [xk−1
i , ai] and b ∈ (ai+1, y

h−1
j ) is replaced by the geodesic with

endpoints ai and b. The measure on the new group 2 is given by the push-forward
of the measure β on the old group 2. Similarly the geodesics in group 3 are replaced
by the geodesics with one endpoint cj and the measure is the push-forward of the
measure β on the old group 3.

The earthquake along the geodesics in group 6 either does not move Ai,j or it
moves it to the set with smaller Liouville measure. We disregard group 6 and obtain
new measured lamination β

′
.

Measured lamination β
′

gives earthquake path f
′
t . Let α

′
t denotes the image of

[f
′
t ] in H(X). By Lemma A.3, we get αt(Ai,j) ≤ α

′
t(Ai,j).

The measure β
′

satisfies β
′
(Ai,j) = β([xk−1

i , ai] × [yh−1
j , cj ]) 6= 0. Thus we are

in the Case 1. We obtain

1
t
α
′
t(Ai,j)− β

′
(Ai,j) ≤ 1

t
L([ai, y

h−1
j ]× [cj , x

k−1
i ])+

β
′
([cj , cj+1]× [xk−1

i , ai)) + β
′
([ai, ai+1]× [yh−1

j , cj)).

By the definition β
′
([cj , cj+1]×[xk−1

i , ai)) = β([cj , cj+1]×[xk−1
i , ai)) and β

′
([ai, ai+1)×

[yh−1
j , cj)) = β([ai, ai+1]×[yh−1

j , cj)). Since β(Ai,j) = 0 and by the above we obtain

1
t
αt(Ai,j)− β(Ai,j) ≤ L([ai, y

h−1
j ]× [cj , x

k−1
i ]) + β([xk−1

i , ai]× [yh−1
j , cj ])

+ β([cj , cj+1]× [xk−1
i , ai)) + β([ai, ai+1]× [yh−1

j , cj))
(28)

Case 4: β(Ai,j) = 0, β([ai+1, cj ]×[cj+1, aj ] 6= 0 and β([xk−1
i , ai]×[yh−1

j , cj ]) = 0.
In this case we also construct new measured lamination β

′
which gives earthquake

path f
′
t (see figure 3). Let α

′
t denote the image of [f

′
t ] in H(X). For this path we

also get that αt(Ai,j) ≤ α
′
t(Ai,j).

We start by replacing the earthquake along the geodesics in [yh−1
j , cj ]×[cj+1, x

k−1
i ]

by the hyperbolic translation with the repelling fixed point cj , with the attract-
ing fixed point xk−1

i and with the translation length tβ([yh−1
j , cj ] × [cj+1, x

k−1
i ]).

Further, the earthquake along the geodesics in [xk−1
i , ai] × [ai+1, y

h−1
j ] is replaced

by the hyperbolic translation with the repelling fixed point ai, with the attracting
fixed point yh−1

j and with the translation length tβ([xk−1
i , ai]× [ai+1, y

h−1
j ]). The

earthquake along the geodesics in [ai+1, y
h−1
j ]× [cj+1, x

k−1
i ] is replaced by the hy-

perbolic translation with the repelling fixed point xk−1
i , with the attracting fixed

point yh−1
j and with the translation length tβ([ai+1, y

h−1
j ]× [cj+1, x

k−1
i ]).

We get the new measured lamination β
′
and the corresponding path α

′
t. Then by

Lemma A.3, we get αt(Ai,j) ≤ α
′
t(Ai,j). The set f

′
t (Ai,j) is a subset of [ai, y

h−1
j ]×

[cj , x
k−1
i ]. Since β(Ai,j) = 0 we get

1
t
αt(Ai,j)− β(Ai,j) ≤ 1

t
α
′
t(Ai,j).



22 DRAGOMIR ŠARIĆ
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Figure 3. Replacing β with β
′

From above
1
t
α
′
t(Ai,j) ≤ 1

t
L([ai, y

h−1
j ]× [cj , x

k−1
i ]).

Then

(29)
1
t
αt(Ai,j)− β(Ai,j) ≤ 1

t
L([ai, y

h−1
j ]× [cj , x

k−1
i ]).

2

Lemma 4.3. Let En and Ai,j be as above. Then there exist constants C1 > 0 and
C2 > 0 such that

1
t
αt(Ai,j)− β(Ai,j) ≥ −C1 log n

t
− C2

t
− β([xk−1

i+1 , ai+1]× [yh−1
j+1 , cj+1])

for all t > 0 and for all i, j = 1, 2, . . . , n− 2.
Proof. Either β(Ai,j) 6= 0 or β(Ai,j) = 0. We divide our proof in several cases.

Case 1: β(Ai,j) = 0
Then

1
t
αt(Ai,j)− β(Ai,j) =

1
t
αt(Ai,j) ≥ 0.

Thus the lower bound in this case is 0.
Case 2: β(Ai,j) 6= 0 and β([ai, x

k−1
i+1 ]× [cj , y

h−1
j+1 ]) 6= 0.

Consequently β((xk−1
i+1 , ai+1] × (yh−1

j+1 , cj+1]) = 0. We consider the group of all
geodesics of the support of β which lie in set [ai, x

k−1
i+1 ] × [cj , y

k−1
j+1 ]. Let d be the

endpoint in the interval [cj , cj+1] of a geodesic in the above group which is closest
to cj+1. Let b be the endpoint of a geodesic in the above group in the interval
[ai, x

k−1
i+1 ] which is closest to ai+1. Let a be the endpoint of a geodesic in the above
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Figure 4. Case β(Ai,j) 6= 0, β([ai, x
k−1
i+1 ]× [cj , y

h−1
j+1 ]) 6= 0

group in the interval [ai, x
k−1
i+1 ] which is closest to ai. Let c be the endpoint of a

geodesic in the above group in the interval [cj , y
h−1
j+1 ] which is closest to cj . We

divide the geodesics in the support of β in the following four groups (see figure 4):
1. The geodesics which belong to [ai, x

k−1
i+1 ]× [cj , y

k−1
j+1 ].

2. The geodesics whose both endpoints lie in the interval [d, a] except the geodesic
with endpoints a and d.
3. The geodesics whose both endpoints lie in the interval [b, c] except the geodesic
with endpoints b and c.
4. All other geodesics.

We are interested in the lower bound for 1
t αt(Ai,j) − β(Ai,j). Thus we can

replace 1
t αt(Ai,j) with 1

t αt(A
′
i,j) where A

′
i,j is a subset of Ai,j . Define A

′
i,j =

[a, ai+1] × [c, cj+1]. By definition, A
′
i,j ⊃ [xk−1

i+1 , ai+1] × [yh−1
j+1 , cj+1]. Let ft be

earthquake path for the measure β. We normalize earthquake path ft to be the
identity on the strata I which separates the geodesics of group 1 from the geodesics
of group 2.

As in previous lemma, we divide β into four measured laminations βi, i =
1, 2, 3, 4, such that βi is the restriction of β to the geodesics of group i. Each
measured lamination βi has stratum Ii that contains I. We define f i

t to be earth-
quake path for the measure βi normalized such that f i

t |Ii = id. Earthquake f4
t fixes

A
′
i,j . Thus we can disregard it. Earthquake f2

t either fixes A
′
i,j or it fixes [a, ai+1]
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and maps [c, cj+1] onto interval [c, e] with [c, cj+1] ⊂ [c, e]. We can disregard earth-
quake f2

t because we are interested in the lower bound for the Liouville measure of
the image of A

′
i,j . Similarly we can disregard earthquake f3

t .
Let A be the hyperbolic translation with the repelling fixed point xk−1

i+1 , with the
attracting fixed point yh−1

j+1 and with the translation length tβ([ai, x
k−1
i+1 ]×[cj , y

h−1
j+1 ]).

Then by Lemmas A.4 and A.5, αt(A
′
i,j) is less than or equal to the Liouville measure

of [xk−1
i+1 , A(ai+1)] × [yh−1

j+1 , cj+1]. By Lemma A.1, we get that L([xk−1
i+1 , A(ai+1)] ×

[yh−1
j+1 , cj+1]) is greater than or equal to tβ([ai, x

k−1
i+1 ] × [cj , y

h−1
j+1 ]) + log l2

4 , where l

is the hyperbolic distance between the geodesics with the endpoints xk−1
i+1 and cj+1,

and the geodesic with the endpoints ai+1 and yh−1
j+1 . The angle distance between

xk−1
i+1 and ai+1 is of the order 1

n2 . Also the angle distance between yh−1
j+1 and cj+1

is of the order 1
n2 . Consequently, the distance between the geodesic with endpoints

xk−1
i+1 and cj+1 and the geodesic with the endpoints ai+1 and yh−1

j+1 is of the order
1

n4 . Then there exist constants C1 > 0 and C2 > 0 such that

1
t
αt(Ai,j)− β(Ai,j) ≥ −C1 log n

t
− C2

t
.

Case 3: β(Ai,j) 6= 0 and β([ai, x
k−1
i+1 ]× [cj , y

h−1
j+1 ]) = 0.

Then 1
t αt(Ai,j)− β(Ai,j) ≥ −β(Ai,j) = −β([xk−1

i+1 , ai+1]× [yh−1
j+1 , cj+1]). 2

We gather the above estimates in the following useful form.
Lemma 4.4. Let En and Ai,j be as above. There exists a constant C(n) > 0 such
that

n−2∑

i,j=1

∣∣∣1
t
αt(Ai,j)− β(Ai,j)

∣∣∣ ≤ C(n)
t

+
6
n

.

Proof. By Lemmas 4.2 and 4.3 we get that
∣∣∣1
t
αt(Ai,j)− β(Ai,j)

∣∣∣ ≤

max
{1

t
L([ai, y

h−1
j ]× [cj , x

k−1
i ]) + β([xk−1

i , ai]× [cj , cj+1])+

β([ai, ai+1]× [yh−1
j , cj ]) + β([xk−1

i , ai]× [yh−1
j , cj ]),

C1 log n

t
+

C2

t
+ β([xk−1

i+1 , ai+1]× [yh−1
j+1 , cj+1])

}

(30)

Since
{∪n−2

i,j=1[ai, ai+1]× [yh−1
j , cj ]} ∪ {∪n−2

i,j=1[x
k−1
i , ai]× [yh−1

j , cj ]} ∪
{∪n−2

i,j=1[x
k−1
i , ai]× [cj , cj+1]} ⊂ En

and each point in En is covered at most six times by the sets on the left we get

(31)

∑n−2
i,j=1

{
β([xk−1

i , ai]× [cj , cj+1]) + β([ai, ai+1]× [yh−1
j , cj ])+

β([xk−1
i , ai]× [yh−1

j , cj ])
}
≤ 6β(En) ≤ 6

n .

Since ∪n−2
i,j=1[x

k−1
i+1 , ai+1]× [yh−1

j+1 , cj+1] ⊂ En we get

(32)
n−2∑

i,j=1

β([xk−1
i+1 , ai+1]× [yh−1

j+1 , cj+1]) ≤ 1
n

.
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From (30), (31) and (32) we get

n−2∑

i,j=1

∣∣∣1
t
αt(Ai,j)− β(Ai,j)

∣∣∣ ≤

max
{1

t

n−2∑

i,j=1

L([ai, y
h−1
j ]× [cj , x

k−1
i ]) +

6
n

,
1
t

n−2∑

i,j=1

(C1 log n + C2) +
1
n

}
.

By choosing

C(n) = max
{ n−2∑

i,j=1

L([ai, y
h−1
j ]× [cj , x

k−1
i ]), (C1 log n + C2)(n− 2)2

}

we obtain the desired inequality. 2

We use above lemma to show that 1
t αt is bounded.

Lemma 4.5. Let αt and β be as above. Then 1
t αt(Q) is bounded for t ≥ 1 and for

all boxes Q = [a, b]× [c, d] such that L(Q) = log 2.
Proof. By Lemma 4.4 we get

n−2∑

i,j=1

1
t
αt(Ai,j) ≤ β(Q) +

C1(n)
t

+
6
n

where Ai,j are as above and n is fixed. Note that ∪n−2
i,j=1Ai,j = [a

′
, b
′
] × [c

′
, d
′
] is

a proper subset of Q = [a, b] × [c, d]. But Q can be covered by finitely many such
[a
′
, b
′
]× [c

′
, d
′
] and the conclusion follows. 2

Now we prove that 1
t αt converges to β in the ν-norm.

Theorem 4.2. If αt ∈ H(X) denotes the image of an earthquake path [ft] with the
measure β ∈ MLb(X), where ‖β‖ = 1, then 1

t αt converges to β as t → ∞ in the
ν-norm.
Proof. Let (ϕ,Q) ∈ test(ν) where Q = [a, b] × [c, d]. We keep the notation of the
previous lemmas.

We define a sequence of step function ϕn to approximate ϕ. Fix gi,j ∈ Ai,j for
each i, j = 0, 1, . . . , n− 1. Define ϕn ◦Θabcd(g) = ϕ ◦Θabcd(gi,j), for g ∈ Ai,j where
i, j = 1, 2, . . . , n− 2; and ϕn ◦Θabcd(g) = 0 for g ∈ Ai,j where i = 0 or i = n− 1 or
j = 0 or j = n− 1; and ϕn ◦Θabcd(g) = 0 for g not in [−i, 1]× [1,−i]. Note that ϕn

is not defined on the set of measure zero which is not important for the integration.
By the definition of ϕn, by the Hölder continuity of ϕ and because Ai,j has

diameter of the order 1
n there exists C > 0 such that |ϕ(g) − ϕn(g)| ≤ Cν

nν . Then
we obtain the following inequalities

∣∣∣1
t

∫
ϕdαt − 1

t

∫
ϕndαt

∣∣∣ ≤ Cν

nν

1
t
αt(Q)

∣∣∣1
t

∫
ϕndαt −

∫
ϕndβ

∣∣∣ ≤
n−2∑

i,j=1

∣∣∣1
t
αt(Ai,j)− β(Ai,j)

∣∣∣
∣∣∣
∫

ϕndβ −
∫

ϕdβ
∣∣∣ ≤ Cν

nν
β(Q).
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By Lemma 4.4,
∑n−2

i,j=1 | 1t αt(Ai,j)− β(Ai,j)| can be made small for n and t large
independently of the box Q. By Lemma 4.5, 1

nν
1
t αt([a, b] × [c, d]) is small for n

large. Above inequalities combined imply the convergence. 2

Corollary 4.1. Let β ∈ MLb(X) such that ‖β‖ν = 1. Let [ft] ∈ T (X) be an
earthquake path with the measure β and let αt = L([ft]). Then 1

‖αt‖αt → β as
t → ∞ in the ν-norm. In other words, any [β] ∈ PMLb(X) is a boundary point
for T (X).
Proof. By Theorem 4.2, 1

t αt → β as t → ∞ in the ν-norm. Consequently
‖1

t αt‖ν → 1 as t →∞. Then ‖αt‖ν

t → 1 as t →∞ and
∥∥∥ 1
‖αt‖αt − 1

t
αt

∥∥∥
ν
→∞

as t →∞. The Corollary follows by the triangle inequality. 2

Theorem 2 of the Introduction is a direct consequence of Theorem 4.1 and Corol-
lary 4.1.

In the proof of Theorem 4.2, we showed that 1
t αt → β as t → ∞, where αt =

L([ft]) for an earthquake path [ft] ∈ T (X) starting at [id] with the measure β. In
the following theorem we prove that this is still true even if an earthquake path
does not start from the basepoint [id] of T (X).

Let [ft] be an earthquake path with the initial point [f ] ∈ T (X) and with the
measure tβ. Then [ft] = [gt ◦ f ] where [gt] is an earthquake path starting at [id]
with the measure f∗β.

Theorem 4.3. Suppose f : ∆ → ∆ is a Γ-invariant quasiconformal map. Let
β ∈ MLb(X) and let [ft] be an earthquake path with the initial point [f ] ∈ T (X)
and with the measure tβ such that ‖β‖ = 1. Denote by αt the image of [ft] in
H(X). Then 1

t αt converges to β as t →∞ in H(X).
Proof. The map f extends to a quasisymmetric map of S1 and we denote it by f ,
again. Earthquake path ft extends to a path of quasisymmetric maps of S1 and we
denote this path by ft, again. If we normalize them properly we get f0 = f . Let gt

be earthquake path with the measure f∗β and g0 = id. Let α
′
t stands for the image

of [gt] in H(X
′
) where X

′
= f(X). Then ft = gt ◦ f and consequently α

′
t = f∗αt.

As in the proof of Theorem 4.2, it is enough to show that | 1t
∫

ϕndαt−
∫

ϕndβ| is
small for large enough fixed n and for t > t0(n) independently of the choice of the
step function ϕn. We note that

∫
ϕndαt =

∑n−2
i,j=1 pi,jαt(Ai,j) =

∑n−2
i,j=1 pi,jα

′
t(A

′
i,j)

where A
′
i,j = f(Ai,j) and pi,j is the value of ϕ at one point in Ai,j . Then

∣∣∣1
t

∫
ϕndαt −

∫
ϕndβ

∣∣∣ ≤
n−2∑

i,j=1

∣∣∣1
t
α
′
t(A

′
i,j)− f∗β(A

′
i,j)

∣∣∣

where by the definition α
′
t(A

′
i,j) = αt(Ai,j) and β(Ai,j) = f∗β(A

′
i,j). By Lemma

4.5,
∑n−2

i,j=1

∣∣∣ 1
t α

′
t(A

′
i,j)−f∗β(A

′
i,j)

∣∣∣ ≤ C(n)
t + 3

n because f(Ai,j) = A
′
i,j and f(En) =

E
′
n have similar properties as Ai,j and En by the Hölder continuity of f . The

theorem follows. 2

Corollary 4.2. Let αt be as in Theorem 4.3 and let ‖β‖ν = 1. Then 1
‖αt‖ν

αt → β

as t →∞ in the ν-norm.
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Proof. Similar to the proof of Corollary 4.1. 2

Theorem 4 follows directly from Corollary 4.2.
We consider the action of the quasiconformal mapping class group QMCG(X)

on T (X). The group QMCG(X) consists of all quasiconformal maps of ∆ onto
itself which conjugate Γ onto itself up to an equivalence relation. Two such maps
are equivalent if their extensions to S1 are equal after postcomposing one of them by
an element of Γ. For g ∈ QMCG(X) the action on T (X) is given by [f ] 7→ [f ◦g−1]
for [f ] ∈ T (X). We keep the same notation g for its extension to the boundary S1.
We define the action of g ∈ QMCG(X) on H(X) by

g∗W (ϕ) = W (ϕ ◦ g),

for all W ∈ H(X) and for all ϕ ∈ H(X). Then, for a measure α in H(X) we
get g∗α(ϕ) =

∫
ϕ ◦ g(x)dα(x). By substituting x = g−1(y) we get g∗α(ϕ) =∫

ϕ(y)dα(g−1(y)) and it implies that g∗α(ϕ) =
∫

ϕd(g∗α). Thus the action of g on
H(X) restricts to the usual action of g on T (X) ∪ PMLb(X).

We show that the action of g is continuous on H(X).

Theorem 4.4. The action of QMCG(X) on H(X) is continuous.
Proof. Let |W1(ϕ)−W2(ϕ)| < ε for all (ϕ,Q) ∈ test(ν). Function ϕ◦g has support
in g−1(Q). Let Θg−1(Q) be the Möbius transformation which maps −k, −1, 1 and
k onto g−1(a), g−1(b), g−1(c) and g−1(d), for a unique constant k > 1. We obtain

‖ϕ ◦ g ◦Θg−1(Q)‖νν1 ≤ ‖ϕ ◦ΘQ‖ν‖Θ−1
Q ◦ g ◦Θg−1(Q)‖ν

ν1

where 0 < ν1 ≤ 1 is equal to the Hölder exponent of g (see [13]). The Liouville
mass of the support of ϕ ◦ g is possibly greater than log 2. We can write ϕ ◦ g
as a sum of finitely many νν1-Hölder continuous functions each having support
with Liouville mass less than or equal to log 2. The number of such functions
depends on the Liouville measure of g−1(Q) which in turn depends on the constant
of quasiconformality of g and it is independent of Q. Consequently, there exists a
constant C > 0 such that

|g∗W1(ϕ)− g∗W2(ϕ)| = |W1(ϕ ◦ g)−W2(ϕ ◦ g)| < Cε.

Thus the action is continuous. 2

The inverse of the action of g ∈ QMCG(X) on H(X) is the action of g−1. The
action of QMCG(X) onH(X) restricts to the classical action on T (X)∪PMLb(X).
Thus Theorem 4.4 implies Theorem 3 of the Introduction.

Our description of a Thurston-type boundary for T (X) when X is infinite surface
differs from the original Thurston’s description for finite surfaces. We make a
”weak” connection between the two.

Let γ be simple closed geodesic on X and [f ] ∈ T (X). We define l[f ](γ) to be
the length of the unique geodesic in the homotopy class of f(γ) on f(X).

Theorem 4.5. Let [ft] ∈ T (X) such that [ft] → [β] as t → ∞, where [β] ∈
PMLb(X). Let γ be a simple closed geodesic on X such that β ∩ γ 6= ∅. Then

l[ft](γ) →∞
as t →∞.
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Proof. Let Γt be the covering group of Xt = ft(X). The length of the geodesic γt

in the homotopy class of ft(γ) is equal to the translation length of the corresponding
hyperbolic isometry At ∈ Γt. Let rt and at be the repelling and the attracting fixed
point of At. Similarly, let A ∈ Γ be a hyperbolic element which corresponds to γ
and, let r and a be the repelling and the attracting fixed point of A.

An elementary calculation shows that L([rt, xt]× [Atxt, at]) = log λt

λt−1 where λt

is the multiplier of At and xt = ft(x) for arbitrary x ∈ (r, a). Note that log λt is
the translation length of At, and log λt →∞ if and only if λt →∞.

To prove the theorem, it is enough to show that L([rt, xt] × [Atxt, at]) → 0 as
t →∞. Note that L([rt, xt]× [Atxt, at]) = αt([r, x]× [Ax, a]). We choose x ∈ (r, a)
such that β((x,Ax) × (a, r)) > 0. Then αt([x,Ax] × [a, r]) → ∞ as t → ∞. Since
each αt satisfies equation (2), we get that αt([r, x]× [Ax, a]) → 0 as t →∞. 2

The above connection is just in one direction. Namely, for a fixed [β] ∈ PMLb(X)
the condition l[ft](γ) → ∞ as t → ∞ for each simple closed geodesic γ on X such
that γ ∩ β 6= ∅ does not imply that [ft] converges to [β]. The main problem is that
we do not have enough simple closed geodesics on an arbitrary infinite surface X.

Appendix

We give several lemmas on the Liouville measure of a box under the action of a
hyperbolic isometry. Lemma A.2 and Lemma A.3 are similar to lemmas given in
[8] and [12]. Lemmas given here will be used in section 5.

In the next lemma we estimate the change in the Liouville measure of a box
under a simple left earthquake whose support is the geodesic located in the lower
left corner of the box.
Lemma A.1. Let a, b, c and d be points on S1 in the counter-clockwise order.
Denote by l the distance between the geodesic with endpoints a and d and the geodesic
with endpoints b and c. Let A be the hyperbolic translation with the repelling fixed
point a, with the attracting fixed point c and with the translation length βt. Then

L([a,A(b)]× [c, d]) = βt + log
(cosh l − 1

2
+ e−βt

)

and consequently,

βt + log
l2

4
≤ L([a,A(b)]× [c, d]) ≤ βt + L([a, b]× [c, d]).

Proof. For the simplicity of the computations we use the upper half plane H2.
Because L is invariant under the Möbius maps we can assume that a = 0, b > 0,
c = ∞ and d = −1. Then L([a, b]× [c, d]) = log(b + 1) and b = cosh l−1

2 , where l is
the distance between the geodesic with the endpoints a and d and the geodesic with
the endpoints b and c. By the same formula L([a, A(b)] × [c, d]) = log(eβtb + 1) =
βt + log

(
cosh l−1

2 + e−βt
)
. 2

In the following four lemmas we compare the Liouville measures of the images
of a box under the action of two simple left earthquakes.

In the next lemma we compare the Liouville measures of the images of a box
Q = [a, b]× [c, d] under two simple earthquakes E1 and E2 for measures β1 and β2

with their supports l1 and l2 in [b, c)×(c, d] where β1(l1) = β2(l2). If one component
of the complement of l2 contains l1 and c then the mass of E1(Q) for the Liouville
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measure is greater than or equal to the mass of E2(Q). Similarly, let E3 and
E4 be two simple earthquakes with supports l3, l4 ∈ [a, b) × (b, c], respectively. If
β3(l3) = β4(l4) and if one component of the complement of l3 contains l4 and b
then the mass of E3(Q) for the Liouville measure is greater or equal to the mass of
E4(Q).
Lemma A.2. Let a, g, g

′
, b, e

′
, e, c, f , f

′
and d be points on S1 given in the

counter-clockwise order. Let A be the hyperbolic translation with the repelling fixed
point e, with the attracting fixed point f and with the translation length λ > 0. Let
A
′
be the hyperbolic translation with the repelling fixed point e

′
, with the attracting

fixed point f
′

and with the translation length λ > 0. Let A1 be the hyperbolic
translation with the repelling fixed point g, with the attracting fixed point e and with
the translation length λ1 > 0. Let A

′
1 be a hyperbolic translation with the repelling

fixed point g
′
, the attracting fixed point e

′
and the translation length λ1. Then

L([a, b]× [A(c), d]) ≥ L([a, b]× [A
′
(c), d])

and

L([a, A1(b)]× [c, d]) ≥ L([a,A
′
1(b)]× [c, d]).

Proof. By Lemma A.1, the Liouville measure of [a, b]× [c, d] is an increasing func-
tion of the hyperbolic distance between geodesic with the endpoints a and d, and
the geodesic with the endpoints b and c. Thus it is enough to show that A(c)
lies between c and A

′
(c), and that A

′
1(b) lies between b and A1(b) for the given

counter-clockwise orientation of S1. But this is trivial. 2

Given Q = [a, b]× [c, d], let E1 and E2 be two simple earthquakes for measures
β1 and β2 with support geodesics l1 and l2 in [b, c] × [d, a], respectively. Assume
that β1(l1) = β2(l2) and that the endpoints in [d, a] of l1 and l2 are equal. Assume
that one component of the complement of l1 contains l2 and (c, d). We show that
E1(Q) has smaller or equal mass to E2(Q) for the Liouville measure. Let E3 and
E4 be two simple left earthquakes for measures β3 and β4 with supports l3 and l4
in [b, c] × [d, a], respectively. Assume that β3(l3) = β4(l4) and that the endpoints
in [b, c] of l3 and l4 are equal. We show that if one component of the complement
of l3 contains l4 and (c, d) then the mass of E3(Q) is greater than or equal to the
mass of E4(Q) for the Liouville measure.
Lemma A.3. Let a, b, x, y, c, d and e be points on S1 given in the counter-
clockwise order. Let Ax be the hyperbolic translation with the repelling fixed point
x, with the attracting fixed point e and with the translation length l. Let Ay be
the hyperbolic translation with the repelling fixed point y, with the attracting fixed
point e and with the translation length l. Let Ax be the hyperbolic translation with
the repelling fixed point e, with the attracting fixed point x and with the translation
length l. Let Ay be the hyperbolic translation with the repelling fixed point e, with
the attracting fixed point y and with the translation length l. Then

L([a, b]× [Ax(c), Ax(d)]) ≤ L([a, b]× [Ay(c), Ay(d)])

and

L([Ax(a), Ax(b)]× [c, d]) ≥ L([Ay(a), Ay(b)]× [c, d]).



30 DRAGOMIR ŠARIĆ

Proof. We use the upper half plane model model H2. By the invariance of L un-
der the Möbius maps we can assume that e = ∞. Let λ = el. Then L([a, b] ×
[Ax(c), Ax(d)]) = log [λ(c−x)+x−a][λ(d−x)+x−b]

[λ(d−x)+x−a][λ(c−x)+x−b] . The derivative of the above expres-
sion with respect to x is

λ(λ− 1)(d− c)
{ 1

[λ(d− x) + x− b][λ(c− x) + x− b]
−

1
[λ(d− x) + x− a][λ(c− x) + x− a]

}
.

It is positive for b < x < c and for λ > 1. Consequently, the expression L([a, b] ×
[Ax(c), Ax(d)]) is increasing in x. Hence the first inequality is proved. The second
inequality follows by applying Ax to the box [a, b]× [Ax(c), Ax(d)] and by applying
Ay to the box [a, b]× [Ay(c), Ay(d)] and noting that the Liouville measure is Möbius
invariant. 2

Let Q = [a, b] × [c, d]. Let E1 be a simple earthquake for measure β1 whose
support geodesic l1 has endpoints a and e ∈ [c, d]. Let E2 be a simple earthquake
for measure β2 whose support geodesic l2 has endpoints a

′
and e ∈ [c, d]. We

assume that β1(l1) = β2(l2). We show that the Liouville mass of E1(Q) is greater
than the Liouville mass of E2(Q).
Lemma A.4. Let a, a

′
, b, c, e and d be points on S1 given in the counter-clockwise

order. Let A be the hyperbolic translation with the repelling fixed point a, with the
attracting fixed point e and with the translation length l > 0. Let A

′
be the hyperbolic

translation with the repelling fixed point a
′
, with the attracting fixed point e and with

the translation length l > 0. Then

L([a, A(b)]× [A(c), d]) ≥ L([a,A
′
(b)]× [A

′
(c), d]).

Proof. We use H2 model and we can assume that e = ∞. Then computations
give L([a,A(b)] × [A(c), d]) = log

(
c−a
c−b

a−d+λ(b−a)
a−d

)
and L([a, A

′
(b)] × [A

′
(c), d]) =

log
[

c−a
′
+ 1

λ (a
′−a)

c−b
a
′−d+λ(b−a

′
)

a−d

]
. But a

′ − d + λ(b − a
′
) ≤ a − d + λ(b − a) and

c− a
′
+ 1

λ (a
′ − a) ≤ c− a for a

′ ≥ a and the conclusion follows. 2

Let Q = [a, b] × [c, d] and let E1 be a simple earthquake for measure β1 with
support geodesic l1 whose endpoints are a and c. Let E2 be a simple earthquake
for measure β2 with support geodesic l2 whose endpoints are a and c

′ ∈ (c, d). We
assume that β1(l1) = β2(l2). We show that the Liouville mass of E1(Q) is greater
than or equal to E2(Q).
Lemma A.5. Let a, b, c, c

′
and d be points on S1 given in the counter-clockwise

order. Let A be the hyperbolic translation with the repelling fixed point a, with
the attracting fixed point c and with the translation length l > 0. Let A

′
be the

hyperbolic translation with the repelling fixed point a, with the attracting fixed point
c
′
and with the translation length l > 0. Then

L([a,A(b)]× [c, d]) ≥ L([a,A
′
(b)]× [A

′
(c), d]).
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Proof. We use H2 model and we can assume that a = ∞. Let λ = el. The
multiplier for A and A

′
is 1

λ . Then computations give L([a, A(b)] × [c, d]) =

log
[

d−c+ 1
λ (c−b)

1
λ (c−b)

]
and L([a,A

′
(b)] × [A

′
(c), d]) = log

[
d−c

′
+ 1

λ (c
′−b)

1
λ (c−b)

]
. But d − c +

1
λ (c− b) ≥ d− c

′
+ 1

λ (c
′ − b) for c

′ ≥ c and the conclusion follows. 2
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