
REAL AND COMPLEX EARTHQUAKES

DRAGOMIR ŠARIĆ

Abstract. We consider earthquakes and bendings of the hyperbolic plane H2.
We show that an earthquake restricted to the unit circle S1 is a quasisymmetric
map if and only if its earthquake measure is bounded. Multiplying an earth-
quake measure by a positive parameter we obtain an earthquake path. Conse-
quently, earthquake paths with bounded measures are paths in the universal
Teichmüller space. We extend the real parameter for bounded earthquakes
into complex parameter with small imaginary part. Such obtained complex
earthquakes (or bendings) are holomorphic in the parameter. Moreover, bend-
ings with complex parameters of small imaginary parts when restricted to the
unit circle S1 are holomorphic motions of S1. In particular, this says that
real earthquake paths with bounded earthquake measures are analytic in their
parameters.

1. Introduction

Earthquakes are maps which change hyperbolic metrics on a surface. Thurston
[12] introduced earthquakes on closed surfaces as a certain completion of ”contin-
uous” left Dehn twists. He showed that any two hyperbolic metrics on a closed
surface are related by a unique earthquake. This fact is referred to as the earth-
quake theorem. An earthquake is uniquely determined by a measured lamination
called an earthquake measure. Multiplying the earthquake measure by a positive
parameter we get an earthquake path in the Teichmüller space of the initial surface.
Kerckhoff [13] showed that an earthquake path, for a closed surface, is analytic in
its parameter.

In a subsequent paper [18], Thurston gave a more direct proof of the earthquake
theorem. He defined earthquakes on the hyperbolic plane H2 and showed that any
homeomorphism of the unit circle S1 can be obtained by continuously extending a
unique earthquake of H2 to S1 (geology is transitive). The original earthquake theo-
rem is obtained from geology is transitive as follows. Any two hyperbolic structures
on a closed surface are related by a quasiconformal homeomorphism. Such homeo-
morphism, via universal covering of the surface, gives a Γ-invariant quasisymmetric
map h of S1, where Γ is the covering group. Conversely, any Γ-invariant quasisym-
metric map h of S1 gives a quasiconformal map of H2/Γ onto another hyperbolic
surface. An earthquake of H2 that realizes a Γ-invariant homeomorphism h of S1

is also Γ-invariant. It descends to an earthquake of the closed surface which relates
the two hyperbolic metrics establishing the earthquake theorem.

Thurston’s work on earthquakes in the hyperbolic planeH2 opened the possibility
of using earthquakes on infinite area hyperbolic surfaces. In particular, earthquakes

1991 Mathematics Subject Classification. Primary 30F60, 30F45, 32H02, 32G05. Secondary
30C62.

Key words and phrases. Earthquake, Transverse measure, Bending.

1



2 DRAGOMIR ŠARIĆ

could be used in Teichmüller spaces of infinite surfaces. This paper investigates
which earthquakes preserve Teichmüller spaces and how these earthquakes depend
on the parameter.

The Teichmüller space of the hyperbolic plane H2 is identified with the space
of quasisymmetric maps of S1 modulo post composition with Möbius maps. Thus,
our goal is to identify earthquakes whose continuous extensions to S1 are quasisym-
metric maps. An earthquake is uniquely determined, up to post composition with
a Möbius map, by a measured lamination which is called an earthquake measure.
If we multiply an earthquake measure λ with a positive parameter t, we obtain
a family of earthquake measures tλ. The corresponding family of earthquakes is
called an earthquake path with the parameter t. To talk about earthquake paths in
the Teichmüller space, we need to show that if an earthquake with the earthquake
measure λ extends to a quasisymmetric map of S1 then the whole earthquake path
with earthquake measures tλ, t > 0, consists of quasisymmetric maps of S1. The
following theorem characterize earthquake maps which give quasisymmetric maps
in terms of their earthquake measures.

Theorem 1. Let Eλ be an earthquake of H2 with earthquake measure λ. Then the
continuous extension of Eλ to S1 is quasisymmetric if and only if λ is bounded.

An earthquake measure λ is bounded if sup λ(I) < ∞ where the supremum is
over all geodesic arcs of length 1 in H2. It is immediate that if λ is bounded
then tλ is bounded. Thus t 7→ [Etλ|S1 ] is a path in the universal Teichmüller
space T (H2). If [Etλ|S1 ] is the Teichmüller class of Etλ|S1 in T (H2), it is enough to
prove Theorem 1 for the universal Teichmüller space T (H2), because an earthquake
preserves invariance with respect to the covering group. Consequently Theorem 1
holds for any hyperbolic surface.
Remark 1. One direction of the above theorem, was proved by Thurston [18].
Independently of the author, a version of Theorem 1 is proved by Gardiner, Hu and
Lakic [9], and by Hu [10].

It is natural to extend the real parameter t > 0 to a complex parameter τ . The
extended map τ 7→ Eτλ is called bending. We embed H2 as a vertical upper half-
plane above x-axis for the model C× {t|t > 0} of hyperbolic three space H3. The
bending map Eτλ : H2 → H3 is given by bending H2 according to the complex
measure τλ (see Epstein and Marden [5]). The map Eτλ : H2 → H3 trivially
extends to the boundary of flat pieces (connected components of the complement
of the geodesic lamination support of λ) and to the endpoints of the geodesics
in the support of λ on S1 = R̂. However, we show that it extends to the whole
boundary S1 of H2. Namely, Eτλ : R̂ → Ĉ is well defined for τ ∈ Sλ, where Sλ is
a neighborhood of R depending on λ. Without loss of generality we assume that
Eτλ(∞) = ∞.

Theorem 2. Let λ be a bounded earthquake measure. Then the earthquake map
(x, t) 7→ Etλ(x), x ∈ R and t > 0, extends to a holomorphic motion (x, τ) 7→
Eτλ(x), x ∈ R and τ ∈ Sλ, of the real line.

Remark 2. In the proof of Theorem 2 we analyze the bent plane Eτλ(H2) in H3.
It turns out that Eτλ(H2) divides H3 into two sets one of them being convex. The
convex set faces one of the two components of C−Eτλ(R) and the boundary of the
set in H3 is Eτλ(H2).
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By a theorem of Slodkowski [17], a holomorphic motion of a closed set in C can
be extended to a holomorphic motion of C. Thus (x, τ) 7→ Eτλ(x), x ∈ R and
τ ∈ Sλ, extends to (z, τ) 7→ Eτλ(z), z ∈ C and τ ∈ Sλ. By a theorem of Mañé,
Sad and Sullivan [15], Eτλ : C → C is quasiconformal, for a fixed τ ∈ Sλ. Let µτ

be the Beltrami coefficient of Eτλ in the upper half plane H2. Then τ 7→ [µτ ] is a
holomorphic map from Sλ to T (H2), where [µτ ] is the Teichmüller class of µτ in
T (H2). This map is called a complex earthquake and it agrees with McMullen’s
complex earthquake definition for finite surfaces with small imaginary part of the
parameter.

Corollary 1. Given a bounded measured lamination λ in H2 there is a well defined
complex earthquake τ 7→ [µτ ] for all parameters τ in a neighborhood Sλ of the real
line R. The complex earthquake is holomorphic and it extends the earthquake path
t 7→ [Etλ|R̂]. Consequently, the earthquake path is real analytic in the parameter.

Because we work with the universal Teichmüller space T (H2) our results are
more general than previous results [11],[13],[16]. They apply, in particular, to Te-
ichmüller spaces of arbitrary Riemann surfaces. They show that if we bend a small
amount the bent surface is convex, a result previously known for measured lami-
nations of finite surfaces [11]. Our results extend Kerckhoff’s result on analyticity
of earthquake paths for finite surfaces and McMullen’s result of holomorphicity of
complex earthquakes for finite surfaces to arbitrary hyperbolic surfaces.

There is a significant difference in techniques used for finite surfaces case and
for arbitrary surfaces case. Mainly, in the finite case the role of closed geodesics is
distinguished and they are used to approximate general laminations. In the infinite
case, we are forced to work in the hyperbolic plane were no closed geodesics exist.

The paper is organized as follows. In Section 2 we define earthquakes and earth-
quake measures, show that bounded measures correspond to earthquakes, and give
one direction of the proof of Theorem 1. In Section 3 we review the definition of
bending. In Section 4 we recall some theorems on holomorphic motions. Using
Theorem 2 and holomorphic motions we prove Corollary 1. Corollary 1 directly
proves the second direction of Theorem 1. In Section 5 we give main geometric
argument in this paper. It states that if the parameter has small imaginary part,
then the image of a geodesic ray under the bending is contained in a cone of a fixed
angle with vertex the initial point of the ray. In Section 6 we use the cone argument
to prove Theorem 2.

2. Earthquakes and earthquake measures

We define earthquakes and investigate their properties. All our discussions are
for the hyperbolic plane H2. The general theory for complete hyperbolic surfaces
follows from the fact that H2 is the universal covering of any complete hyperbolic
surface [18]. We begin with the definition of a geodesic lamination on H2. By a
geodesic in H2 we mean a geodesic infinitely continued in both directions.

Definition 2.1. A geodesic lamination L on H2 is a closed subset of H2 that is
written as a disjoint union of geodesics in H2. A flat piece of L is a connected
component of the complement of L in H2. A facet of L is either a geodesic of L or
a flat piece. The union of all facets of L covers H2.
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The union of all simple geodesics on a finite area hyperbolic surface has Hausdorff
dimension 1. In particular, the Lebesgue measure of a geodesic lamination on a
finite surface is zero. Also, a geodesic lamination on a finite surface can be written
in a unique way as a disjoint union of geodesics.

For H2 this is not true. In fact, a geodesic lamination L on H2 can fill the space.
For this reason we require that the decomposition of L into a disjoint union of
geodesics is a part of the above definition.

Definition 2.2. A measured lamination λ on H2 is given by the support geodesic
lamination |λ| and by the transverse measure to |λ|. In more details, we assign a
finite Borel measure to each closed finite length geodesic arc in H2 whose support is
on the transverse intersection of the arc with |λ|. The measure on arcs is required
to be invariant under homotopies preserving geodesics of |λ|.

We allow for positive, real or complex measured laminations depending on our
needs. Following Thurston [18], we give the definition of an earthquake.

Definition 2.3. An earthquake E is an injective map of H2 onto itself. The support
of the earthquake is a geodesic lamination L. On each facet of L, the earthquake E
is a Möbius map. For any two facets A and B, the map E|B◦(E|A)−1 is a hyperbolic
translation with axis separating A and B. Further, E|B ◦ (E|A)−1 translates to the
left as seen from A.

An earthquake is not necessarily a homeomorphism of H2. Thurston [18] showed
that an earthquake continuously extends to an orientation preserving homeomor-
phism of the boundary ∂∞H2 = S1 of H2. Conversely, any orientation preserving
homeomorphism of the unit circle S1 can be obtained by continuous extension of
an earthquake of H2 (geology is transitive). We use the upper half-plane model for
H2 and denote its boundary R̂ by S1, where R̂ = R ∪ {∞}.

If the support of an earthquake E is a lamination L with finitely many geodesic
then it is called a finite earthquake. Let l be a geodesic of L, and let A and B be flat
pieces adjacent to l. Then E|B ◦(E|A)−1 has to be a hyperbolic translation with the
axis l. We assign the translation length of E|B ◦ (E|A)−1 to l and obtain a positive
measured lamination λ with support L. Conversely, any positive finite measured
lamination λ corresponds to a unique finite earthquake up to some ambiguities
in the definition on isolated geodesics in |λ| and more importantly up to post
composition with a Möbius map [18].

Given a general earthquake E, there is associated positive measured lamination
λ as follows. The support of λ equals to the support of E. Let I be a closed geodesic
arc transversely intersecting the support of E with arbitrary orientation. For given
n, choose facets An = {A1, A2, . . . , An} of the support of E such that A1 contains
the left endpoint of I and An contains the right endpoint of I, and Ai intersect
I in the given order. The sum of the translation lengths of E|Ai+1 ◦ (E|Ai)

−1 for
i = 1, 2, . . . , n − 1 is the approximate measure of I. If n → ∞ and An are chosen
such that the union of their elements is dense in I, then the limit of approximate
measures for An is a well defined measure [18]. If the endpoints of I are not in the
interior of flat pieces some additional care in the definition is needed. The measure
of a point is the limit of measures of closed geodesic arcs transverse to the support
of E which contain the point, and which descend to the point. If the left endpoint
a of I is not on the flat piece of the support of E then we choose An such that A1
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does not contain a but it is close to a for n large. The mass of I is the limit of
approximate measures for An plus half of the mass for a. Similarly for the right
endpoint of I if it does not belong to a flat piece.

We call the associated positive measured lamination an earthquake measure.
Thurston [18] showed that earthquakes are uniquelly determined up to post com-
position with a Möbius map by the associated earthquake measure.

More generally, we call a positive measured lamination an earthquake measure.
An earthquake measure does not always give an earthquake, see examples in [19] and
[9]. In general, for a given earthquake measure λ there is a cocycle map Eλ from H2

to H2 which satisfies all the properties of an earthquake except possibly being onto,
see Epstein-Marden [5]. The cocyle for a given measure is constructed by taking
the limit of finite earthquakes corresponding to finite measure approximation to
the earthquake measure. More details on the construction of cocycles for (complex)
measured laminations is given in Section 3. A natural question is which measures
give an earthquake map. We give a sufficient condition which is not necessary.

Definition 2.4. An earthquake measure λ is bounded if sup λ(I) is finite, where
the supremum is over all unit length closed geodesic arcs in H2.

We give a lower bound estimate in terms of an earthquake measure λ on the dis-
tance between the images under the corresponding cocycle map Eλ for two geodesics
of |λ|, given their original distance.

Lemma 2.1. Let λ be an earthquake measure on H2 and Eλ be the corresponding
cocycle. Let l1 and l2 be two geodesics of |λ| whose distance is d. The distance d1

between Eλ(l1) and Eλ(l2) satisfies

(1) d1 ≥ C(d)e−λ(I)

where C(d) = d
cosh d+1 and λ(I) is the measure of a closed arc I which connects l1

and l2.
Proof. The hyperbolic metric on H2 is invariant under Möbius maps. Thus without
loss of generality, we can assume that l1 has endpoints 0 and ∞, and that l2 has
endpoints 1 and c, c > 1. We normalize Eλ by post composing it with a Möbius
map, if necessary, to be the identity on l1. Then Eλ(l1) = l1.

The cocycle Eλ is obtained by taking the limit of finite compositions of hyperbolic
translations with axis between l1 and l2 oriented to the left as seen from l1. It is
obvious that Eλ(l2) will be the closest to l1 if all hyperbolic translations in the
composition have the repelling fixed point 1 and the attracting fixed point ∞. In
this case Eλ(l2) is the geodesic with endpoints 1 and Mc, where M ≤ eλ(I).

A computation in the hyperbolic plane H2 gives cosh d = c+1
c−1 and cosh d1 =

Mc+1
Mc−1 . Then

d1 ≥ log cosh d1 = log
Mc + 1
Mc− 1

≥ 1
Mc

and
1
c

=
cosh d− 1
cosh d + 1

≥ d

cosh d + 1
= C(d).

We combine above inequalities to obtain (1). 2

We show that a bounded earthquake measure gives a cocyle which is an earth-
quake. This condition is not necessary.
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Proposition 2.1. Let λ be a bounded earthquake measure. Then there exists an
earthquake Eλ whose measure is λ.
Proof. As remarked above, we only need to show that Eλ : H2 → H2 is onto.

The union of facets of |λ| covers H2. The images of facets of |λ| under Eλ are
mapped into H2 and they inherit separation properties from |λ|. Assume that {li}
is a sequence of geodesics in |λ| and {Pi} a sequence of half-planes with boundary
li such that Pi+1 ⊂ Pi and the intersection of the closures of Pi in H2 ∪ S1, for all
i, is a unique point on S1. It is enough to show that for any such sequence {li},
the sequence {Eλ(li)} satisfies the same property. There are two possibilities for
{li}. Either all but finitely many geodesics li have a common endpoint or there
is a subsequence, denoted by {li} again, such that li and li+1 are on the positive
distance apart.

Assume that all li have a common endpoint x ∈ R̂. Transverse measure λ can
be considered as a measure on the space of geodesics of H2. We use this description
simultaneously with the transverse description for the simplicity of notation. Since
the distance between l1 to li is zero and λ is bounded, we conclude that the mass in
λ measure of all geodesics of |λ| which have one endpoint x is finite. Without loss
of generality, we can assume that li has endpoints ∞ and xi < 0, and xi > xi+1,
and xi → −∞ as i → ∞. Let Eλ be the identity on the geodesic with endpoints
0 and ∞. Then Eλ|li is the limit of finite compositions of hyperbolic translations
with axis between li−1 and li, and whose total translation length is λ(Ii) = ai,
where Ii is a closed geodesic arc connecting li−1 and li. By the above

∑∞
i=1 ai =

a < ∞. Then Eλ fixes ∞ and moves xi toward 0. An easy observation shows that
Eλ(xi) ≤ e−axi → −∞ as i → ∞. Consequently, Eλ(xi) → −∞ as i → ∞ which
proves the claim in this case.

Assume that we are in the second case. Namely, there exists a nested sequence
{li} of geodesics of |λ| with the following properties. The hyperbolic plane H2 is
divided into two hyperbolic half-planes by each li. Let Pi be the hyperbolic half-
plane which contains li+1. The intersection of closures of Pi in H2 ∪ S1 equals a
point x ∈ S1. By choosing possibly different sequence {li} of |λ| we arrange that
the distance between all consecutive li and li+1 is in the interval [1, 2] as follows. If
two consecutive geodesics li and li+1 are on the distance larger than 2, then we add
to the sequence geodesics with zero mass in between li and li+1. If li and li+1 are
on the distance less than 1, then there exists lj , j > i + 1, such that the distance
between li and lj is greater than or equal to 1. Then we replace li+1 by lj and
proceed as above. It remains to show that for each li there exists lj , j > i, on the
distance greater than or equal to 1. If not, there are two possibilities. Either all
lj , j > i, are on the distance 0 from li or there is lj , j > i, on the distance greater
than 0 from li. The first possibility is in the contradiction with the fact that x is
not on the boundary of Pi. If the second possibility holds then the set lk, k > j,
is compact because lj separates li and lk, the distance between lj and li is greater
than 0, and the distance between li and lk is less than 1. Consequently, lk do not
accumulate on x ∈ R̂ which gives contradiction.

It is enough to show that the distance between the images of l1 and li under Eλ

goes to infinity as i →∞. The distance between l1 and li is greater than the sum of
distances between lj and lj+1 for j = 1, 2, . . . , i− 1. Let Ij be a closed geodesic arc
connecting lj and lj+1, and let dj be the distance between lj and lj+1. By Lemma
2.1, the above sum is bounded below by

∑i−1
j=1 e−λ(Ij)C(dj) ≥ Ce−2‖λ‖(i− 1) →∞
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as i →∞. The constant C > 0 exists because C(d) is a positive continuous function
for d > 0 and dj ∈ [1, 2]. This establishes the proposition. 2

We prove that bounded earthquake measures give quasisymmetric maps and
conversely, quasisymmetric maps determine earthquakes with bounded measures.
This allows us to consider earthquakes as elements of the universal Teichmüller
space T (H2).

Proof of Theorem 1. Let Eλ|S1 be quasisymmetric and assume on the contrary
that λ is not bounded. Thus, there exists a sequence of closed geodesic arcs In such
that the length of In converges to 0 and λ(In) → ∞ as n → ∞. This follows by
the use of Cantor diagonalization process.

Choose an arbitrary orientation of In. Let ln1 and ln2 be geodesics of |λ| which
intersect In closest to or at its left and right endpoints, respectively. Post compose
Eλ with a Möbius map such that its restriction to ln1 is the identity and call it Eλ

again. We conjugate Eλ with a Möbius map γn such that γn(ln1 ) is the geodesic with
endpoints 0 and ∞, and γn(ln2 ) is the geodesic with endpoints 1 and cn, cn > 1.
We obtain a new earthquake En = γn ◦ Eλ ◦ γ−1

n . Let f be a quasiconformal
extension of Eλ|S1 to H2. Then fn = γn ◦ f ◦ γ−1

n is a quasiconformal extension
of En|S1 = γn ◦ Eλ|S1 ◦ γ−1

n to H2. The quasiconformal constant of fn is equal to
the quasiconformal constant of f . Consequently, fn|S1 is quasisymmetric with the
same constant as f |S1 and each En is the identity on the geodesic with endpoints
0 and ∞. Thus fn(∞) = ∞ and fn restricts to a map of R onto itself.

We prove that the quasisymmetric constant of fn : R → R tends to infinity as
n →∞ which is a contradiction to the above, see [1]. By our normalization, γn(ln2 )
has fixed points 1 and cn such that cn → ∞ as n → ∞. Clearly, fn(0) = 0 and
−2 ≤ fn(−2) < 0 because En is a left earthquake. Since λ(In) →∞, it is also true
that fn(2) →∞ as n →∞. Thus the ratio

fn(2)− fn(0)
fn(0)− fn(−2)

→∞

as n →∞. This shows that the constant of quasisymmetry of fn tends to infinity.
The contradiction proves that λ is bounded.

To prove the opposite direction we assume that λ is bounded. In Proposition 1,
we showed that Eλ is an earthquake. It remains to show that Eλ|S1 is quasisym-
metric. A direct proof of this fact is certainly possible. However, our results in
what follows establish the proof so we omit it at this point. 2

Let λ be a bounded earthquake measure. The corresponding earthquake Eλ

when restricted to S1 is a quasisymmetric map. An earthquake measure corre-
sponds to the class of quasisymmetric maps where two maps are equivalent if they
differ by a post composition with a Möbius map. Our interest is T (H2) and we
do not distinguish between equivalent quasisymmetric maps. Consequently to each
earthquake measure there corresponds a unique point of T (H2). By the abuse of
notation, we say that two earthquakes are the same if their continuous extensions to
S1 differ by a post composition with a Möbius map. Multiplying λ with a positive
parameter t, we obtain a path of bounded earthquake measures. The corresponding
earthquakes Etλ form an earthquake path t 7→ [Etλ|S1 ] in T (H2).
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We note that for arbitrary hyperbolic surfaces X, there is a covering group
equivariance of earthquake measures and corresponding homeomorphisms of S1.
Thus we obtain an earthquake path t 7→ [Etλ|S1 ] in T (X).

3. Bending measure and cocycle

We extend the positive parameter t for earthquake path t 7→ [Etλ|S1 ] into a
complex parameter τ . For an earthquake measure λ0 and a complex parameter
τ ∈ C, τλ0 is a complex measured lamination of special form (positive measure
times complex number). We consider a general complex measured lamination.

Definition 3.1. A bending measure λ is a complex Borel transverse measure to a
fixed geodesic lamination |λ|, called the support of λ.

Thurston introduced bending cocycle Eλ : H2 → H3 for a bending measure
λ. Following Epstein-Marden [5] we take the upper half-space model {(z, t) : z ∈
C, t > 0} of the hyperbolic 3-space H3. The hyperbolic plane H2 is embedded in
H3 as the euclidean half-plane orthogonal to the x-axis in C. The boundary of H3

is Ĉ = C ∪ {∞} and the boundary of H2 is R̂ = R ∪ {∞}.
Denote by T a

l∗ a hyperbolic isometry of H3 given by the matrix
(

e
a
2 0
0 e−

a
2

)
∈ SL(2,C),

where l∗ denotes the hyperbolic geodesics in H3 with endpoints 0 and ∞, and a
is the translation length. For any oriented geodesic l, denote by M ∈ SL(2,C) a
hyperbolic isometry which maps the initial point of l to 0 and the terminal point
of l to ∞. Define T a

l = M−1 ◦ T a
l∗ ◦M ∈ SL(2,C).

Assume that |λ| is finite. Then λ is given by an assignment of complex numbers
to each geodesic of |λ|. Let A be a fixed flat piece of |λ|. We define Eλ|A = id. Let
B be any other flat piece. We connect A to B by a geodesic arc c. Let l0, l1, . . . , ln
be geodesics of |λ| which intersect c in the given order from A to B. We orient
them to the left as seen from A. Let a0 = λ(l0), a1 = λ(l1), . . . , an = λ(ln). Let
A0 = A,A1, . . . , An, An+1 = B be flat pieces along c in the given order. Define a
bending cocycle Eλ|B = T a0

l0
◦T a1

l1
◦ · · · ◦T an

ln
and Eλ|ln = T a0

l0
◦T a1

l1
◦ · · · ◦T

an
2

ln
. We

consider Eλ and M ◦Eλ, where M is a Möbius map, as equivalent cocycles and do
not distinguish between them.

Let

M =
( a b

c d

)
∈ SL(2,C).

Define the norm of M by ‖M‖ = max{|a|+ |b|, |c|+ |d|}.
Assume that λ is an arbitrary bending measure. Then |λ| could fill out H2.

We fix a facet A of |λ| such that A is either a flat piece or a geodesic of |λ| with
λ(A) = 0. Define Eλ|A = id. Let B be an arbitrary facet of |λ| and c be a geodesic
arc connecting A to B.

We choose a sequence of finite approximations to λ on the part which intersects c.
Fix n and choose points C0, C1, . . . Ck(n) on c with the following properties. Points
C0 and Ck are the endpoints of c, the distance between Ci−1 and Ci is less than 1

n ,
and λ(Ci) = 0 for i = 1, 2, . . . , k− 1. If λ([Ci−1, Ci]) 6= 0 for i = 1, 2, . . . , k− 1 then
we choose one geodesic of |λ| which intersects [Ci−1, Ci] and assign to it weight
λ([Ci−1, Ci]). If λ([Ck−1, Ck]) 6= 0 then we choose one geodesic which intersects
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[Ck−1, Ck] and assign to it weight λ([Ck−1, Ck)) + 1
2λ(Ck). We constructed a finite

approximation λn of λ. Let Eλn be a bending cocycle for λn which is the identity
on the facet containing C0.

Epstein-Marden [5] showed that Eλn |B converges in the norm as n tends to
infinity. The convergence is independent of the choice of a sequence. We define
Eλ|B = limn→∞Eλn |B .

4. Holomorphic Motions

We describe needed results on holomorphic motions and apply them to our sit-
uation. To begin, we give the definition of a holomorphic motion of a closed subset
of C. Let ∆ be the open unit disk and Λ be a fixed closed subset of C.

Definition 4.1. A map F : ∆ × Λ → C, given by F (τ, z) = fτ (z) for τ ∈ ∆ and
z ∈ Λ, is a holomorphic motion of Λ in C if the following are satisfied:
1. f0(z) = z for all z in Λ,
2. for a fixed τ ∈ ∆, the map z 7→ fτ (z) is injective on Λ,
3. for a fixed z ∈ Λ, the map τ 7→ fτ (z) is holomorphic in ∆.

Note that in the above definition we require that the parameter for a holomorphic
motion is in the unit disk ∆. In Theorem 2, the parameter is not in the unit disk
but in a neighborhood Sλ of the real line. By pre-composition of F with a Riemann
mapping for Sλ which maps 0 to 0, we can arrange that the parameter is in ∆. Thus
we do not have to require this in the definition.

When τ = 0 in the situation in Theorem 2, the earthquake with zero measure
E0λ = E0 is the identity on R. Thus to show Theorem 2, we need to show that the
bending cocyle extends to an injective map on R, for a fixed parameter τ , and the
extension is a holomorphic map in the parameter τ ∈ ∆, for a fixed x ∈ R. We give
the proof of these properties in the next two sections. In the rest of this section we
prove Corollary 1.

Proof of Corollary 1. Slodkowski [17] showed that any holomorphic motion of
a closed set Λ in C can be extended to a holomorphic motion of C. Mañé, Sad
and Sullivan [15] proved that if fτ (z) is a holomorphic motion of C then fτ0 is a
quasiconformal map of C, for any fixed τ0 ∈ ∆. Further, if µτ is the Beltrami
differential of fτ , then the map τ 7→ µτ from ∆ into the open unit ball of L∞(∆) is
holomorphic. By taking Teichmüller class of µτ the above map gives a holomorphic
map of ∆ into the universal Teichmüller space T (H2).

Note that we assume Eτλ(∞) = ∞ and consequently Eτλ maps R into C. By
Theorem 2, (x, τ) 7→ Eτλ(x) is a holomorphic motion of R with the parameter
τ in a neighborhood Sλ of the real line. If we take an open simply connected
neighborhood of R which is contained in Sλ, then by Slodkowski’s theorem there
exists an extension to the holomorphic motion of C. Further, by theorem of Mañé,
Sad and Sullivan, the map τ 7→ [µτ ] is holomorphic, where µτ is the Beltrami
coefficient of the extension of the holomorphic motion restricted to the upper half-
plane H2. Consequently, the restriction to the real parameter t = Re(τ) is analytic
map into the Teichmüller space. Namely, real earthquake paths are real analytic
paths in the Teichmüller space. 2

Remark 4.1. We claim that Corollary 1 remains true for earthquake paths in
Teichmüller spaces of arbitrary hyperbolic surfaces. Assume that λ is invariant for
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the covering group Γ of a hyperbolic surface X. Then for any γ ∈ Γ there exists a
Möbius map γτ such that

(2) Eτλ(γ(x)) = γτ (Eτλ(x))

for all x ∈ R̂, see [5]. It is enough to show that there exists an extension of the
holomorphic motion (x, τ) 7→ Eτλ(x) of R̂ to a holomorphic motion (z, τ) 7→ Eτλ(z)
of Ĉ which satisfies (2). This is proved by Earle-Kra-Krushkal [4] using Slodkowski’s
theorem.

5. Geometry of small bendings

In this section we investigate the properties of bending cocyles when the bending
measure is purely imaginary with small norm. The main result in this section
describes the image of a ray under the bending cocycle as seen from the image of
the initial point of the ray.

It will be convenient to consider a unit tangent bundle T 1H3 of H3 given in
coordinates (ζ, v), where ζ ∈ H3 and v is a unit tangent vector at ζ. The distance
between two points (ζ1, v1) and (ζ2, v2) in T 1H3 is given by

dT 1H3((ζ1, v1), (ζ2, v2)) = dH3(ζ1, ζ2) + ‖v′1 − v2‖T 1
ζ2
H3

where v
′
1 is the parallel transport of v1 at point ζ2 along the geodesic connecting ζ1

and ζ2.
Epstein-Marden [5] relate the distance in the norm between A ∈ SL(2,C) and

the identity I ∈ SL(2,C) to the action of A on T 1H3. The lemma is originally
stated for H2 but the same proof works for H3.

Lemma 5.1. For a compact subset K of H3, there exists a constant C which sat-
isfies the following. Let ζ0 ∈ K and A ∈ SL(2,C) such that A(ζ0) ∈ K. Then

‖A− I‖
C

≤ dT 1H3((ζ0, v0), A(ζ0, v0)) ≤ C‖A− I‖
for any unit tangent vector v0 at ζ0.2

We consider a neighborhood of a geodesic in H3 given by all points at the distance
less than a fixed constant. For each point in the neighborhood we take the circle of
unit tangent vectors and call the obtained set a crescent. More precisely,

Definition 5.1. Let l be a geodesic in H3 and d > 0 be given. A crescent of width
d around geodesic l is

D(l; d) = {(ζ, v) ∈ T 1H3|distance from ζ to l is
less than or equal to d in the hyperbolic metric of H3}.

We estimate the action on a crescent around geodesic l of an element of SL(2,C)
with axis l.
Lemma 5.2. Given d > 0 and δ > 0 there exists a constant M which satisfies the
following. Let T = T a

l ∈ SL(2,C) be a hyperbolic isometry with axis l and with the
translation length a, |a| ≤ δ. Then

dT 1H3(p, T (p)) ≤ M |a|
for all p ∈ D(l; d).
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Proof. Since the metric dT 1H3 is invariant under the action of elements of SL(2,C),
we can assume that l is a geodesic with endpoints 0 and ∞, and that p = (ζ, t) with
ζ = (z, 1) ∈ H3. Let B(l; d) = {ζ ∈ H3; distance from ζ to l is less than or equal to
d in the hyperbolic metric of H3} ⊂ H3. Note that D(l; d) ⊂ T 1H3 is obtained by
taking the unit circle of tangent vectors at each point of B(l; d). Define K =
B(l; d) ∩ {(z, t); e−|a| ≤ t ≤ e|a|}. Then ζ = (z, 1) and T (ζ) are in K. Because of
the normalization, it is clear that ‖T − I‖ is less than or equal to a constant times
|a|. The lemma follows by an application of Lemma 5.1. 2

Let r be a geodesic ray which starts at ζ ∈ H3 and let α be a real number such
that 0 < α < π. A hyperbolic cone C(ζ, r, α) is the set of all η ∈ H3 such that the
geodesic ray starting at ζ through η makes an angle less than α with r. The angle
is measured from 0 to π. The boundary of C(ζ, r, α) consists of all η ∈ H3 such that
the angle between r and the geodesic ray starting at ζ through η equals α. The
shadow of C(ζ, r, α) consists of all z ∈ Ĉ such that the geodesic ray connecting ζ

to z lies in C(ζ, r, α). The shadow of a hyperbolic cone is a circle on Ĉ.
A point (ζ, v) ∈ T 1H3 uniquely determines a geodesic ray rv starting at ζ and

tangent to v. Conversely, a geodesic ray r starting at ζ gives a point (ζ, v) ∈ T 1H3

where v is the tangent vector to r at ζ. Then we define C(ζ, v, α) = C(ζ, rv, α).
We generalize a cone argument of Keen-Series [11] to our situation. They used

the geometry of cones for finite surfaces and we use similar argument for general
hyperbolic surfaces. Our goal is to prove that the image of a ray under the bending
map is contained in a hyperbolic cone for small enough pure imaginary bending
measure. We divide the argument into several lemmas.

The following lemma relies on elementary hyperbolic geometry.

Lemma 5.3. Given α, 0 < α < π, and a geodesic ray r starting at ζ ∈ H3 there
exists a number β, β > α, such that cone C(ζ1, r1, β) is contained in C(ζ, r, α),
where ζ1 ∈ r is a point at the distance 1 from ζ and r1 is a sub-ray of r starting at
ζ1. Moreover, the difference β − α > 0 depends only on α.
Proof. Let P be an arbitrary geodesic plane in H3 which contains r. Denote by l
one of the two geodesic rays of the boundary of C(ζ, r, α) which are contained in
P . Let z ∈ Ĉ be the endpoint of l. Form a hyperbolic triangle T with vertices ζ,
ζ1 and z. The triangle T has a zero angle at z. We choose β to be equal to the
exterior angle of T at ζ1. Consequently C(ζ1, r1, β) ⊂ C(ζ, r, α).

By the Gauss-Bonnet theorem the sum of the the angles in T is less than π,
namely α + (π − β) + 0 < π. This gives β > α. The length of the finite side [ζ, ζ1]
is 1. Thus, by a formula from hyperbolic trigonometry, the difference β − α > 0
depends only on α. 2

Let v be the tangent vector at ζ to a geodesic ray r with the initial point ζ. Take
ζ1 ∈ r at the distance 1 from ζ. Denote by r1 a sub-ray of r starting at ζ1 and
by v1 a tangent vector to r1 at ζ1. Given a bending measure λ, let A and A1 be
facets of |λ| which contain ζ and ζ1, respectively. Maps Eλ|A and Eλ|A1 are the
restrictions of the bending cocycle to A and A1. Thus they are Möbius maps and
we can consider their actions on T 1H3, not only on A and A1.

Lemma 5.4. Given δ > 0 there exists a constant M such that for all bending
measures λ with ‖λ‖ < δ,

dT 1H3(Eλ|A(ζ1, v1), Eλ|A1(ζ1, v1)) ≤ M |λ([ζ, ζ1])|
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where (ζ, v), (ζ1, v1), A and A1 are as above.
Proof. Without loss of generality, we assume that Eλ|A = id. Then Eλ|A1 is
the limit of cocyles with finite bending measure approximations λn of λ along
[ζ, ζ1] which are the identity on the facet containing A. Let {l1, l2, . . . , lk} be the
support of λn and ai = λn(li). Then Eλn |A1 = T a1

l1
◦ T a2

l2
◦ · · · ◦ T ak

lk
and Eλ|A1 =

limn→∞Eλn |A1 .
By the invariance of the metric on T 1H3 under Möbius maps and using Lemma

5.2 with d = 1, we get

dT 1H3(T a1
l1
◦ T a2

l2
◦ · · · ◦ T

ai−1
li−1

(ζ1, v1), T a1
l1
◦ T a2

l2
◦ · · · ◦ T ai

li
(ζ1, v1)) ≤ M |ai|

for a fixed constant M and for each i = 2, 3, . . . , k.
The triangle inequality combined with the above inequality gives

dT 1H3((ζ1, v1), Eλn(ζ1, v1)) ≤ M

k∑

i=1

|ai|.

Since the inequality holds for each finite approximation and
∑k

i=1 |ai| = λ([ζ, ζ1])
by the definition of λn, the lemma follows. 2

We prove the main result of this section. A purely imaginary bending measure
λ has constant sign if either Im(λ(I)) ≥ 0 or Im(λ(I)) ≤ 0 for each closed finite
length geodesic arc I.

Proposition 5.1. Given α, 0 < α < π, there exists ε > 0 which satisfies the
following. For any purely imaginary bending measure λ of constant sign with ‖λ‖ <
ε, the image under the bending cocycle Eλ of a geodesic ray rv, starting at ζ ∈ H3

and tangent to v ∈ T 1
ζH3, is contained in cone C(Eλ(ζ, v), α).

Proof. We assume without loss of generality that the bending cocycle restricted to
the facet containing ζ equals the identity.

Let ζi, i = 0, 1, 2, . . . be points on the ray r in the given order such that ζ0 = ζ
and the distance between ζi and ζi+1 equals 1. Denote by vi the tangent vector to
r at ζi and by Ai the facet of |λ| which contains ζi.

Then Eλ|Ai+1 = Eλ|Ai ◦ Ei, where Ei is the restriction to Ai+1 of a bending
cocycle for λ normalized to be the identity on Ai. By Lemma 5.4, the distance
between Eλ|Ai+1(ζi+1, vi+1) and Eλ|Ai(ζi+1, vi+1) is less than M‖λ‖, for all bending
measures λ such that ‖λ‖ < δ.

We show that the cone C(Ei(ζi+1, vi+1), α) is inside the cone C(ζi, vi, α). This
implies C(Eλ(ζi+1, vi+1), α) ⊂ C(Eλ(ζi, vi), α), because above cones are mapped
onto C(Eλ(ζi+1, vi+1), α) and C(Eλ(ζi, vi), α) by Eλ|Ai .

By the invariance under Möbius maps, we can assume that ζi = (0, 0, 1) ∈ H3,
ζi+1 = (0, 0, e−1) ∈ H3 and vi, vi+1 are unit tangent vectors to the oriented geodesic
connecting ∞ to 0 at points ζi, ζi+1. The shadow of cone C(ζi+1, vi+1, β) is a disk
with center at the origin of C. The shadow of C(ζi+1, vi+1, α) is contained in the
interior of the shadow of C(ζi+1, vi+1, β). In particular, the boundary circle Cα of
the shadow of C(ζi+1, vi+1, α) is at the positive distance from the boundary circle Cβ

of the shadow of C(ζi+1, vi+1, β). Since dT 1H3(Ei(ζi+1, vi+1), (ζi+1, vi+1)) ≤ M‖λ‖,
by choosing ε > 0 small enough we arrange for Ei to be as close as we want to the
identity for ‖λ‖ < ε. Because Cα and Cβ are compact sets, we choose ε such that
Ei(Cα) ∩ Cβ = ∅. Consequently the shadow of C(Ei(ζi+1, vi+1), α) is contained in
the shadow of C(ζi+1, vi+1, β). The above inclusion, Eλ(ζi+1) ∈ C(ζi, vi, α) and
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C(ζi+1, vi+1, β) ⊂ C(ζi, vi, α) implies

C(Ei(ζi+1, vi+1), α) ⊂ C(ζi, vi, α)

for ε small enough.
We prove that Eλ([ζi, ζi+1]) is contained in cone C(Eλ(ζi, vi), α). A cone is a

convex set and the endpoints of Eλ([ζi, ζi+1]) are in the cone C(Eλ(ζi, vi), α). Since
the bending is in only one direction (λ has constant sign), we get Eλ([ζi, ζi+1]) ⊂
C(Eλ(ζi, vi), α).

Each cone C(Eλ(ζi+1, vi+1), α) is contained in the previous cone C(Eλ(ζi, vi), α)
and all of them are contained in the first cone. Consequently, bent geodesic ray
Eλ(r) is contained in the first cone C(Eλ(ζ, v), α). 2

Remark 5.1. The image of a ray r under Eλ is a bent geodesic. If ri is a sub-ray of
r with initial point ζi and with the unit tangent vector vi, then Eλ(ri) is contained
in cone C(Eλ(ζi, vi), α). The sequence of cones C(Eλ(ζi, vi), α), i = 0, 1, 2, . . . is
nested. If we allow for λ to change sign, we can still get Proposition 5.1 by further
decreasing ε > 0.

A bending cocycle is defined on the boundary of facets on S1 = R̂ by a simple
extension. Assume that the endpoint of r is not on a facet of |λ|. In order to show
that the bending cocycle continuously extends to the endpoint of r, we could show
that vertices of nested cones leave any compact subset of H3. Then the shadows
of the cones would converge to a single point in Ĉ. Such property is not hard to
prove [11].

Instead of proving it, in the next section we use properties of holomorphic maps
to show that bending cocycle extends to all points of S1 = R̂.

6. Conclusions

We use Proposition 5.1 to prove Theorem 2. In order to do that we divide the
bending cocycle Eλ into earthquake cocycle and pure bending cocycle.

A hyperbolic isometry T a
l with the axis l and with the translation length a =

Re(a)+iIm(a) can be written as a composition T a
l = T

iIm(a)
l ◦TRe(a)

l of a hyperbolic
translation and rotation. Assume that λ is a finite bending measure. Let A be a
facet of |λ| such that Eλ|A = id. Let B be any other facet of |λ| and {l1, l2, . . . , lk}
be geodesics of |λ| which separate A from B in the given order. Define ai = λ(li).
Then

Eλ|B = T a1
l1
◦ T a2

l2
◦ · · · ◦ T ak

lk
.

If a, b ∈ R and l1, l2 are two geodesics, then it is elementary to show that

T a
l1 ◦ T ib

l2 = T ib
l∗2
◦ T a

l1

where l∗2 = T a
l1

(l2). We use the above to write

Eλ|B = (T iIm(a1)
l∗1

◦ T
iIm(a2)
l∗2

◦ · · · ◦ T
iIm(ak)
l∗k

) ◦ (TRe(a1)
l1

◦ T
Re(a2)
l2

◦ · · · ◦ T
Re(ak)
lk

)

where l∗i = T
Re(a1)
l1

◦ T
Re(a2)
l2

◦ · · · ◦ T
Re(ai−1)
li−1

(li).
If λ is a non-finite bending measure, then Eλ|B is the limit of finite bending

cocycle approximation. By taking limit in the above equality, we get

Eλ|B = EiIm(λ∗)|B′ ◦ ERe(λ)|B
where λ∗ = (ERe(λ))∗(λ) is the push-forward of λ by ERe(λ) and B

′
= ERe(λ)(B).
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Since λ∗ has different support from λ, its norm is changed. We give an upper
bound estimate on the norm of λ∗.

Lemma 6.1. Let λ be a bounded bending measure and let λ∗ = (ERe(λ))∗(λ) be the
push-forward of λ. There exists C > 0 such that

‖λ∗‖ ≤ Ce‖λ‖‖λ‖.

Proof. Let {li}i∈Ind be geodesics of |λ| which have one endpoint in common. Then
|λ(∪i∈Indli)| < ∞ because λ is a bounded measure. The push-forward geodesics
{l∗i = ERe(λ)(li)}i∈Ind of |λ∗| also have one endpoint in common and

(3) λ∗(∪i∈Indl
∗
i ) = λ(∪i∈Indli).

We estimate the norm of λ∗. Let I∗ be a closed geodesic arc of length 1. Denote
by A∗ and B∗ facets of |λ∗| which contain endpoints of I∗. Let A and B be
corresponding facets of |λ| and take a closed geodesic arc I which connects A to B.
There are two possibilities for I. Either all geodesics of |λ| which intersect I have
one common endpoint or at least two of them are at a positive distance apart.

In the first case, by (3) we get |λ∗(I∗)| ≤ ‖λ‖.
Assume that we are in the second case. Give an arbitrary orientation to I. Let

l and r be geodesics of |λ| which intersect I closest to its left and right endpoints,
respectively. Choose geodesic {l1 = l, l2, . . . , lk = r} of |λ| intersecting I in the
given order and which satisfy the following. Each li and li+1 are at the positive
distance apart. Denote by Ii the closed geodesic arc orthogonal to li and li+1. We
require that the length of each Ii is at least 1 and |λ(Ii)| ≤ 2‖λ‖. Let l∗i = ERe(λ)(li)
and I∗i be the closed geodesic arc orthogonal to l∗i and l∗i+1.

Denote by dist(l∗, r∗) the distance between geodesics l∗ = l∗1 and r∗ = l∗k, and
by length(I∗i ) the length of a closed geodesic arc I∗i . Then, by Lemma 2.1, we get

dist(l∗, r∗) ≥
k−1∑

i=1

length(I∗i ) ≥ (k − 1)C(1)e−‖λ‖

where C(1) ≥ 1
2 and dist(l∗, r∗) ≤ 1. Consequently, we get k − 1 ≤ 2e‖λ‖ because

dist(l∗, r∗) ≤ length(I∗) = 1.
By the definition of push-forward

λ∗(I∗) ≤
k−1∑

i=1

λ(Ii) ≤ 2(k − 1)‖λ‖

which together with above gives

‖λ∗‖ ≤ 4e‖λ‖‖λ‖.
2

We are ready to prove Theorem 2.

Proof of Theorem 2. From now on λ is a bounded earthquake measure. In
particular, it is positive. We define a neighborhood of the real line where the
complex parameter τ = t + is will take its values.

By the previous remarks, we can write Eτλ = Eisλ∗ ◦Etλ where λ∗ = (Etλ)∗(λ).
Bending cocycle Eτλ is normalized to be the identity on a facet A whose boundary
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contain ∞. In particular, Eτλ(∞) = ∞. We fix α, 0 < α < π
2 , and take ε > 0 from

Proposition 5.1. By Lemma 6.1, we have ‖isλ∗‖ ≤ |s|Ce‖tλ‖‖λ‖. Define

Sλ = {τ = t + is; |s| < ε

Ce‖tλ‖‖λ‖}.

We fix a point x ∈ R and define Eτλ(x). If x is on the boundary of a facet then
Eτλ(x) is given by the cocycle and by Epstein-Marden [5] it is holomorphic in τ .

Assume that x is not on a facet of λ. Then there exists a sequence of nested
geodesics li such that they converge to x. We connect a fixed facet A of λ, where
Eτλ|A = id, to Etλ(x) = xt by a family of geodesic rays rt with initial point ζ ∈ A.
Define an open set V in C to consists of the union of all shadows of cones C(ζ, rt, α)
for t ∈ R. Since 0 < α < π

2 the complement of V in C contains at least three points.
Let λn be the restriction of λ to geodesic of |λ| which intersect r0 between ζ and ln.
By Proposition 5.1, Eisλ∗n(rn

t ) is contained in the cone C(ζ, rn
t , α) where rn

t is the
ray with initial point ζ and endpoint xn

t = Eτλn(x) ∈ R. Thus Eisλ∗n(xn
t ) is in V .

For each n, point xn
t is on a facet of λ∗n and consequently Eτλn(x) is holomorphic in

τ by [5]. In addition, by the above Eτλn(x) ∈ V . The family of holomorphic maps
τ 7→ Eτλn(x) is normal by Montel’s theorem and it has a convergent subsequence.
For τ real, Eτλ is an earthquake. Thus, for any two convergent subsequences, their
limits agree for τ real. By the uniqueness of holomorphic maps, the limit is unique
for the whole sequence and we denote it by Eτλ(x).

It remains to show that Eτλ : R → R is injective for any τ ∈ Sλ. This is
again a consequence of Proposition 5.1. Let x 6= y be two points of R and define
x1 = Etλ(x) and y1 = Etλ(y). Then x1 6= y1 because earthquakes are injective.
Take a geodesic l connecting x1 and y1, and fix ζ ∈ l. Let vx and vy be the
unit tangent vectors to l at ζ in the directions of x1 and y1, respectively. By
Proposition 5.1 and above, points Eτλ(x) and Eτλ(y) are in the shadows of cones
C(Eτλ(ζ), vx, α) and C(Eτλ(ζ), vy, α), respectively. But these shadows are disjoint
since we chose α such that 0 < α < π

2 . Thus Eτλ is injective which together with
previous results finishes the proof. 2

Remark 6.1. By Epstein-Marden [5], the bending cocycle is holomorphic in the
parameter. This allows us to claim that the bending map is holomorphic on the
boundary of the facets on S1. We showed that the bending map extends to all of S1

and that it is holomorphic for the parameter in a neighborhood of the real line. In
addition, we showed that the bending map is injective on S1, for a fixed parameter
in the above set. These two new results allowed us to use theory of holomorphic
motions.

Remark 6.2. We showed that the bending cocycle extends to R and is holomorphic
in the parameter, when the parameter is restricted to a neighborhood of the real
line. Also, our proof shows that the extension of a bending cocycle on the whole of
R̂ is obtained as the limit of finite approximations.

Gardiner [6] gave expressions for the tangent vectors of earthquake and bending
maps. The formulas are obtained by taking the limit of tangent vectors of finite
approximations. Our results rigorously show that these formulas are correct.
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