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Abstract. We investigate the Teichmüller metric and the complex structure
on the Teichmüller space T (H∞) of the universal hyperbolic solenoid H∞.
In particular, a version of the Reich-Strebel inequality for H∞ is obtained.
As a consequence, we show that the Teichmüller type Beltrami coefficients
determine unique geodesics in T (H∞), and we compute the infinitesimal form
of the Teichmüller metric. In addition, we show that a Beltrami coefficient is
Teichmüller extremal if and only if it is infinitesimally extremal. Finally, we
show that the Kobayashi metric on T (H∞) equals the Teichmüller metric.

Introduction

Sullivan [31], motivated by the dynamics, introduced the universal hyperbolic
solenoid H∞ as a genus independent generalization of a closed surface (see Sec-
tion 1.1). The solenoid H∞ is the inverse limit space of the system of all finite,
unbranched coverings of a closed surface of genus at least two. Since the cover-
ings are unbranched, every point in the universal hyperbolic solenoid H∞ has an
open neighborhood homeomorphic to (2-disk)×(Cantor set). (For the local struc-
ture of the inverse limit space in the case of the branching see [19].) The global
topology of the solenoid H∞ is more complicated. Each path component of H∞ is
non-compact, simply connected and dense in the solenoid H∞. Path components
of H∞ are homeomorphic to the unit disk with the non-standard topology (see
Section 1.4).

We study the space of deformations of complex structures on H∞, namely the
Teichmüller space T (H∞) of the universal hyperbolic solenoid H∞. Our focus
is on the Teichmüller metric and on the natural complex structure of T (H∞).
The Teichmüller space T (H∞) is particularly interesting because it is a “closure”
of Teichmüller spaces of all closed surfaces of genus at least two [23]. Also, the
statement that the action of the modular group of the solenoid H∞ on T (H∞)
has dense orbits is equivalent to the Ehrenpreis conjecture (see Section 10 and
[23]). Recently, V. Markovic and the author [22] made a substantial progress in
this direction (for the case of the punctured solenoid) by showing that the orbit
of the basepoint accumulates at the basepoint and that the closure of the orbit is
larger than the orbit. These results are corollaries of the following main result:
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Theorem. [22] For every ε > 0 there exist two finite index subgroups of PSL2(Z)
which are conjugated by a (1+ ε)-quasisymmetric homeomorphism of the unit circle
and this conjugation homeomorphism is not conformal.

Algebraic properties of the modular group are of interest as well [5], [24], [21],
[25], [6].

The solenoid H∞ fibers over any closed surface S of genus at least two. If S is
given a complex structure, then the fiber map π∞ : H∞ → S pulls back a com-
plex structure on H∞ which is constant in the Cantor set direction in the local
charts; such complex structure is called a transversely locally constant (TLC) com-
plex structure on H∞. However, a large family of complex structures on H∞ are
not TLC. The holomorphic universal covering space and the covering group for a
complex TLC solenoid were already defined in [24] and [4]. We introduce the holo-
morphic universal covering and the covering group for a non-TLC complex solenoid
X (see Section 2). Using the universal covering group, we introduce the commen-
surable (Poincaré) theta series for the complex solenoid X(see Section 3) which is
an analog of the Poincaré theta series for Riemann surfaces. The commensurable
Poincaré theta series defines a surjective linear operator of the unit norm from
the space of holomorphic functions on the holomorphic universal covering onto the
space of holomorphic quadratic differentials on X (see Theorem 3.1).

The Reich-Strebel inequality is the essential tool in the quasiconformal Te-
ichmüller theory of Riemann surfaces. We prove a version of the Reich-Strebel
inequality for the universal hyperbolic solenoid (see Theorem 4.1). This inequality
facilitates investigation of the Teichmüller metric on T (H∞). As a first consequence
of the Reich-Strebel inequality, we prove a version of the Teichmüller theorem for
the solenoid:

Theorem 5.1. Let f : H∞ → X be a quasiconformal map and let ϕ 6= 0 be a
holomorphic quadratic differential on X. Then the path t |ϕ|ϕ , −1 < t < 1, of
Teichmüller type Beltrami coefficients on X gives a geodesic (in the Teichmüller
metric) through the point [f ] ∈ T (H∞). In addition, any two points on this geodesic
have no other geodesics connecting them.

The idea for proving Theorem 5.1 comes from the proof of the Teichmüller the-
orem for Riemann surfaces. However, there are additional difficulties arising from
the need of continuity for the variation in the Cantor set (the transversal) direction.

A point in the Teichmüller space T (H∞) is a homotopy class of quasiconformal
maps from H∞ onto another complex solenoid X. A quasiconformal map f :
H∞ → X is called extremal if it has the least dilatation in its homotopy class.
A Teichmüller map is a quasiconformal map whose Beltrami coefficient is of the
type k |ϕ|ϕ , for 0 < k < 1 and ϕ 6= 0 a holomorphic quadratic differential on the
solenoid. A major part in the proof of Theorem 5.1 is to show that Teichmüller
maps are uniquely extremal maps in their homotopy classes. A natural question is
whether each homotopy class of quasiconformal maps between solenoids contains
a Teichmüller map. (This question is posed in a previous version of this paper.)
In the case of a closed or a finite Riemann surface, the answer is positive. The
extremality and the existence of the Teichmüller maps for closed surfaces is known
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as the Teichmüller theorem. In the case of a geometrically infinite Riemann surface
R not every homotopy class contains a Teichmüller map, but an open dense subset
of the Teichmüller space T (R) does contain Teichmüller maps (for example, see
[17]). In a work after the appearance of this paper, the following surprising result
is obtained:

Theorem. [12] A generic point in the Teichmüller space T (H∞) of the universal
hyperbolic solenoid H∞ does not contain a Teichmüller map.

The above theorem does not exclude the existence of extremal maps (not of
Teichmüller type) in an arbitrary homotopy class. If such extremal maps always
exist, then any two points in T (H∞) can be connected by a geodesic. Even if an
extremal map for a certain homotopy class does not exist, it is not immediately
implied that any two points cannot be joined by a geodesic. At this point we do not
know whether each homotopy class of quasiconformal maps has an extremal map
and whether any two points in T (H∞) are connected by a geodesic. A corollary
to Theorem 5.1 is that the set of pairs of points connected by a unique geodesic is
dense in T (H∞) × T (H∞) (see Corollary 5.1). The lifting of complex structures
from closed Riemann surfaces to the solenoid H∞ defines an embedding of the
Teichmüller space of a closed surface into T (H∞). An important consequence of
Theorem 5.1 is:

Corollary 5.2. The Teichmüller spaces of closed surfaces of genus at least two
isometrically embed into T (H∞), for their corresponding Teichmüller metrics.

A Beltrami coefficient µ on the complex solenoid X is called Teichmüller trivial
if the corresponding quasiconformal map f : X → X is homotopic to the identity.
We say that a Beltrami differential µ is infinitesimally trivial if

∫
X

µϕdm = 0 for
all holomorphic quadratic differentials ϕ on X, where m is the properly normalized
transverse measure on X.

We show that the tangent space to T (H∞) at the marked solenoid X is isomor-
phic to the quotient of the space of smooth Beltrami differentials on X with the
subspace of infinitesimally trivial smooth Beltrami differentials (see Theorem 7.1).
Note that the space of smooth Beltrami differentials and the space of infinitesimally
trivial smooth Beltrami differentials are not complete. However, their quotient is
isomorphic to the space of holomorphic quadratic differentials on X with the Bers
norm (see Corollary 7.1), which is a Banach space.

We described above the points in T (H∞) as homotopy classes of quasiconformal
maps from a fixed complex solenoid H∞ onto variable solenoids X. This implies
that T (H∞) is isomorphic to the set of equivalence classes of Beltrami coefficients on
H∞, where two Beltrami coefficients are equivalent if the corresponding quasiconfor-
mal maps are homotopic. (The later description of T (H∞) is more convenient when
considering the infinitesimal structure of T (H∞).) The Teichmüller distance from
[0] ∈ T (H∞) to [µ] ∈ T (H∞) is 1/2 log 1+k0(µ)

1−k0(µ) , where k0(µ) = infµ1 ‖µ1‖∞ with
the infimum over all Beltrami coefficients µ1 Teichmüller equivalent to µ. We say
that a Beltrami coefficient µ is Teichmüller extremal if ‖µ‖∞ = k0(µ). (Note that
extremal maps have Teichmüller extremal Beltrami coefficients and Teichmüller ex-
tremal Beltrami coefficients correspond to extremal maps.) Therefore, to find the
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Teichmüller distance it is enough to find the Teichmüller extremal Beltrami coeffi-
cient. A Beltrami differential µ is infinitesimally extremal if k1(µ) = ‖µ‖∞, where
k1(µ) = infµ1 ‖µ1‖∞ with the infimum over all µ1 such that µ−µ1 is infinitesimally
trivial.

We show that a Beltrami coefficient µ on the solenoid X is Teichmüller extremal
if and only if it is infinitesimally extremal (see Theorem 8.1). In addition, the
infinitesimal form of the Teichmüller metric on the tangent space at X ∈ T (H∞)
is given by sup‖ϕ‖=1 Re

∫
X

µϕdm (see Theorem 8.2), where a tangent vector at
X ∈ T (H∞) is represented by the Beltrami differential µ and the supremum is over
all holomorphic quadratic differentials ϕ on X with norm 1.

We also obtain the Teichmüller contraction principle (see [15]):

Corollary 8.1. Let 0 < k < 1 be fixed. Then there exist constants C1, C2 > 0 such
that

C1(‖µ‖∞ − k0(µ)) ≤ ‖µ‖∞ − k1(µ) ≤ C2(‖µ‖∞ − k0(µ))

for any smooth Beltrami coefficient µ on the solenoid X with ‖µ‖∞ ≤ k.

In other words, the distance of an arbitrary Beltrami coefficient µ from the
extremal value k0(µ) of its Teichmüller class is comparable to its distance from
the extremal value k1(µ) of its infinitesimal class. We also show that k1(µ) =
sup‖ϕ‖=1 Re

∫
X

µϕdm which is an exercise for Riemann surfaces and a non-trivial
fact for the universal hyperbolic solenoid.

An analog of the classical Bers embedding gives a complex Banach manifold
structure on T (H∞) (see [31]). The Kobayashi metric on T (H∞) is defined us-
ing the complex structure on T (H∞). It is equal to the Teichmüller metric (see
Theorem 9.1), similarly to the Riemann surface case.

Acknowledgment. We would like to thank Vladimir Markovic for many interest-
ing discussions during this project.

1. The Universal Hyperbolic Solenoid H∞

1.1. Definition of the universal hyperbolic solenoid H∞. Fix a closed surface
(S, x) of genus at least two with the base point x. Consider the family all finite
sheeted unbranched pointed coverings πi : (Si, xi) → (S, x) of (S, x) such that
πi(xi) = x. There is a natural partial ordering defined by πi ≤ πj if there exists a
finite covering πj,i : (Sj , xj) → (Si, xi) such that πj = πi ◦ πj,i and πj,i(xj) = xi.
The family is inverse directed for this natural partial ordering between coverings,
i.e. for any two coverings πi and πj there exists a third covering πk such that
πi, πj ≤ πk. The universal hyperbolic solenoid H∞ is the inverse limit of this
inverse directed system (see [31]). A point on H∞ is given by a choice of one point
yi on each covering surface Si such that πi(yi) = y for a fixed y ∈ S and that if
πi ≤ πj then πj,i(yj) = yi.

If we start the construction from a pointed closed surface (S
′
, x

′
) of genus at least

two different from S, the inverse limit will be homeomorphic to H∞. We see this
by noting that (S, x) and (S

′
, x

′
) have a common covering closed surface (S

′′
, x

′′
).

Thus the directed sets of coverings of S and of S
′
have a common cofinal subsystem
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of coverings of S
′′
. By the properties of inverse limits, the solenoid obtained by

choosing S
′

as the base surface is homeomorphic to H∞. Thus there is only one
hyperbolic solenoid [23].

The (universal hyperbolic) solenoid H∞ is a compact topological space which
fibers over any unbranched finite sheeted covering Sj of the base surface S, including
S itself. The natural projection map π∞ : H∞ → Sj is given by projecting any
{yi}i∈I ∈ H∞ to its j-th coordinate. The fibers are homeomorphic to a Cantor
set. The solenoid H∞ is equipped with a canonical basepoint whose coordinates are
the basepoints of surfaces in the coverings of S. The path components of H∞ are
called leaves; each leaf is dense in H∞ and it is homeomorphic to a disk. The leaf
which contains the basepoint of H∞ is called the baseleaf. The restriction of the
projection map to any leaf is the universal covering map of the base space (a closed
surface covering S).

Any point p ∈ H∞ has an open neighborhood V with a chart map ψ : V → U×T ,
where U is a 2-disk and T is a Cantor set. The direction of the Cantor set is
called the transverse direction. Given two overlapping charts (U1 × T1, ψ1) and
(U2 × T2, ψ2), the transition map ψ2 ◦ (ψ1)−1 is required to map disks onto disks.
For details see Sullivan [31] and Nag-Sullivan [23].

1.2. Smooth and complex structures, and smooth conformal structures.
A smooth structure on H∞ is given by charts whose transition functions are C∞

diffeomorphisms on leaves and the transversal variation is continuous in the C∞-
topology on maps. A complex structure on H∞ subordinate to a fixed smooth
structure consists of a sub-atlas such that the transition maps are holomorphic on
disks [31]. As in [31], we consider only smooth complex structures for technical
reasons.

A smooth conformal structure on H∞ is the assignment of a smooth conformal
structure on each leaf such that the transversal variation is continuous for the C∞-
topology. Sullivan [31] showed, using [1], that smooth conformal structures on H∞
give complex structures and vice versa (see also [7]).

A homeomorphism f : H∞ → X of two smooth solenoids is said to be a dif-
feomorphism if it is smooth in the disk direction and varies continuously in the
transverse direction for the C∞-topology on smooth maps.

1.3. Beltrami differentials. We introduce Beltrami coefficients on a complex
solenoid H∞. Let ‖ · ‖∞ denote the essential supremum norm.

Definition 1.1. A smooth Beltrami differential µ on a complex solenoid H∞ is
an assignment of a smooth differential of type (−1, 1) on each leaf which varies
continuously in the transverse direction for the C∞-topology. If µ is a smooth
Beltrami differential and ‖µ‖∞ < 1 then µ is called a smooth Beltrami coefficient.

To each smooth conformal structure on a complex solenoid H∞ corresponds to
a smooth Beltrami coefficient and conversely, a smooth Beltrami coefficient gives a
smooth conformal structure on H∞ (see [31], [7]).
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A smooth Beltrami differential µ on H∞ satisfies ‖µ‖∞ < ∞ by the transversal
continuity of µ and by the compactness of H∞. If ‖µ‖∞ < 1 then it gives a
diffeomorphism of the complex solenoid H∞ onto a complex solenoid X by solving
the Beltrami equation (see [1]). Equivalently, a smooth Beltrami coefficient on
H∞ pulls-back a new smooth complex structure on H∞. On the other hand, if
‖µ‖∞ < ∞ then it corresponds to the tangent vector to a curve of smooth Beltrami
coefficients and it is called a smooth Beltrami differential.

Two smooth Beltrami coefficients µ and ν on a complex solenoid H∞ are Te-
ichmüller equivalent if the corresponding diffeomorphisms fµ : H∞ → X and
fν : H∞ → Y have conformal images c : X → Y and if c ◦ fµ is homotopic to
fν .

Definition 1.2. A (generalized) Beltrami coefficient µ on a complex solenoid H∞
is an assignment of a Beltrami coefficient on each leaf such that there exists a
sequence of Teichmüller equivalent smooth Beltrami coefficients µn on H∞ which
converges to µ on each leaf in an a.e. sense for the Lebesque measure on local leaves
of a finite chart cover of H∞ and ‖µ‖∞ ≥ lim infn→∞ ‖µn‖∞.

A solution of the Beltrami equation for the Beltrami coefficient µ on H∞ gives a
homeomorphism fµ : H∞ → X, where X is a complex solenoid. Such fµ is called
a quasiconformal map of the complex solenoids H∞ and X.

Definition 1.3. The Teichmüller space T (H∞) of a complex solenoid H∞ is the
space of all quasiconformal maps f : H∞ → X up to an equivalence. Two maps f1 :
H∞ → X1 and f2 : H∞ → X2 are Teichmüller equivalent if there is a transversely
continuous (for the C∞-topology) conformal map c : X1 → X2 such that f−1

2 ◦
c ◦ f1 is homotopic to the identity. We denote by [f ] ∈ T (H∞) the Teichmüller
equivalence class of f : H∞ → X.

The above definition is equivalent to:
Definition 1.4. The Teichmüller space T (H∞) is the space of Teichmüller equiv-
alence classes of Beltrami coefficients on H∞.

We write [µ] for the Teichmüller class of µ and we use definitions 1.3 and 1.4 si-
multaneously. The composition of two diffeomorphisms is a diffeomorphism. There-
fore, our definition of T (H∞) is independent of the choice of the basepoint H∞.

1.4. The transversely locally constant (TLC) complex structures and the
profinite completion group. Let S be a closed Riemann surface of genus at least
two. A complex structure on the solenoid H∞ can be obtained by the pull-back
of the complex structure on S using the projection map π∞ : H∞ → S. The pull-
back equips each leaf of H∞ with a complex structure and the complex structure is
locally constant in the transverse direction. The leaves become biholomorphically
equivalent to the unit disk. The projection map π∞ when restricted to any leaf is a
holomorphic universal covering map for the Riemann surface S (see [31] and [23]).

The lifted complex structure on H∞ can be described in terms of the uniformiz-
ing Fuchsian group G of the Riemann surface S. We define the profinite group
completion Ĝ of G: Let Gn be the intersection of all subgroups of G of index less
than or equal to n. Each Gn is a characteristic finite index subgroup of G (see
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[4] and [24]). Using the sequence Gn, we define the profinite metric ρ on G by
ρ(A,B) = 1

n for A,B ∈ G if AB−1 ∈ Gn and AB−1 /∈ Gn+1. The completion Ĝ
(called the profinite group completion) of G with respect to ρ is a compact topo-
logical group homeomorphic to the Cantor set (see [4] and [24]). Each t ∈ Ĝ is an
equivalence class of Cauchy sequences of elements of G in the ρ-metric.

Let ∆ be the unit disk. We define ∆ ×G Ĝ to be the quotient of ∆ × Ĝ under
the action of G. The action of A ∈ G on ∆ × Ĝ is given by A(z, t) = (Az, tA−1),
where tA−1 is defined by the action of A−1 from the right on each term of a
Cauchy sequence representing t ∈ Ĝ. The complex structure on H∞ induced by
S is obtained by a natural identification H∞ ≡ ∆ ×G Ĝ (see [4] and [24]). This
is a transversely locally constant (TLC) complex structure on H∞ in the sense of
Sullivan [31].

There are other complex structures on H∞ coming from complex structures on
finite sheeted unbranched topological coverings of S. These are also TLC structures.
If a complex structure of a finite covering S1 of S is not the lift of a complex
structure on S, then the induced TLC structure on H∞ by the complex structure
on S1 is different from all induced TLC structures on H∞ by complex structures
on S. Moreover, there are complex structures on H∞ which are even not TLC, i.e.
they are not lifts of complex structures of any finite unbranched covering of the
base surface S.

From now on we consider only complex solenoids. Unless otherwise stated, we
assume that the solenoid H∞ has a fixed TLC complex structure H∞ ≡ ∆ ×G Ĝ
and that the solenoid X has an arbitrary complex structure.

2. Holomorphic quadratic differentials, transverse measure and
universal covering space

We assume, as before, that H∞ ≡ ∆×G Ĝ, where G is a Fuchsian uniformizing
group of a closed Riemann surface of genus at least two. Then ∆ × Ĝ is the
holomorphic universal covering space of H∞ and G is the covering group whose
action on ∆ × Ĝ is given by A(z, t) = (Az, tA−1), for A ∈ G. The universal
covering projection π : ∆ × Ĝ → ∆ ×G Ĝ ≡ H∞ is given by π(z, t) = (z, t)/ ∼,
where (z, t)/ ∼ is the orbit of (z, t) under elements of G. We say that ∆ × Ĝ is a
universal covering because it has simple global structure (the product) as opposed
to ∆×G Ĝ ≡ H∞.

Let ω be a fundamental polygon for the action of the group G on ∆. Then ω×Ĝ

is a fundamental set for the action of G on ∆× Ĝ. Namely, ∆×G Ĝ is isomorphic
to the quotient of ω× Ĝ under the action of G. The identifications on ω× Ĝ under
G are only on the sides of ω with other sides of ω on different levels in the direction
of Ĝ (the transverse direction).

Let X be the universal hyperbolic solenoid with an arbitrary complex structure.
We say that ϕ is a holomorphic quadratic differential on X if it is a holomorphic
quadratic differential on each leaf and continuous (in the local charts) in the trans-
verse direction (the Cantor set direction) in the topology of the uniform convergence
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on compact sets of continuous map. We note that the uniform convergence on com-
pact subsets for holomorphic maps implies the convergence in the C∞-topology by
the Cauchy integral formula for holomorphic functions.

Let ϕ be a holomorphic quadratic differential on a TLC complex solenoid H∞ ≡
∆×GĜ. To lift ϕ to the universal covering space ∆×Ĝ, we fix a chart U×Ĝ ⊂ ∆×Ĝ

of H∞. The lift ϕ̃(z, t) is defined on U × Ĝ by the values of ϕ(z, t) in this chart
and it is analytically extended to ∆ × Ĝ. Then ϕ̃(z, t) is a holomorphic function
on each leaf, continuous in the transverse direction for the topology of the uni-
form convergence on compact subsets, and it satisfies ϕ̃ = A∗ϕ̃ with (A∗ϕ̃)(z, t) =
ϕ̃(Az, tA−1)A

′
(z)2 for A ∈ G.

The profinite group completion Ĝ of G is a compact topological group. Conse-
quently, there exists unique left and right translation invariant Borel probability
measure m (the Haar measure) on Ĝ [30]. The product |ϕ̃(z, t)|dxdydm introduces
a measure on ∆× Ĝ. This measure is invariant under the action of G, and conse-
quently it projects to a measure on H∞. Recall that ω×Ĝ ⊂ ∆×Ĝ is a fundamental
set for the action of G on ∆ × Ĝ, where ω is a fundamental polygon for G in ∆.
Thus we replace the integration of this measure over H∞ by the integration over
ω × Ĝ.

If G1 is a finite index subgroup of G, then ∆×G1 Ĝ1 ≡ H∞ ≡ ∆×G Ĝ (see [24]
and [5]). The measure |ϕ̃(z, t)|dxdydm on ∆× Ĝ1 is locally given by the product of
|ϕ̃(z, t)|dxdy on leaves ∆×{t} ⊂ ∆×Ĝ1 and the Haar measure m on Ĝ1. Note that
m(Ĝ1) = 1/[G : G1], where [G : G1] is the index of G1 in G [24]. A fundamental set
ω1 for G1 in ∆ is obtained by gluing [G : G1] translates of ω in ∆ under elements
of G−G1. Then the measure on ω1 × Ĝ1 is the pull-back of the measure on ω× Ĝ
via their natural identification. Thus if we lift the absolute value of a quadratic
differential from H∞ to ω× Ĝ or ω1 × Ĝ1 the integration will give the same result.

We denote the above defined measure on H∞ by |ϕ|dm.

A leaf of H∞ ≡ ∆ ×G Ĝ is identified with a G-orbit of one element t ∈ Ĝ.
Let K ⊂ Ĝ satisfy m(K) = 0. Since m is translation invariant, it follows that
m(∪A∈GA(K)) = 0. Therefore, there is a well-defined notion of sets of leaves of
H∞ of measure zero.

We say that ψ is a measurable holomorphic quadratic differential on H∞ if it is
a holomorphic quadratic differential on almost all leaves (except possibly on a set
of measure zero) and if it is measurable on each local chart of H∞. In addition, if
|ψ|dm is a finite measure on H∞ then we call it an integrable holomorphic quadratic
differential.

2.1. The universal covering. We introduce the holomorphic universal covering
for a non-TLC complex solenoid X. Let f : H∞ → X be a leafwise diffeomorphism
and a quasiconformal map of the fixed TLC solenoid H∞ onto X. In particular,
[f ] ∈ T (H∞) (and every Teichmüller class of maps from H∞ contains many leafwise
diffeomorphisms).
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Candel [7] showed that any smooth conformal structure on the solenoid X is
represented by a Riemannian metric which is hyperbolic on all leaves (curvature
equal to −1) and continuous for the transversal variation. From now on, we use
the hyperbolic metric representative for a conformal (or complex) structure on X.

We fix a chart (U × T, ψ) of X such that ψ ◦ f(({0} × Ĝ/ ∼)) = {0} × T . To
see that such a chart exists consider a compact set K = f(({0} × Ĝ)/ ∼) and
charts (V × T

′
, χ) with χ−1(V × {t}) containing exactly one point of K for each

t ∈ T
′
. By post-composing chart maps χ with a transversely continuous leafwise

isometry and by possibly decreasing T
′
and V , we get new charts, called (V ×T

′
, χ)

again, such that χ−1((0, t)) ∈ K where 0 ∈ V and t ∈ T
′
. Consider the family of

such chart coverings of K. Since K is compact, there exists a finite subcover
{(V1 × T1, χ1), . . . , (Vn × Tn, χn)} of K. By decreasing slightly some of the Ti,
i = 1, . . . , n, we arrange that {χ−1

i (Vi × Ti); i = 1, 2, . . . n} is a pairwise disjoint
cover of K. Set U = V1 ∩ · · · ∩ Vn, T = T1 ∪ · · · ∪ Tn and ψ−1|U×Ti = χ−1

i .

We introduce a family of hyperbolic isometries πX
t : ∆ → X, for t ∈ T , from the

unit disk ∆ onto the leaves of X such that ψ ◦ πX
t (0) = (0, t) and (ψ ◦ πX

t )
′
(0) > 0

for the above constructed chart (U × T, ψ) of X.

Definition 2.1. The universal covering map πX : ∆ × T → X for the solenoid X
is given by πX(z, t) = πX

t (z).

The following proposition follows easily from the definition of πX .
Proposition 2.1. The universal covering map πX : ∆ × T → X is a continuous
surjective leafwise isometry which is a local homeomorphism. In particular, open
subsets of ∆× T on which πX is bijective are local charts of X.

The definition of the covering space of X uses the map f : H∞ → X. Note that
ψ ◦ f ◦ π identifies Ĝ with T . We induce a group structure on T from Ĝ, and we
use the same letter t for the identified elements of Ĝ and T . Their meaning should
be read from the context.

Define f̃ : ∆× Ĝ → ∆× T by

f̃(z, t) := (πX
t )−1 ◦ f ◦ π(z, t).

Then f̃ is a transversely continuous lift of f such that πX ◦ f̃ = f ◦ π.

2.2. The covering group. The elements A ∈ G are deck transformations for the
universal covering map π : ∆× Ĝ → H∞ . They map U × Ĝ onto A(U)× Ĝ, where
U is an open subset of ∆.

Since πX ◦ f̃ = f ◦ π, it follows that πX ◦ f̃ ◦ A = πX ◦ f̃ for all A ∈ G. Let
(z, t) ∈ ∆× Ĝ, f̃(z, t) = (w1, t1) ∈ ∆× T and (f̃ ◦A)(z, t) = (w2, t2) ∈ ∆× T . By
the above, πX(w2, t2) = πX(w1, t1). Consequently, (πX)−1(πX(w1, t1)) contains
(w2, t2). Note that (πX

t2 )−1 ◦ πX
t1 is an isometry of ∆ × {t1} onto ∆ × {t2} and

((πX
t2 )−1 ◦ πX

t1 )(w1) = w2. The action of A ∈ G on T is induced by its natural
action (by the left multiplication) on Ĝ via the identification ψ ◦ f ◦π : Ĝ ≡ T . We



10 DRAGOMIR ŠARIĆ

define the action AX on the universal covering ∆× T of X by

AX(z, t) = ((πX
tA−1)−1 ◦ πX

t (z), tA−1),

where t, tA−1 ∈ T ≡ Ĝ. The map AX is an isometry on each leaf. Moreover,
AX is continuous in the transverse direction T . To see this, consider the action of
AX on ∆ × {t} and ∆ × {t1}, for t1 close to t. Then AX |∆×{t} = (πX

tA−1)−1 ◦ πX
t

and AX |∆×{t1} = (πX
t1A−1)−1 ◦ πX

t1 . Note that tA−1 and t1A
−1 are close in T , if t

and t1 are close. Since πX is continuous, it follows that AX is a leafwise isometry
continuous in the transverse direction.

By the definition of AX , we immediately obtain f̃ ◦ A = AX ◦ f̃ . We consider
the composition AX ◦ BX for A,B ∈ G. Let (z, t1) ∈ ∆ × T , and let t2 = t1B

−1

and t3 = t2A
−1. Then (AX ◦ BX)(z, t1) = (AX(BX(z)), t1B−1A−1) = ((πX

t3 )−1 ◦
πX

t2 ◦ (πX
t2 )−1 ◦ πX

t1 (z), t3) = ((πX
t3 )−1 ◦ πX

t1 (z), t3) = (A ◦B)X(z, t1), where (A ◦B)X

is the deck transformation corresponding to A ◦ B ∈ G. Further, idX acts by the
identity on ∆ × T and (A−1)X = (AX)−1 is the inverse of AX . Thus, the set GX

of the deck transformations for πX : ∆× T → X is a group isomorphic to G.

We note that the holomorphic universal covering πX : ∆ × T → X depends
on the choice of H∞ = ∆ ×G Ĝ and on the choice of f : H∞ → X. The deck
transformations also depend on these choices. The existence of the holomorphic
universal covering for X is a technical tool in our investigation. It is also used in
[21] to identify the isometry group of a complex solenoid X.

Let µ̃ be the Beltrami coefficient of the lift f̃ of a smooth quasiconformal map
f : H∞ → X as above. Then µ̃ is invariant under the action of G on ∆ × Ĝ.

Namely, µ̃(z, t) = (A∗µ̃)(z, t) := µ̃(Az, tA−1)A′ (z,t)

A′ (z,t)
.

The lift f̃ : ∆× Ĝ → ∆×T of f : H∞ → X maps a fundamental set ω× Ĝ for G

onto a fundamental set F = f̃(ω × Ĝ) = ∪t∈T ωt × {t} for GX . Also the boundary
of ω × Ĝ is mapped onto a set of area zero because quasiconformal mappings map
sets of area zero onto sets of area zero. Since f̃ is transversely continuous, the
fundamental set F is compact.

2.3. Holomorphic quadratic differentials on X. Let µ be a smooth Beltrami
differential on X. Denote by µ̃ its lift to ∆× T . Then µ̃ satisfies

(1) ‖µ̃(z, t)− µ̃(z, t1)‖∞ = sup
z∈∆

|µ̃(z, t1)− µ̃(z, t)| → 0

as t1 → t for all t ∈ T because of the continuity of µ in the transverse direction
and of the invariance under the covering maps in GX . We use µ̃ to construct a
holomorphic quadratic differential on X.

Denote by B(∆) the space of all holomorphic functions on ∆ which have finite
Bers norm ‖ϕ‖B = supz∈∆ |ρ(z)−2ϕ(z)| < ∞, where ρ(z) = 1

1−|z|2 is the Poincaré
(hyperbolic) density for the unit disk ∆. Bers’ reproducing formula (see [2] and [17,
page 139]) gives a continuous, linear, surjective map P : L∞(∆) → B(∆) which has
a continuous right inverse. We define a holomorphic function ϕ̃(z, t) = P (µ̃(z, t)) on
each leaf ∆× {t}, for t ∈ T . By the continuity of µ̃ in the transverse direction (see
(1)) and by the continuity of P , the holomorphic function ϕ̃(z, t) is continuous in the
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transverse direction in the Bers norm. Also, (AX)∗(ϕ̃) = ϕ̃ because (AX)∗(µ̃) =
µ̃ for AX ∈ GX . Consequently, ϕ̃ projects to a leafwise holomorphic quadratic
differential ϕ on X which is continuous in the transverse direction in the local
charts. We call such ϕ a holomorphic quadratic differential on X.

In the opposite direction, a holomorphic quadratic differential ϕ on X lifts to
a holomorphic function ϕ̃ on ∆ × T which satisfy (AX)∗ϕ̃ = ϕ̃ for all AX ∈ GX .
Then µ̃(z, t) = ρ(z)−2ϕ̃(z, t) is a smooth Beltrami differential on ∆ × T which is
invariant under the deck transformations. Thus µ̃ projects to a smooth Beltrami
differential µ on X. Note that P (µ̃(z, t)) = ϕ̃(z, t) (see [17]).

We showed
Proposition 2.5. Any holomorphic quadratic differential on X arises from Bers’
reproducing formula. 2

We use the notation P̄ (µ) = ϕ for this construction.

Recall that f : H∞ → X gives an identification of Ĝ with T . Denote by m, again,
the push-forward measure on T of the Haar measure m on Ĝ via this identification.
The measure |ϕ̃(z, t)|dxdydm on ∆×T is invariant under the deck transformations.
Denote the projection of this measure on X by |ϕ|dm. Define ‖ϕ‖ =

∫
X
|ϕ|dm.

We define measurable and integrable holomorphic quadratic differentials on X
in the similar fashion as in the TLC solenoid case using the measure m on X.

3. Commensurable Poincaré Theta Series

We introduce the commensurable (Poincaré) theta series for a complex solenoid
X which is an analog of the classical Poincaré theta series for closed Riemann
surfaces. Consider the holomorphic universal covering space ∆ × T and the deck
transformations AX ∈ GX for the solenoid X. Given a measurable function ϕ :
∆×T → C which is holomorphic on almost all leaves, we define the commensurable
(Poincaré) theta series of ϕ by

(2) Θ(ϕ)(z, t) =
∑

AX∈GX

ϕ(AX(z, t))A
′
X(z, t)2

where A
′
X(z, t) is the derivative, in the z variable, of AX(z, t) on the leaf ∆× {t}.

At this point Θ(ϕ) is only a formal sum, which ”defines” a quadratic differential
on the quotient X.

We denote by A(X) the space of all holomorphic quadratic differentials on X
which are continuous in the transverse direction in the local charts. Denote by
A1(X) the space of all integrable a.e. leafwise holomorphic quadratic differentials
on X. Clearly, A(X) < A1(X).

Let A(∆× T ) be the vector space of all bounded functions ϕ : ∆× T → C that
are holomorphic on the leaves ∆ × {t}, t ∈ T , and continuous in the transverse
direction in the Bers norm, namely

‖(ϕ(z, t)− ϕ(z, t1))ρ(z)−2‖∞ → 0

as t → t1. For example, let g : ∆ → C be a bounded holomorphic function. Then
ϕ(z, t) := g(z) is an element of A(∆× T ).



12 DRAGOMIR ŠARIĆ

Let A1(∆ × T ) be the vector space of all functions ϕ : ∆ × T → C which are
holomorphic on almost all leaves and integrable, i.e.∫

∆×T

|ϕ(z, t)|dxdydm < ∞.

Proposition 3.1. Let ϕ ∈ A(∆ × T ). Then the Poincaré theta series Θ(ϕ) con-
verges on all leaves of ∆× T to a holomorphic function which is continuous in the
Bers norm in the transverse direction and which satisfies

(Θ(ϕ) ◦AX)(A
′
X)2 = Θ(ϕ)

for all AX ∈ GX .

Proof. We use the standard area argument to show the convergence of the Poincaré
series. However, the summation is over different leaves of ∆× T and some care in
the argument is needed.

Let Br(0) ⊂ ∆ denote the hyperbolic disk with the center 0 ∈ ∆ and the radius
r. Choose r > 0 such that πX : Br(0) × T → X is an injection into X, namely
the deck transformations AX ∈ GX do not identify any two points of Br(0) × T .
Define Bt := πX(Br(0) × {t}), t ∈ T , to be a disk in the hyperbolic metric of the
leaf l = πX(∆× {t}) of X.

Identify l with ∆ by an isometry h such that the point πX(0, t) ∈ Bt is mapped
to 0 ∈ ∆. Consider the family of hyperbolic disks BtA−1 = πX(Br(0) × {tA−1}),
for A ∈ G, on the fixed leaf l of X. The family {BtA−1}A∈G is pairwise disjoint in
l. Therefore, the sum of the Euclidean areas of the family {h(BtA−1)}A∈G in ∆ is
less than π.

Note that AX(Br(0) × {t}) = (πX
tA−1)−1 ◦ πX

t (Br(0) × {t}) = ((πX
tA−1)−1 ◦

h−1)(h(Bt)). Since (πX
tA−1)−1 ◦ h−1 maps the center of h(BtA−1) onto 0 ∈ ∆ ×

{tA−1} and since the center of h(Bt) is 0 ∈ ∆, it follows that the Euclidean area
of ((πX

tA−1)−1 ◦ h−1)(h(Bt)) = (πX
tA−1)−1(Bt) is equal to the Euclidean area of

h(BtA−1). Consequently, the sum of Euclidean areas of {AX(Br(0)× {t})}AX∈GX

is less than π. Therefore Θ converges uniformly on compact subsets of ∆× T . 2

The commensurable theta series for a complex solenoid X has similar properties
to the Poincaré theta series for Riemann surfaces.
Theorem 3.1. Let ϕ ∈ A(∆ × T ). The commensurable theta series defines a
surjective, continuous, linear operator Θ : A(∆× T ) → A(X) of norm 1 such that
the image under Θ of the unit ball contains a ball of radius 1

3 , for the L1-norms on
the above spaces.

Proof. By Proposition 3.1, Θ(ϕ) is holomorphic on leaves, continuous in the trans-
verse direction in the Bers norm and invariant under the deck transformations. The
induced map Θ : A(∆× T ) → A(X) is a continuous linear map, and the standard
argument shows that its norm less than or equal to 1.

Let ϕ ∈ A(X) and let ϕ̃ be its lift to ∆ × T . Since ϕ̃ is invariant under the
covering maps and the fundamental set is compact, it follows that |ϕ̃(z, t)ρ−2(z)| is
bounded, where ρ(z) = 1

1−|z|2 . Therefore, the standard argument for the Poincaré
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theta series (see [17, page 50]) applied on the leaves shows that Θ is surjective and
that the image of the unit ball in A(∆×T ) contains the ball of radius 1/3 in A(X).

It remains to show that Θ has norm 1. Let Gn be a finite index subgroup of
G of a large index k. Then Ĝn < Ĝ and let f̃ : Tn ≡ Ĝn. We get λX(Tn) = 1

k .
Define ψ(z, t) = k for (z, t) ∈ ∆ × Tn and ψ(z, t) = 0 otherwise. Then ‖ψ‖ =∫
∆×T

|ψ(z, t)|dxdy = 1. Furthermore, Θ(ψ)(z, t) = k+
∑

AX∈(Gn)X , AX 6=id kA
′
X(z, t)2

for (z, t) ∈ ∆×Tn, where (Gn)X < GX is isomorphic to Gn. Let FX = ∪t∈Tn
ωt×{t}

be the image under f̃ of the fundamental set F = ω × Ĝn for the action of Gn on
∆ × Ĝn, where ω ⊂ ∆ is the Dirichlet fundamental polygon for Gn centered at
0 ∈ ∆. Then FX is one choice of a fundamental set for GX on ∆× T . Finally,

‖Θ(ψ)‖ ≥ 1− C · sup
t∈Tn

[areaE(∆− ωt)] → 1

as k →∞. Therefore ‖Θ‖ = 1 2

Acknowledgement. Adam Epstein, in a private communication, informed me
that A(H∞), for H∞ a TLC complex solenoid, is not closed for the L1-norm.

We find the closure of A(X) by extending Θ to A1(∆ × T ). To do so, we show
that A(∆× T ) is dense in A1(∆× T ).

Proposition 3.2. The closure of A(∆×T ) in the L1-norm is equal to A1(∆×T ).

Proof. It is clear that the closure of A(∆×T ) is contained in A1(∆×T ). We prove
that any ϕ ∈ A1(∆×T ) can be approximated by elements of A(∆×T ). Let T 1 be
the set of all t ∈ T such that

∫
∆
|ϕ(z, t)|dxdy < ∞. Then m(T − T 1) = 0.

Let Bn = {t ∈ T 1;
∫
∆
|ϕ(z, t)|dxdy ≥ n}. Then ∩∞n=1Bn = ∅. It follows that∫

∆×Bn
|ϕ(z, t)|dxdydm → 0 as n →∞.

We define

(3) ϕ1(z, t) =
{ 0 , if t ∈ Bn

ϕ(z, t) , otherwise

Clearly ϕ1 ∈ A1(∆× T ) and it is close to ϕ for n large.

Since
∫
∆
|ϕ1(z, t)|dxdy ≤ n for all t ∈ T , it follows that ϕ1 is bounded in the

sense of Bers. Let ϕ2(z, t) = ϕ1(rz, t), 0 < r < 1. Then ϕ2 is close to ϕ1 in the L1-
norm, for r close to 1. The absolute value of the integrable holomorphic quadratic
differential ϕ2 is uniformly bounded on ∆×T with the bound depending on n and
r.

We use the Bers’ reproducing formula [2] to finish the proof. Let µ2(z, t) =
ϕ2(z, t)ρ−2(z), where ρ(z) is the Poincaré density in the unit disk ∆. Let

(4) µ3(z, t) =
{ µ2(z, t) , if |z| ≤ r1 < 1

0 , otherwise

Let ϕ3 = 3
π

∫∫
∆

µ3(z,t)
(1−zw̄)4 dudv be the holomorphic quadratic differential obtained

from µ3 using the Bers’ reproducing formula on each disk ∆× {t}, t ∈ T (see [17,
page 50]). Then ϕ3 is close to ϕ2 for r1 close to 1 by noting that

∫ |ϕ3 − ϕ2| =
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∫∫∫
∆×T

| ∫∫
∆−∆r1

ϕ2(w)ρ(w)−2

(1−zw̄)4 dudv|dxdydm ≤ supw∈∆ |ϕ2(w, t)|π(1 − r2
1), where

∆r1 is the disk of radius r1 and center 0.

By Lusin’s theorem, there exists a continuous function µ4 with compact support
in ∆×T which agrees with µ3 up to a set of measure ε > 0 for the measure dxdydm.
Then µ4 gives a holomorphic quadratic differential ϕ4 ∈ A(∆×T ) which is as close
as we want to ϕ for n large, for r and r1 close to 1, and for ε small. 2

Theorem 3.2. The commensurable Poincaré theta series extends to a continuous
surjective linear operator of norm 1 from A1(∆× T ) onto A1(X).

Proof. The theorem follows by Proposition 3.2 and by the continuity of Θ on
A(∆× T ). 2

Corollary 3.1. The closure of A(X) in the L1-norm is equal to A1(X). 2

4. The Reich-Strebel Inequality

The Reich-Strebel inequality is a fundamental tool in the quasiconformal Te-
ichmüller theory of Riemann surfaces. It is used to analyze properties of the Te-
ichmüller metric, including geodesics and the infinitesimal form of the metric.

We prove below a version of the Reich-Strebel inequality for the complex solenoid
X. A Beltrami coefficient µ of a quasiconformal map f : X → X is said to
be Teichmüller trivial if f is homotopic to the identity. Then µ is Teichmüller
equivalent to the trivial Beltrami coefficient 0.

Theorem 4.1 (The Reich-Strebel inequality for H∞). Let ϕ be a holomorphic
quadratic differential on a complex solenoid X and let µ be a Teichmüller trivial
Beltrami coefficient. Then

(5) ‖ϕ‖ ≤
∫

X

∣∣∣1 + µ ϕ
|ϕ|

∣∣∣
2

1− |µ|2 |ϕ|dm.

Proof. The argument uses the Reich-Strebel inequality for closed Riemann surfaces
(see [28] and [14]). It is enough to prove the inequality for smooth µ.

Assume first that X ≡ ∆×G Ĝ, for some Fuchsian group G uniformizing a closed
Riemann surface of genus at least two. Denote by π∞ : ∆×G Ĝ → ∆/G the natural
projection map. Let µ be a smooth Teichmüller trivial Beltrami coefficient on X
obtained by lifting a smooth Teichmüller trivial Beltrami coefficient on ∆/G by
the fiber map π∞. Let ϕ be a holomorphic quadratic differential on X obtained by
lifting a holomorphic quadratic differential on ∆/G via the fiber map π∞. Let µ̃ and
ϕ̃ be lifts of µ and ϕ to the universal covering ∆× Ĝ of X. In general, differentials
µ and ϕ on X ≡ ∆×G Ĝ are lifts of differentials on ∆/G if and only if µ̃(z, t) and

ϕ̃(z, t) are constant in t, µ̃(Az, t)A′ (z)

A′ (z)
= µ̃(z, t) and ϕ̃(Az, t)A

′
(z)2 = ϕ̃(z, t), for all

A ∈ G. We allow µ to be the lift of a Beltrami coefficient on ∆/G1 and ϕ to be the
lift of a holomorphic quadratic differential on ∆/G2, where G1 and G2 are finite
index subgroups of G. Then, we define G = G1 ∩ G2 and arrive at the starting
situation.
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Consider the fundamental set ω× Ĝ of X, where ω is a fundamental polygon for
G in ∆. On each ω × {t}, t ∈ Ĝ, we have

(6)
∫∫

ω×{t}
|ϕ̃(z, t)|dxdy ≤

∫∫

ω×{t}

∣∣∣1 + µ̃(z, t) ϕ̃(z,t)
|ϕ̃(z,t)|

∣∣∣
2

1− |µ̃(z, t)|2 |ϕ̃(z, t)|dxdy

by the Reich-Strebel inequality on ∆/G, where z = x + iy. Integrating both sides
of (6) with respect to the Haar measure m on Ĝ we obtain

(7)
∫

X

|ϕ|dm ≤
∫

X

∣∣∣1 + µ ϕ
|ϕ|

∣∣∣
2

1− |µ|2 |ϕ|dm.

Assume now that a smooth Teichmüller trivial Beltrami coefficient µ and a holo-
morphic quadratic differential ϕ on the solenoid X ≡ ∆×GĜ are not necessarily lifts
of a smooth Teichmüller trivial Beltrami coefficient and a holomorphic quadratic
differential on ∆/G1, where G1 is a finite index subgroup of G. We approximate µ
and ϕ by µn and ϕn coming from lifts, by the projection map π∞, of differentials
on a closed Riemann surface ∆/Gn, where Gn is a finite index subgroup of G.

Let ϕ̃ and µ̃ be lifts to ∆ × Ĝ of the above differentials ϕ and µ on ∆ ×G Ĝ,
where ϕ and µ are not lifts to X of differentials on a closed Riemann surface of
genus at least two. We approximate ϕ̃ first. Let ν̃ be a smooth Beltrami differential
on ∆×Ĝ such that P (ν̃) = ϕ̃. This implies that P̄ (ν) = ϕ. If Gn is any finite index
subgroup of G then X ≡ ∆ ×Gn

Ĝn (see [24] and [5]). Given ε > 0, there exists a
large enough finite index subgroup Gn of G such that ‖ν̃(z, t)− ν̃(z, t1)‖∞ < ε

2 for
all t, t1 ∈ Ĝn. Fix a fundamental polygon ωn for the action of Gn on ∆. Define

ν̃n(z, t) =
{ ν̃(z, id), if z ∈ ωn

ν̃(A−1(z), id)A
′
(A−1(z))/A′(A−1(z)), if z ∈ A(ωn) and A ∈ Gn

for (z, t) ∈ ∆ × Ĝn. By the definition, ν̃n(A(z), t)A′ (z)

A′ (z)
= ν̃n(z, t) for all A ∈ Gn

and for all t ∈ Ĝn.

The Beltrami differential ν̃n is constant in t and invariant with respect to Gn

on each leaf ∆ × {t}, t ∈ Ĝn. Consequently ν̃n is a lift on ∆ × Ĝn of a Beltrami
differential on ∆/Gn. Further, for all t ∈ Gn,

(8) ‖ν̃(z, t)− ν̃n(z, t)‖∞ < ε

because ‖ν̃(z, t)− ν̃(z, t1)‖∞ < ε
2 for all t, t1 ∈ Ĝn. We define ϕ̃n(z, t) = P (ν̃n(z, t))

on ∆ × Ĝn. Then ϕ̃n(z, t) is constant in t (the transverse direction) and it is
invariant under the action of Gn on ∆×Ĝn. It projects to a holomorphic quadratic
differential ϕn on X. By the continuity of P̄ and by ‖ν − νn‖∞ → 0 as n →∞, we
get that ϕn → ϕ as n →∞ in the Bers norm uniformly on each leaf of X.

In the similar fashion as for ν̃, we find an approximating sequence µ̃n(z, t) for
µ̃(z, t) such that, for all (z, t), (z, t1) ∈ ∆× Ĝn,

(9) ‖µ̃n(z, t)− µ̃(z, t)‖∞ < ε
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and µ̃n is the lift of a Beltrami coefficient on ∆/Gn. However, our method does
not guarantee that µ̃n(z, t) is Teichmüller trivial on the leaves of ∆× Ĝn. Since we
want to apply the Reich-Strebel inequality for closed Riemann surfaces, we modify
µ̃n to be Teichmüller trivial on the leaves of ∆ × Ĝn and Gn-invariant on each
leaf. Note that on each leaf the Teichmüller class of f µ̃ ◦ (f µ̃n)−1 is the same as the
Teichmüller class of (f µ̃n)−1 because µ̃ is Teichmüller trivial on each leaf of ∆×Ĝn.
Thus, the Teichmüller class [f µ̃ ◦ (f µ̃n)−1] is constant in the leaf direction and on
each leaf it belongs to the Teichmüller space of ∆/Gn. By (9), [f µ̃ ◦ (f µ̃n)−1] is
close to the basepoint in the universal Teichmüller space T (∆) of each leaf ∆×{t},
for t ∈ T . The Beltrami coefficient λ̃n of the harmonic representative f λ̃n of the
Teichmüller class [f µ̃ ◦ (f µ̃n)−1] satisfies ‖λ̃n‖∞ → 0 as n →∞ by [16, Lemma 3],
and it is Gn-invariant on each leaf. Consequently, the map f λ̃n ◦f µ̃n is Teichmüller
trivial on each leaf of ∆×Ĝn and its Beltrami coefficient λ̃

′
n satisfies ‖µ̃−λ̃

′
n‖∞ → 0

as n →∞.

Denote by ϕn and λ
′
n the projections of ϕ̃n and λ̃

′
n onto ∆ ×Gn

Ĝn ≡ X. We
apply (7) with ϕn and λ

′
n, and obtain

∫

X

|ϕn|dm ≤
∫

X

∣∣∣1 + λ
′
n

ϕn

|ϕn|

∣∣∣
2

1− |λ′n|2
|ϕn|dm.

Note that even though λ
′
n is not necessarily smooth everywhere the inequality (7)

still holds. Letting n →∞ in the above inequality, we obtain (5) by the Lebesgue
dominated convergence theorem.

We assume now that X is a solenoid with a non-TLC complex structure. Let µ
be a smooth Teichmüller trivial Beltrami coefficient on X. Let ϕ be a holomorphic
quadratic differential on X. Let ν be a smooth Beltrami differential on X such that
ϕ = P̄ (ν). To apply the previous result, consider a smooth (1 + 1

n )-quasiconformal
map fn : ∆ ×Gn

Ĝn → X continuous for the transversal variation, where Gn is
a Fuchsian group uniformizing a closed Riemann surface ∆/Gn. Such Gn and fn

exist because TLC complex structures on the solenoid are dense among all complex
structures (see Sullivan [31] or [23]). Denote by fµ : X → X Teichmüller trivial
smooth quasiconformal map with the Beltrami coefficient µ. We form a Teichmüller
trivial smooth quasiconformal self map gn = (fn)−1 ◦ fµ ◦ fn of ∆ ×Gn Ĝn, and
denote its Beltrami coefficient by µn. Let νn be the Beltrami coefficient of fν ◦ fn

and define a holomorphic quadratic differential on ∆×Gn Ĝn by ϕn = P̄ (νn). Then
ϕn is a holomorphic quadratic differential and µn is a Teichmüller trivial smooth
Beltrami coefficient on ∆×Gn Ĝn. Thus

∫

∆×Gn Ĝn

|ϕn|dm ≤
∫

∆×Gn Ĝn

∣∣∣1 + µn
ϕn

|ϕn|

∣∣∣
2

1− |µn|2 |ϕn|dm,

by the Reich-Strebel inequality for the TLC solenoids proved above. We change
the domain of the integration in the above inequality to X using the map f−1

n :
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X → ∆×Gn
Ĝn to obtain

(10)
∫

X

|ϕn ◦ f−1
n |Jf−1

n
dm ≤

∫

X

∣∣∣1 + µn ◦ f−1
n

ϕn◦f−1
n

|ϕn◦f−1
n |

∣∣∣
2

1− |µn ◦ f−1
n |2 |ϕn ◦ f−1

n |Jf−1
n

dm,

where Jf−1
n

is the Jacobian of f−1
n .

We intend to apply the Lebesgue dominated convergence in (10) in order to prove
(5). To do so, we need to arrange that ϕn ◦ f−1

n → ϕ, Jf−1
n
→ 1, µn ◦ f−1

n → µ, and
that |ϕn|, Jf−1

n
are bounded above by positive constants on X and that ‖µn‖∞ is

bounded away from 1.

We define the lift of (fn)−1 : X → ∆×Gn Ĝn to corresponding universal cover-
ings. Let g : H∞ → X be a quasiconformal marking on X, and let πX : ∆×T → X

be the covering map constructed using g, and let g̃ : ∆× Ĝ → ∆× T be the lift of
g. Further, the map kn := (fn)−1 ◦ g : H∞ → ∆ ×Gn Ĝn defines a non-standard
covering πn : ∆ × T → ∆ ×Gn Ĝn. Denote by k̃n : ∆ × Ĝ → ∆ × T the lift of

kn : H∞ → ∆×Gn Ĝn to the universal coverings. The lift (̃fn)−1 : ∆× T → ∆× T
of (fn)−1 to universal coverings is defined by

(̃fn)−1 := k̃n ◦ (g̃)−1.

Using the commutativity of the covering diagrams πn◦k̃n = kn◦πn and (g̃)−1◦πX =
π ◦ (g̃)−1 for k̃n and (g̃)−1 and their invariance under appropriate deck transforma-

tions, we obtain that πn ◦ (̃fn)−1 = (fn)−1 ◦ πX and that (̃fn)−1 conjugates deck
transformations of X to deck transformations of ∆×Gn

Ĝn.

The lift (̃fn)−1 : ∆ × T → ∆ × T extends by the continuity to a map h̃n :
S1 × T → S1 × T which is quasisymmetric on each S1 × {t}, for t ∈ T , and
continuous in the transverse direction in the quasisymmetric topology. We define
C̃n : ∆̄ × T → ∆̄ × T such that C̃n|∆̄×{t} is the unique Möbius map which maps
h̃n(1, t), h̃n(i, t) and h̃n(−1, t) onto (1, t), (i, t) and (−1, t) for each t ∈ T . Since h̃n

is continuous in the transverse direction, then C̃n is continuous in the transverse
direction. Note that C̃n fixes the leaves of ∆×T . Then C̃n ◦ h̃n : S1×T → S1×T

fixes (1, t), (i, t) and (−1, t). We change the covering πn : ∆× T → ∆×Gn Ĝn into
covering πn ◦ C̃n : ∆× T → ∆×Gn Ĝn with deck transformations being conjugates
by C̃n of deck transformations for πn. We rename C̃n ◦ h̃n and πn ◦ C̃n to h̃n and
πn.

Extend h̃n to ∆̄ × T using the barycentric extension (see Douady-Earle [8]) on
each leaf. Denote the extension of h̃n by f̃−1

n . Note that h̃n → id on S1 × T .
By the properties of the barycentric extension, it follows that f̃−1

n converges to
the identity uniformly on compact subsets of the type K × T , where K ⊂ ∆ is
compact. Further, f̃−1

n is invariant under the action of the covering maps on ∆×T
by the conformal naturality of the barycentric extension. Also, Jf̃−1

n
converges to

1 uniformly on compact subsets of the form K×T by properties of the barycentric
extension.
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Consider a fixed fundamental set F for X in ∆×T constructed using the marking
g : H∞ → X. The inequality (10) becomes
(11)

∫

F

|ϕ̃n ◦ f̃−1
n |Jf̃−1

n
dxdydm ≤

∫

F

|1 + µ̃n ◦ f̃−1
n

ϕ̃n◦f̃−1
n

|ϕ̃n◦f̃−1
n | |2

1− |µ̃n ◦ f̃−1
n |2 |ϕ̃n ◦ f̃−1

n |Jf̃−1
n

dxdydm.

Denote by ν̃ and ν̃n the lifts of the Beltrami coefficients ν and νn. Note that
we implicitly identify the transverse sets of universal coverings of ∆ ×Gn

Ĝn and
X using the map f̃−1

n . Then ∆ × T is considered as the universal covering of
both ∆ ×Gn Ĝn and X. The Beltrami coefficients ν̃n converge to ν̃ uniformly on
compact subsets of ∆× T because fν and fn are smooth maps, f̃n → id uniformly
on compact subsets and the quasiconformal constant of f̃n is converging to 1.

Since ν̃n is converging to ν̃ uniformly on compact subsets, then ϕ̃n → ϕ̃ uniformly
on compact subsets. It follows that ϕ̃n ◦ f̃−1

n → ϕ̃ uniformly on compact subsets
of ∆ × T , because f̃−1

n → id as n → ∞. Similarly, µn ◦ f̃−1
n → µ uniformly on

compact subsets. In addition, ‖µn‖∞ is uniformly bounded away from 1 and |ϕ̃n|
is bounded on compact subsets of ∆× T . By letting n →∞ in (11), we obtain (5)
for arbitrary complex solenoid X. 2

5. Teichmüller maps

The first application of the Reich-Strebel inequality for Riemann surfaces is a
proof that Teichmüller type Beltrami differentials determine unique geodesics for
the Teichmüller metric. We prove a similar fact for the Teichmüller space of the
solenoid.

Let ϕ 6= 0 be a holomorphic quadratic differential on the solenoid X. We show
that k |ϕ|ϕ , for 0 ≤ k < 1, is a Beltrami coefficient on X in the sense of Definition 1.2
and it is said to be of Teichmüller type. The Teichmüller type Beltrami coefficient
k |ϕ|ϕ is smooth in the complement of zeros of ϕ (a discrete subset of each leaf) and
it is not defined at the zeros.

We approximate k |ϕ|ϕ with smooth Beltrami coefficients in the same (universal)
Teichmüller class on each leaf such that the approximating coefficients are smooth
and continuous for the transversal variation on X.

Proposition 5.1. Let ϕ 6= 0 be a holomorphic quadratic differential on the complex
solenoid X. Then there exists a sequence of smooth Beltrami coefficients µn on X

which are Teichmüller equivalent to k |ϕ|ϕ when restricted to each leaf of X such

that µn converge to k |ϕ|ϕ uniformly on compact sets of the complement of zeros of

ϕ and that supp∈X |µn(p)| → k as n → ∞. In particular, k |ϕ|ϕ , 0 < k < 1, is a
Beltrami coefficient on X.

Proof. Let ∆ × T be the universal covering space of X and let ϕ̃(z, t) be the lift
of ϕ. Then ϕ̃(z, t) is invariant under the deck transformations on ∆ × T and it
is continuous for the transverse direction in the Bers norm on ∆ × T . By the
continuity in the transverse direction and by the Rouché’s theorem, given a zero
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(p, t) ∈ ∆ × T of ϕ̃ there exists a small enough neighborhood of (p, t) such that ϕ̃
has a zero in each local leaf of the neighborhood. However, multiple zeros of ϕ̃(z, t)
on one local leaf can be close to two or more zeros of ϕ̃(z, t) on the nearby local
leaves.

Fix a zero of ϕ in X. Let (z0, t0) ∈ ∆× T be a single lift of the fixed zero. Let
δ denote the minimum of the number 1 and of the 1/3 of the hyperbolic distance
of (z0, t0) to the closest zero of ϕ̃(z, t0) on the leaf ∆×{t0}. Fix n ≥ 4. Denote by
Br(z) the hyperbolic disk with the center z and the radius r in the unit disk ∆. We
choose T

′ ⊂ T such that T
′

is a neighborhood of t0 homeomorphic to T and such
that ϕ̃(z, t) does not have any zeros in [Bδ(z0)−B δ

n+1
(z0)]× T

′
. The choice of T

′

is possible by the transversal continuity of zeros of ϕ̃(z, t) and its size depends on
n. The number of zeros counted with their multiplicity in each B δ

n+1
(z0)×{t}, for

t ∈ T
′
, equals to the multiplicity of the zero (z0, t0) by the Rouché’s theorem. By

decreasing T
′
if necessary, we arrange that no zero of ϕ̃(z, t) in B δ

n+1
(z0)×{t}, for

t ∈ T
′
, is at distance less than 5

2δ from any zero outside B δ
n+1

(z0)×{t}. By further

decreasing T
′

if necessary, we arrange that no point of Bδ(z0) × T
′

is identified
with another point of Bδ(z0) × T

′
by a deck transformation. Then the covering

map is a homeomorphisms from Bδ(z0)×T
′
onto a neighborhood πX(Bδ(z0)×T

′
)

of πX(z0, t0) in X. Thus Bδ(z0)× T
′
is a chart around the zero πX(z0, t0) of ϕ.

For each zero x ∈ X of ϕ, we choose its neighborhood V (x, δ) = πX(Bδ(z0)×T
′
)

in X as above. In other words, we fix δ > 0 such that the restriction of the projection
map πX to Bδ(z0)×T

′
is a homeomorphism onto its image and such that the zeros

of ϕ which are outside V (x, δ) are on the leafwise distance from the zeros in V (x, δ)
at least 5

2δ for the hyperbolic metric on leaves. Let x1, x2 ∈ X be two zeros of ϕ,
and let V1 = V1(x1, δ1) and V2 = V2(x2, δ2) be their neighborhoods as above. If
the set of the zeros of ϕ in V1 and the set of the zeros of ϕ in V2 are disjoint then
V1 ∩ V2 6= ∅. To see this, we assume on the contrary that V1 and V2 intersect and
that no zeros of ϕ are in V1∩V2. Lift the situation to ∆×T . The lifts of V1 and V2

are given by Bδ1(z1)×T 1 and Bδ2(z2)×T 2. If Bδ1(z1)×T 1 and Bδ2(z2)×T 2 do not
intersect then we can move Bδ2(z2)× T 2 by a covering map such that it intersects
Bδ1(z1) × T 1. Call the translated neighborhood Bδ2(z2) × T 2 again. To be more
precise, assume Bδ1(z1)×{t}∩Bδ2(z2)×{t} 6= ∅ for some t ∈ T 1 ∩T 2 and δ1 ≥ δ2.
Then the distance between the zeros in B δ1

n+1
(z1)× {t} and B δ2

n+1
(z2)× {t} is less

than (2 + 2
n+1 )δ1. Thus, for n ≥ 4, the distance between a zero in Bδ1(z1) × {t}

and a zero in Bδ2 × {t} is less than 5
2δ1 which is in the contradiction with the

construction of V1 and V2.

Assume now that the above constructed neighborhoods V1 and V2 of two zeros
of ϕ have zeros of ϕ in common. As above, we lift the situation to the universal
cover. Let B δ1

n+1
(z1)× {t} and B δ2

n+1
(z2)× {t} contain common zeros of ϕ̃(z, t) for

a fixed t ∈ T and δ1 ≥ δ2. All zeros of ϕ̃(z, t) in B δ2
n+1

(z2) × {t} are contained in

B δ1
n+1

(z1) × {t} because [Bδ1(z1) − B δ1
n+1

(z1)] × {t} does not contain any zeros of

ϕ̃(z, t). This holds for all leaves of the intersection, because the inner disks always
contain zeros of ϕ̃.
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The set of zeros of ϕ(z, t) in X is closed and consequently, compact. The above
constructed neighborhoods make a covering of the set of zeros. By the compactness,
there exists a finite subcovering of the set of zeros of ϕ. Neighborhoods of our finite
covering can intersect each other. Every time two neighborhoods intersect, on each
leaf of intersection one neighborhood contains all the zeros of ϕ that are in the
corresponding leaf of the other neighborhood. We erase leaves of the neighborhood
whose zeros are contained in the other. By this process of erasing leaves we may
get at most finitely many neighborhoods out of one. Thus, we obtain again a finite
covering {V1, V2, . . . , Vk} by disjoint open neighborhoods of zeros of ϕ in X. Let
Bδi

(zi) × T i, i = 1, 2, . . . , k, be lifts in ∆ × T of Vi. Since {V1, V2, . . . , Vk} covers
the zeros of ϕ, the orbit of {Bδ1(z1) × T 1, Bδ2(z2) × T 2, . . . , Bδk

(zk) × T k} under
all deck transformations AX ∈ GX on ∆ × T covers each zero of ϕ̃ and each two
sets in the orbit are disjoint.

We define hn(z, t) to be 0 in B δi
n

(zi)× T i, to be 1 on (Bδi(zi)−B δi
n−1

(zi))× T i

and smoothly interpolate in (B δi
n−1

(zi) − B δi
n

(zi)) × T i by a transversely constant

interpolation, for i = 1, 2, . . . k. We extend hn(z, t) to orbits of Bδi
(zi)× T i under

AX ∈ GX by hn(AX(z, t)) := hn(z, t). Finally, define hn(z, t) to be equal to 1
in the complement of the orbits. Thus hn(z, t) is a smooth, deck transformations
invariant function on ∆× T which is locally constant in the transverse direction.

The Beltrami coefficient ν̃n(z, t) = hn(z, t)k |ϕ̃(z,t)|
ϕ̃(z,t) is smooth on leaves, continu-

ous for the transversal variation in the C∞-topology and invariant under the deck
transformations. The Beltrami coefficient of fk

|ϕ̃|
ϕ̃ ◦ (f ν̃n)−1 is close to the identity

in the universal Teichmüller space T (∆ × {t}) of each leaf ∆ × {t}, t ∈ T . This
follows from Gardiner-Lakic [16, Theorem 3] and the fact that the modulus of each
annulus Bδi(zi) − B δi

n−1
(zi) is comparable to 1

log n . Consequently, the harmonic

representative ν̃
′
n(z, t) of the class

[( k |ϕ̃|ϕ̃ − ν̃n

1− k |ϕ̃|
ϕ̃

ν̃n

θ
)
◦ (f ν̃n)−1

]

with θ = ∂zf
ν̃n/∂zf ν̃n exists on each leaf. The harmonic Beltrami coefficient

ν̃
′
n(z, t) is smooth on leaves and continuous in the transverse direction. It is in-

variant under deck transformations and sup(z,t)∈∆×T |ν̃
′
n(z, t)| → 0 as n →∞.

Let µ̃n(z, t) be the Beltrami coefficient of f ν̃
′
n ◦ f ν̃n . Clearly, µ̃n(z, t) is smooth

on leaves and continuous in the transverse direction in the C∞-topology. Further,
µ̃n(z, t) is in same Teichmüller class as k |ϕ|ϕ on each leaf and it is invariant under

deck transformations. Finally, µ̃n(z, t) is converging to k |ϕ̃|ϕ̃ uniformly on compact
subsets of the complement of zeros of ϕ̃(z, t) in ∆×T and sup(z,t)∈∆×T |µ̃n(z, t)| → k
as n →∞. 2

Let k0(µ) = infµ1∈[µ] ‖µ1‖∞. We say that a sequence of smooth Beltrami coeffi-
cients µn is minimizing for the Teichmüller class [µ] if µn ∈ [µ] and limn→∞ ‖µn‖∞ =
k0(µ). A Beltrami coefficient µ1 ∈ [µ] is extremal if ‖µ1‖∞ = k0(µ).
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Theorem 5.1. Let f : H∞ → X be a quasiconformal map and let ϕ 6= 0 be
a holomorphic quadratic differential on X. Then the path t |ϕ|ϕ , −1 < t < 1, of
Teichmüller type Beltrami coefficients on X gives a geodesic (in the Teichmüller
metric) through the point [f ] ∈ T (H∞). In addition, any two points on this geodesic
have no other geodesics connecting them.

Proof. To simplify the notation, we assume that f : H∞ → X is the base point
[id : H∞ → H∞] = [0] of T (H∞) and that H∞ has an arbitrary, not necessarily
TLC, complex structure.

Fix 0 < k < 1. By Proposition 5.1, there exists a sequence µn of smooth Beltrami
coefficients Teichmüller equivalent to k |ϕ|ϕ on each leaf of X such that µn → k |ϕ|ϕ

uniformly on compact subsets of the complement of zeros of ϕ in H∞ and that
‖µn‖∞ → k as n → ∞. Let µ be a fixed Beltrami coefficient on X such that
[µ] = [µn]. Then by the chain rule and by the Reich-Strebel inequality for the
solenoid H∞ (see Theorem 4.1), we obtain

‖ϕ‖ ≤
∫

H∞

|1− µn
ϕ
|ϕ| |2

1− |µn|2
|1 + µ ϕ

|ϕ|θ|2
1− |µ|2 |ϕ|dm

where θ =
1−µnϕ

|ϕ|
1−µnϕ

|ϕ|
(see [28] and [14, page 120]). If we normalize ϕ such that ‖ϕ‖ = 1

and let n →∞ in the above inequality, we get

(12) K ≤
∫

H∞

|1 + µ ϕ
|ϕ| |2

1− |µ|2 |ϕ|dm

where K = 1+k
1−k .

We claim that ‖µ‖∞ ≥ k. To see this, assume on the contrary that ‖µ‖∞ < k.
Then, from (12), we obtain the double inequality

K ≤
∫

H∞

|1 + µ ϕ
|ϕ| |2

1− |µ|2 |ϕ|dm < K

which gives a contradiction. Thus ‖µ‖∞ ≥ k.

Since each µ1 ∈ [µ] satisfies ‖µ1‖∞ ≥ k we conclude that k |ϕ|ϕ is an extremal
Beltrami coefficient.

Assume that νn is a minimizing sequence of smooth Beltrami coefficients Te-
ichmüller equivalent to µ on H∞. Namely, νn ∈ [µ] and limn→∞ ‖νn‖∞ = k =
k0(µ). Using the inequality (12), we get

(13) K ≤
∫

H∞

1 + |νn|
1− |νn| |ϕ|dm ≤ 1 + ‖νn‖∞

1− ‖νn‖∞ = K + εn

where εn → 0 as n →∞. Since ‖ϕ‖ = 1, the above inequality implies that |νn| has
a subsequence which converges to k in a bounded pointwise a.e. sense on X. To see
this, it is enough to show that 1+|νn|

1−|νn| converges to K in the measure α(∗) =
∫
∗ |ϕ|dm

since the convergence in the measure of functions in L1(H∞) implies the existence
of a subsequence converging in the a.e. sense (see [29, page 74]). Assume on the
contrary that 1+|νn|

1−|νn| does not converge to K in the measure α. Then there exist
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δ > 0 and a subsequence 1+|νni
|

1−|νni
| such that 1+|νni

|
1−|νni

| ≤ K − δ on sets Dni
⊂ H∞ with

α(Dni
) ≥ δ. This implies that

∫

H∞

1 + |νni |
1− |νni |

|ϕ|dm ≤ K + εni(1− δ)− δ2

which, for i large enough, gives a contradiction with (13).

Denote the subsequence of |νn| which converges a.e. to k by |νn| again. Then
inequality (12) gives

K ≤
∫

H∞

1 + |νn|2 + 2Re(νn
ϕ
|ϕ| )

1− |νn|2 |ϕ|dm ≤ K + εn.

Similarly as above, Re(νn
ϕ
|ϕ| ) converges to k in a.e. sense. Thus νn converges to

k |ϕ|ϕ in a bounded pointwise a.e. sense.

Any minimizing sequence νn has a subsequence which converges pointwise a.e.
to k |ϕ|ϕ . Therefore, there is a unique extremal Beltrami coefficient k |ϕ|ϕ in the class
[µ] ∈ T (H∞) by the standard argument (see [14]).

To prove the uniqueness of the Teichmüller geodesic between [0] and [µ] (where
µ is Teichmüller equivalent to k |ϕ|ϕ on each leaf of H∞), we use the idea of L. Zhong
(see [33]). Assume that there exists another geodesic γ(t), 0 ≤ t ≤ k, connecting
[0] and [µ] different from [µt

n]. Let [ν1] = γ(t1) be a point on γ(t) which is not on
[µt

n], where ν1 is a smooth Beltrami coefficient on H∞. Denote by ν2 the Beltrami
coefficient of fµ ◦ (fν1)−1. Let νn

1 and νn
2 be minimizing sequences of smooth

Beltrami coefficients equivalent to ν1 and ν2, respectively. Let ξn be the sequence
of the Beltrami coefficients of maps fνn

2 ◦ fνn
1 . Since [ν1] is a point on the geodesic

γ(t), the sequence ξn is minimizing for the class [µ]. By the above, ξn converges to
k |ϕ|ϕ in a.e. sense.

Let k1 = limn→∞ ‖νn
1 ‖∞ and let k2 = limn→∞ ‖νn

2 ‖∞. Because [νn
1 ] is on the

geodesic γ(t), we get

d([0], [µ]) = d([0], [νn
1 ]) + d([νn

1 ], [ξn]),

where d is the Teichmüller distance.

Since d([νn
1 ], [ξn]) = d([0], [νn

2 ]) we get

d([0], [µ]) = d([0], [νn
1 ]) + d([0], [νn

2 ]).

From the above equality we obtain k = k1+k2
1+k1k2

. By the chain rule

(14) |ξn| =
∣∣∣ νn

1 + (νn
2 ◦ fνn

1 )θ
1 + νn

1 (νn
2 ◦ fνn

1 )θ

∣∣∣ ≤ |νn
1 |+ |νn

2 ◦ fνn
1 |

1 + |νn
1 ||νn

2 ◦ fνn
1 |

a.e. on H∞, where θ = ∂zfνn
1 /∂zf

νn
1 .

We claim that limn→∞ |νn
1 (p)| = k1 and limn→∞ |νn

2 ◦ fνn
1 (p)| = k2 for almost

all points p of the solenoid H∞. Assume this is not true. Since νn
1 and νn

2 are
minimizing, it follows that the sequences |νn

1 (p)| and |νn
2 (p)|, for a.e. p ∈ X,

have no accumulation points larger than k1 and k2, respectively. The remaining
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possibility is that there exists a set D ⊂ H∞ with α(D) > 0 and a constant δ > 0
such that lim infn→∞ |νn

1 (p)| ≤ k1−δ for p ∈ D, or similarly for νn
2 ◦fνn

1 . By taking
lim infn→∞ in (14) we obtain

k = lim inf
n→∞

∣∣∣ νn
1 + (νn

2 ◦ fνn
1 )θ

1 + νn
1 (νn

2 ◦ fνn
1 )θ

∣∣∣(p) ≤ lim inf
n→∞

|νn
1 |+ |νn

2 ◦ fνn
1 |

1 + |νn
1 ||νn

2 ◦ fνn
1 | (p) < k

for p ∈ D which gives a contradiction.

Since limn→∞ |νn
1 (p)| = k1, limn→∞ |νn

2 ◦ fνn
1 (p)| = k2, and k = k1+k2

1+k1k2
, the

inequality (14) becomes an equality when n →∞. Namely,

lim
n→∞

∣∣∣ νn
1 + (νn

2 ◦ fνn
1 )θ

1 + νn
1 (νn

2 ◦ fνn
1 )θ

∣∣∣ = lim
n→∞

|νn
1 |+ |νn

2 ◦ fνn
1 |

1 + |νn
1 ||νn

2 ◦ fνn
1 | a.e.

which implies the existence of s > 0 such that νn
1 = s(νn

2 ◦ fνn
1 )θ + εn with εn → 0

as n →∞. By the chain rule

ξn =
νn
1 + (νn

2 ◦ fνn
1 )θ

1 + νn
1 (νn

2 ◦ fνn
1 )θ

and by ξn → k |ϕ|ϕ in the a.e. sense as n →∞, we get that νn
1 → s1 · k |ϕ|ϕ for fixed

0 < s1 < 1 in the a.e. sense as n → ∞. Since all νn
1 are Teichmüller equivalent

on H∞, it follows that νn
1 are Teichmüller equivalent to s1 · k |ϕ|ϕ on each leaf. This

is a contradiction with the fact that [νn
1 ] does not belong to the geodesic [µt

n].
Consequently, there exists a unique Teichmüller geodesic between [0] and [µ]. 2

Let H∞ denote a fixed TLC complex solenoid. The points in T (H∞) which
are represented by TLC smooth Beltrami coefficients are dense (see Sullivan [31]).
Each TLC complex solenoid is obtained by the lift of the complex structure of a
closed Riemann surface.

In the case of a closed Riemann surface, it is known that each Teichmüller class
has a unique extremal Beltrami coefficient of Teichmüller type k |ϕ|ϕ , where ϕ is a
holomorphic quadratic differential on the surface. A holomorphic quadratic differ-
ential on a closed Riemann surface lifts to a transversely locally constant (TLC)
holomorphic quadratic differential on H∞. Together with the above theorem, we
obtained:

Corollary 5.1. There exists a dense subset of points in T (H∞) such that any two
can be connected by a unique Teichmüller geodesic. This dense subset is strictly
larger than the set of all [f : H∞ → X] ∈ T (H∞) with X having a TLC complex
structure. 2

The set of pairs of points in T (H∞) that can be joined by a geodesic is larger than
the set of TLC structures. The reason is that there exist holomorphic quadratic
differentials on H∞ which are not TLC (see Section 2.3). However, A. Epstein, V.
Markovic and the author [12] have recently showed that not every Teichmüller class
has a Teichmüller-type Beltrami coefficient representative.

An important corollary of Theorem 5.1 is the fact that the embedding of the
Teichmüller space of any closed Riemann surface into T (H∞) is distance preserving
for their Teichmüller metrics. We see this by noting that a Beltrami coefficient k |ϕ|ϕ ,
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with ϕ a holomorphic quadratic differential on a closed Riemann surface, lifts to
the Beltrami coefficient k |ϕ̃|ϕ̃ on the solenoid H∞, with ϕ̃ being the lift of ϕ on H∞.

Since k |ϕ̃|ϕ̃ is a generalized extremal Beltrami coefficient the distance in the lifting
is preserved.

Corollary 5.2. An embedding of the Teichmüller space of a closed Riemann surface
into T (H∞) induced by lifting complex structures on Riemann surfaces to TLC
complex structures on H∞ is an isometry for the corresponding Teichmüller metrics.
2

6. An Approximation Theorem for Holomorphic Quadratic
Differentials

We prove a form of Bers’ theorem on the density of rational functions in the space
of holomorphic functions. We show that any ϕ ∈ A(∆×T ) can be approximated in
the L1-norm by holomorphic functions in A(∆×T ) which are rational and integrable
on each leaf, and are locally constant in the transverse direction.

Theorem 6.1. Given ϕ ∈ A(∆ × T ) and ε > 0, there exists r ∈ A(∆ × T ) such
that ∫

∆×T

|ϕ− r|dxdydm < ε,

where r(z, t) is a rational holomorphic function on each leaf of ∆ × T which is
locally constant in the transversal direction.

Proof. Since ϕ is uniformly bounded on ∆×T , it follows that ϕ(·, t) ∈ L1(∆×{t})
for all t ∈ T . Let Ut be an open neighborhood of t ∈ T consisting of all t1 such
that

∫∫
∆
|ϕ(z, t)−ϕ(z, t1)|dxdy < ε

2 . The family {Ut}t∈T covers T and we choose a
finite subcover {Ut1 , Ut2 , . . . , Utn}. We arrange that the elements of the finite cover
are pairwise disjoint by possibly decreasing some of them. For each ti, we choose
an integrable rational function ri(z) on Ĉ which is holomorphic on ∆ such that

∫∫

∆

|ϕ(z, ti)− ri(z)|dxdy <
ε

3
.

This choice is possible by the Bers’ approximation theorem for the unit disk (see
[17]). If ri(z) has zeros on the unit circle S1 ≡ ∂∆ then we move the zeros to C−∆̄
to obtain a new rational function which is holomorphic in S1∪∆, called ri(z) again,
with ∫∫

∆

|ϕ(z, ti)− ri(z)|dxdy <
ε

2
.

We define r(z, t) = ri(z), for t ∈ Ui. Note that r(z, t) is locally constant in the
transverse direction and it belongs to A(∆× T ). By integrating the inequality

∫∫

∆×{t}
|ϕ(z, t)− r(z, t)|dxdy < ε

with respect to t, we get
∫

∆×T

|ϕ(z, t)− r(z, t)|dxdydm < ε.

2
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Remark 6.1. Consider the universal covering H × T of X, where H is the upper
half-plane. The space A(H × T ) consists of all uniformly bounded holomorphic
quadratic differentials on H× T which are pull-backs of elements in A(∆× T ). An
element ϕ ∈ A(H × T ) is uniformly bounded and |ϕ(z, t)| is of the order |z|−4, as
|z| → ∞. The statement of Theorem 6.1 is unchanged if we replace A(∆×T ) with
A(H× T ).

7. Infinitesimal Beltrami differentials

We apply the Reich-Strebel inequality to study the infinitesimal structure of
the Teichmüller space T (H∞). Recall that a smooth Beltrami differential µ is
infinitesimally trivial if

∫
X

µϕdm = 0 for all holomorphic quadratic differentials
ϕ ∈ A(X). By Proposition 3.2, µ is infinitesimally trivial if and only if

∫
X

µϕdm =
0, for all ϕ ∈ A1(X). The following theorem is completely analogous to the case of
a Riemann surface (see [14]).

Theorem 7.1. A smooth Beltrami differential ν on the solenoid X is infinitesimally
trivial if and only if there exists a holomorphic curve µs of Teichmüller trivial
smooth Beltrami coefficients such that µs = sν + O(s2) uniformly on X.

Proof. Suppose µs = sν + O(s2) is a holomorphic curve of Teichmüller trivial
smooth Beltrami coefficients, where ν is smooth. The Reich-Strebel inequality is
equivalent to ∣∣∣Re

∫

X

µsϕ

1− |µs|2 dm
∣∣∣ ≤

∫

X

|µs|2|ϕ|
1− |µs|2 dm.

From µs = sν + O(s2) and the above inequality we obtain
∣∣∣Re

∫

X

sνϕdm
∣∣∣ ≤ O(s2)

for all ϕ ∈ A(X) and for all s small, which shows that ν is infinitesimally trivial.

To show the converse, suppose that ν is infinitesimally trivial. Let ν̃ be the lift
of ν to the universal cover H× T of X, where H is the upper half-plane. We define
the Bers map Φ for the solenoid X (for a similar construction see Sullivan [31]). It
maps smooth Beltrami coefficients on H×T onto holomorphic functions on H−×T ,
where H− is the lower half plane. Given a smooth Beltrami coefficient µ̃ on H×T ,
Φ(µ̃) is defined on each leaf by taking the Schwarzian derivative in H− × T of the
solution of the Beltrami equation with the Beltrami coefficient µ̃ on H × T and 0
on H− × T . Since A∗X(µ̃) = µ̃ for AX ∈ GX , then A∗X(Φ(µ̃)) = Φ(µ̃).

Consider s ∈ C such that |s| < 1
‖ν‖∞ . Then µ̃s = sν̃ is a smooth Beltrami

coefficient on H × T . Let µs be the projection of µ̃s on X. We show that the
derivative d

dsΦ(µ̃s)|s=0 = Φ̇(ν̃) satisfies Φ̇(ν̃) = 0. It is enough to show that∫∫
H×{t}

ν̃(z,t)
(z−w)4 dxdy = 0 for all t ∈ T and for all w ∈ H− by the Bers’ representation

formula [2]. Assume on the contrary that there exists t0 ∈ T and w0 ∈ H− such
that

∫∫
H×{t0}

ν̃(z,t)
(z−w0)4

dxdy = d 6= 0. Fix ε such that 0 < ε < |d|
2 . There exists a

neighborhood Ut0 of t0 such that
∫∫
H×{t} | ν̃(z,t0)−ν̃(z,t1)

(z−w0)4
|dxdy < ε for all t1 ∈ Ut0 .

We choose Ut0 to be homeomorphic to T . Consider a bounded holomorphic func-
tion φ(z, t) = 1

(z−w0)4
for t ∈ Ut0 and for a fixed w0 ∈ H−, and φ(z, t) = 0 for
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t ∈ T − Ut0 . Then

∣∣∣
∫

H×T

ν̃(z, t)φ(z, t)dxdydm
∣∣∣ ≥ |d|

2
m(Ut0) > 0.

We show that the above inequality is impossible. The holomorphic function φ
satisfies conditions of Remark 6.1. By Theorem 3.1, the holomorphic quadratic
differential ϕ̃(z, t) = Θ(φ)(z, t) projects to an element of A(X), where Θ is the
commensurable theta series for X. Let F be the fundamental domain for X on
H× T . Then

∫
H×T

ν̃φ(z, t)dxdydm =
∫

F
ν̃Θ(φ)dxdydm =

∫
F

ν̃ϕ̃dxdydm 6= 0. This
contradicts the fact that ν̃ is infinitesimally trivial. The contradiction proves that
Φ̇(ν̃) = 0.

Let ϕ̃s(z, t) = Φ(µ̃s)(z, t), for z ∈ H− and let ξ̃s(z, t) = −2y2ϕ̃s(z̄, t), for z ∈ H.
Then Φ(ξ̃s) = Φ(µ̃s) by [2], which implies that µ̃s is Teichmüller equivalent to ξ̃s

on each leaf of H × T . Note that ϕ̃s and ξ̃s are invariant under covering maps.
Since Φ̇(ν̃) = 0 and by the holomorphicity of Φ, we get that ‖ξ̃s‖∞ ≤ Cs2 for a
fixed constant C. Let η̃s be the Beltrami coefficient of the quasiconformal map
(f ξ̃s)−1 ◦ f µ̃s on H × T . The Beltrami coefficient η̃s is trivial on each leaf H × T .
Further, η̃s is invariant under deck transformations and it satisfies η̃s = sν̃ + O(s2)
(see [14]). Thus, it projects to a smooth Beltrami coefficient ηs on X with ηs =
sν + O(s2). 2

Remark. Sullivan [31] defines a Beltrami coefficient ν to be infinitesimally trivial
if

∫
X

νϕ = 0 for all integrable quadratic differentials ϕ which are holomorphic on
almost all leaves of X and carry transverse measures as a part of their definition.
Our result shows that it is enough to consider the space A(X) of transversely con-
tinuous holomorphic quadratic differentials with a fixed transverse measure (Haar
measure) for the definition of the infinitesimally trivial Beltrami differentials. The
space A(X) of holomorphic quadratic differentials which are continuous for the
transversal variation is not complete in the L1-norm.

Denote by L∞s (X) the space of all smooth Beltrami differentials on X. The
space N(X) of infinitesimally trivial smooth Beltrami differentials consists of all
ν ∈ L∞s (X) such that

∫
X

νϕdm = 0, for all ϕ ∈ A(X). The above theorem identifies
the space of tangent vectors at [f : H∞ → X] ∈ T (H∞) with L∞s (X)/N(X).

However, the situation is not as nice as in the case of the Teichmüller space of a
Riemann surface. Namely, L∞s (X) and N(X) are not Banach spaces, because the
smoothness is not preserved in the limit for the essential supremum (L∞) topology.
We show that the quotient space L∞s (X)/N(X) is Banach in the quotient norm
(see corollary below).

In section 2, we introduced a continuous linear map P : L∞s (X) → A(X), where
A(X) is equipped with the Bers norm. We show that this map induces a linear
isomorphism P̄ from the tangent space at the point [f : H∞ → X] ∈ T (H∞) onto
A(X).

Corollary 7.1. The map P : L∞s (X) → A(X) induces a continuous linear isomor-
phism from the normed space L∞s (X)/N(X) onto the Banach space A(X) equipped
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with the Bers norm. Consequently, the tangent space L∞s (X)/N(X) at any point
[f : H∞ → X] ∈ T (H∞) is a Banach space.

Proof. As in the classical case of a Riemann surface (for example, see [17]), the
linear map P has norm less than or equal to 3 for the essential supremum norm on
L∞s (X) and for the Bers norm on A(X).

It is enough to show that the kernel of P equals to N(X). Note that P is a
constant multiple of the derivative of the Bers map Φ pre- and post-composed with
the inversion in the real line for the z-variable. In the proof of Theorem 7.1, we
showed that N(X) is a subset of the kernel of Φ̇.

It remains to show that if Φ̇(ν̃) = 0 for the lift ν̃ of ν ∈ L∞s (X) then ν ∈ N(X).
The fact that Φ̇(ν̃) = 0 is equivalent to

∫∫
H×{t}

ν̃(z,t)
(z−w)4 dxdy = 0 for all w ∈ H− and

for all t ∈ T . By integrating the above equation three times with respect to w, we
get ∫∫

H×{t}

w(w − 1)ν̃(z, t)
z(z − 1)(z − w)

dxdy = 0

for all w ∈ H− and for all t ∈ T . We divide T into finitely many closed subsets
T i, i = 1, 2, . . . , k and form constant rational functions on ∆ × T i, i = 1, 2, . . . , k,
using linear combinations of ϕw(z, t) = w(w−1)

z(z−1)(z−w) , for t ∈ T i. The above identity
generalizes by the linearity to

∫∫

H×{t}
ν̃(z, t)r(z, t)dxdy = 0,

for all t ∈ T , where r(z, t) is any integrable rational holomorphic function on H×T
which is locally constant in the transverse direction.

By integrating the above identity with respect to the Haar measure λX , we get
∫

H×T

ν̃(z, t)r(z, t)dm = 0,

for any rational r ∈ A(H× T ) which is locally constant in the transverse direction.

We change the upper half plane H to the unit disk ∆. Then
∫

∆×T

ν̃(z, t)r(z, t)dxdydm = 0,

where r(z, t) is a locally constant, rational element of A(∆× T ).

Then ∫

F

ν̃Θ(r)dxdydm =
∫

∆×T

ν̃(z, t)r(z, t)dxdydm = 0,

where Θ(r) is the Poincaré theta series for r and F is a fundamental set for X on
∆ × T . Since Θ is a continuous surjective map from A(∆ × T ) onto A(X) and
by Theorem 6.1, we get that

∫
X

νϕdm = 0 for all ϕ in a dense subset of A(X).
Consequently,

∫
X

νϕdm = 0 for all ϕ ∈ A(X). Thus ν ∈ N(X). 2
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Remark. The pairing
∫

X
νϕdm = 0 identifies elements of L∞s (X)/N(X) with

elements of the dual A∗(X) of A(X) with respect to the L1-norm. Note that
(A1(X))∗ = A∗(X) by Proposition 3.2. In the Teichmüller theory of Riemann sur-
faces, it is standard that the dual to the space of integrable holomorphic quadratic
differentials is isometrically identified with the tangent space.

Acknowledgement. The following theorem is due to V. Markovic.

Theorem 7.2. The dual A∗(X) of A(X) is strictly larger than the tangent space
at [f : H∞ → X] ∈ T (H∞).

Proof. Choose ψ ∈ A1(X) − A(X). We define a continuous linear functional lψ :
A(X) → C by lψ(ϕ) =

∫
X

ρ−2ψ̄ϕdm. Clearly, lψ 6= 0 because lψ(ψ) 6= 0. There
exists a Beltrami differential µ on X (not necessarily smooth or the limit of smooth
Beltrami differentials) such that lψ(ϕ) =

∫
X

µϕdm. The differential µ can be chosen
to be a smooth Beltrami differential if and only if lψ represents a tangent vector.

Assume that µ is smooth. Then ψ1 = P̄ (µ) ∈ A(X) and lψ1 = lψ. This implies
that ψ1 = ψ almost everywhere. But this is a contradiction with our choice of ψ.
Therefore lψ ∈ A∗(X) does not represent a tangent vector. 2

8. Extremal maps

A family of K-quasiconformal maps of the complex solenoid X onto another
complex solenoid is not necessarily compact (as far as we know the first example of
such family is obtained by Adam Epstein). Therefore, the existence of an extremal
Beltrami coefficient in an arbitrary Teichmüller class is not guaranteed. Nonethe-
less, we give a necessary and sufficient condition for a Beltrami coefficient to be
extremal. This condition is of particular interest because of the recent result of A.
Epstein, V. Markovic and the author [12] which shows that not every Teichmüller
class has a Teichmüller-type Beltrami coefficient representative (which is necessarily
uniquely extremal).

We say that smooth Beltrami differentials ν and ν1 on X are in the same infin-
itesimal class if ν − ν1 ∈ N(X) (see Theorem 7.1). The norm of the infinitesimal
class of ν is k1(ν) = infν1 ‖ν1‖∞, where the infimum is over all ν1 in the infinites-
imal class of ν. A Beltrami differential ν ∈ L∞s (X) is infinitesimally extremal if
‖ν‖∞ = k1(ν).

A Beltrami differential µ on X defines a linear functional on A(X) via the natural
pairing

∫
X

µϕdm, for ϕ ∈ A(X). By the definition, Beltrami differentials in the
same infinitesimal class define the same linear functional on A(X). The norm of
the linear functional on A(X) given by a smooth Beltrami differential µ is less than
or equal to ‖µ‖∞. Thus the norm of the linear functional on A(X) given by µ is
less than or equal to the norm k1(µ) of the infinitesimal class of µ.

For a Riemann surface, the Reich-Strebel-Hamilton-Krushkal theorem says that
a Beltrami coefficient is extremal if and only if it is infinitesimally extremal. We
show that the similar result is true for a complex solenoid X.
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Theorem 8.1. A Beltrami coefficient µ on the solenoid X is Teichmüller extremal
if and only if it is infinitesimally extremal.

Proof. We develop two inequalities from the Reich-Strebel inequality (analogous
to [15]) by following the exposition in [17, pages 101 and 102]. For the moment
we do not assume the existence of Teichmüller extremal or infinitesimally extremal
Beltrami coefficients in the given Teichmüller or infinitesimal class. The inequalities
that we obtain are independent of this existence.

Let µ be a smooth Beltrami coefficient on the solenoid X. Let K0 = 1+k0
1−k0

,
where k0 = k0(µ) = infµ1∈[µ] ‖µ1‖∞. We choose a minimizing sequence µn ∈ [µ]
and define Kn = 1+kn

1−kn
, where kn = ‖µn‖∞. Then Kn → K0 as n → ∞. Since µ

and µn are in the same Teichmüller class, we can apply the Reich-Strebel inequality
to the Beltrami coefficient of the Teichmüller trivial map (fµn)−1 ◦ fµ. Using the
chain rule for the Beltrami coefficient of (fµn)−1◦fµ in the Reich-Strebel inequality,
we obtain

(15) 1 ≤
∫

X

|1− µ ϕ
|ϕ| |2

1− |µ|2 ·
|1 + µnθ ϕ

|ϕ| |2
1− |µn|2 |ϕ|dm

where θ = 1−µϕ/|ϕ|
1−µϕ/|ϕ| , ϕ ∈ A(X) and ‖ϕ‖ =

∫
X
|ϕ|dm = 1.

The second fraction on the right side in (15) is less than or equal to Kn. By
substituting Kn in (15) and letting n →∞, we obtain the first inequality

(16)
1

K0
≤

∫

X

|1− µ ϕ
|ϕ| |2

1− |µ|2 |ϕ|dm

where ϕ ∈ A(X) and ‖ϕ‖ = 1.

To obtain the second inequality, assume for the moment that [µ] ∈ T (H∞) has
a Teichmüller type Beltrami coefficient representative k0

|ϕ1|
ϕ1

, 0 < k0 < 1. If we

replace ϕ by ϕ1, µ by k0
|ϕ1|
ϕ1

and µn by µ in (15), we obtain

K0 ≤
∫

X

|1 + µ ϕ1
|ϕ1| |2

1− |µ|2 |ϕ1|dm

where K0 = 1+k0
1−k0

. This implies the second inequality

(17) K0 ≤ sup
‖ϕ‖=1

∫

X

|1 + µ ϕ
|ϕ| |2

1− |µ|2 |ϕ|dm

for Beltrami coefficients with a Teichmüller type representative in their Teichmüller
classes.

Not all points have Teichmüller type representatives. However, if [f : H∞ → X]
represents a TLC complex structure, then the set of points [g : H∞ → Y ] in T (H∞)
such that g ◦ f−1 has a Teichmüller representative is dense in T (H∞). By an ap-
proximation argument (see [17, page 102]), the inequality (17) is correct for all µ on
any X with TLC complex structure. To show (17) for the solenoid X with non-TLC
complex structure, a continuity argument is needed. Since TLC-complex structures
approximate non-TLC complex structures and their corresponding commensurable
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theta series approximate theta series for non-TLC complex solenoid (17) holds ev-
erywhere. A similar approximation argument is given in the proof of Theorem 4.1
(see also [14]).

The rest of the proof follows the steps in the proof of the principle of Teichmüller
contraction (see [17, page 103] or [15]). Namely, using only formal manipulations
of inequalities (16) and (17) we obtain the inequality

(18) C1(‖µ‖∞ − k0) ≤ ‖µ‖∞ − sup
‖ϕ‖=1

Re

∫

X

µϕdm ≤ C2(‖µ‖∞ − k0)

where ϕ ∈ A(X), k0 = infµ1∈[µ] ‖µ1‖∞ and C1 and C2 are positive constants which
depend only on ‖µ‖∞. A version of the inequality (18) for Riemann surfaces and
Beltrami coefficients of constant absolute value appears first in [28].

From inequality (18), it follows that ‖µ‖∞ = sup‖ϕ‖=1 Re
∫

X
µϕdm if and only

if ‖µ‖∞ = k0. Since the norm k1(µ) of the infinitesimal class of µ is greater than
or equal to the norm of the linear functional on A(X) defined by µ, we conclude
that ‖µ‖∞ = sup‖ϕ‖=1 Re

∫
X

µϕdm implies that µ is infinitesimally extremal.

Given a TLC complex solenoid X and a locally transversely constant Beltrami
differential µ on X, the norm k1(µ) of the infinitesimal class of µ is equal to
sup‖ϕ‖=1 Re

∫
X

µϕdm by the corresponding equality for closed Riemann surfaces.
Since the infinitesimal classes of Beltrami differentials which are locally constant
in the transverse direction are dense in the tangent space of T (H∞) at X, a con-
tinuity argument shows that the above holds for all Beltrami differentials on X.
Further, a continuity argument similar to the one in Proposition 8.1 below shows
that k1(µ) = sup‖ϕ‖=1 Re

∫
X

µϕdm for non-TLC complex solenoids X as well. Thus
the theorem follows. 2

The above theorem states that the Teichmüller and the infinitesimal extremal-
ity are equivalent. However, we do not know whether each (Teichmüller or in-
finitesimal) class has an (generalized) extremal representative. By [12], there are
Teichmüller and infinitesimal classes without Teichmüller-type Beltrami coefficient
representatives (which are uniquely extremal) but the existence of extremal maps
of a different type is not excluded.

The quantity ‖µ‖∞ − k0(µ) measures how much µ is away from being extremal
in its Teichmüller class and the quantity ‖µ‖∞ − sup‖ϕ‖=1 Re

∫
X

µϕdm measures
how much µ is away from being Riesz representative of the functional Re

∫
X

µϕdm
on A(X). In the proof of Theorem 8.1 (see (18)) we also showed:

Corollary 8.1. Let 0 < k < 1 be fixed. Then there exist constants C1, C2 > 0
such that

C1(‖µ‖∞ − k0(µ)) ≤ ‖µ‖∞ − sup
|ϕ‖=1

Re

∫

X

µϕdm ≤ C2(‖µ‖∞ − k0(µ))

for any smooth Beltrami coefficient µ on X with ‖µ‖∞ ≤ k. 2

This fact is known as the Teichmüller contraction principle (see [15] or [17, page
103]). Note that even we do not know whether there is an extremal map in each
Teichmüller class the principle of Teichmüller contraction still holds.



QUASICONFORMAL DEFORMATIONS OF THE SOLENOID 31

In the course of the proof of Theorem 8.1 we also showed the following:

Corollary 8.2. The norm k1(µ) of the infinitesimal class of a smooth Beltrami
differential µ on the solenoid X is equal to sup‖ϕ‖=1 Re

∫
X

µϕdm, where ϕ ∈ A(X).

As a consequence of the inequalities (16) and (17) we obtain the infinitesimal
form of the Teichmüller metric similarly to the Teichmüller space of a Riemann
surface (see [28] and [17, page 106]).

Theorem 8.2. Let µ be a smooth Beltrami coefficient on the solenoid X. Then
the Teichmüller distance satisfies

d([0], [tµ]) = t
(

sup
‖ϕ‖=1

Re

∫

X

µϕdm
)

+ O(t2)

for t > 0 as t → 0, where ϕ ∈ A(X). 2

9. The Kobayashi Metric

The Teichmüller space T (H∞) of the solenoid H∞ is embedded via the Bers
map into an open subset of the complex Banach space A(X) equipped with the
Bers norm. This embedding gives a global chart for the complex structure on
T (H∞). The projection map Π : M(H∞) → T (H∞) is a holomorphic surjection,
where M(H∞) is the unit ball in L∞s (H∞) and Π(µ) = [µ]. For details see Sullivan
[31].

The Kobayashi pseudometric δ is the largest pseudometric which makes all holo-
morphic maps from the unit disk ∆ into T (H∞) weakly contracting with respect
to the Poincaré metric on ∆ (for more details, see [14], [17], [27]). We show that
the Kobayashi pseudometric δ is equal to the Teichmüller metric d. This fact is
known for Teichmüller spaces of Riemann surfaces [27], [14].

The argument in [14, page 138] gives that δ([µ], [ν]) ≤ d([µ], [ν]) for each [µ], [ν] ∈
T (H∞). It remains to show the opposite inequality.

Theorem 9.1. On the Teichmüller space T (H∞) of the universal hyperbolic solenoid
H∞, the Kobayashi pseudometric δ equals the Teichmüller metric d. In particular,
the Kobayashi pseudometric is a metric.

Proof. We need to show the inequality d([µ], [ν]) ≤ δ([µ], [ν]) for [µ], [ν] ∈ T (H∞).
It is enough to show it on a dense subset of T (H∞) × T (H∞) by continuity of
pseudometrics. The dense subsets on which we show the inequality is the set of all
pairs of TLC complex structures.

We define a holomorphic projection of T (H∞) onto T (∆/Gn), where Gn is
a finite index subgroup of G. Since H∞ = ∆ ×G Ĝ, we can lift any Beltrami
differential µ on H∞ to a Beltrami differential µ̃ on ∆ × Ĝ. Then we define a
Beltrami coefficient µ̃n on ∆ to be the restriction of µ̃ to a fundamental polyhedron
ωn for Gn on the leaf ∆ × {id}. Extend the Beltrami coefficient µ̃n to ∆ by the
push forward with elements of Gn. The projection µn of µ̃n to ∆/Gn represents
a point in the Teichmüller space T (∆/Gn). This defines a surjective holomorphic
map from T (H∞) onto T (∆/Gn).
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Let [µ], [ν] ∈ T (H∞) be lifts of points [µ1], [ν1] ∈ T (∆/Gn). Denote by δ1 the
Kobayashi metric and by d1 the Teichmüller metric on T (∆/Gn). It is known that
d1 = δ1. Since holomorphic maps weakly contract in the corresponding Kobayashi
metrics, it follows that δ1([µ1], [ν1]) ≤ δ([µ], [ν]). By Corollary 5.2, we know that
d([µ], [ν]) = d1([µ1], [ν1]) because [µ], [ν] ∈ T (H∞) represent TLC complex struc-
tures. From d([µ], [ν]) = d1([µ1], [ν1]) = δ1([µ1], [ν1]) and the above inequality we
obtain

d([µ], [ν]) ≤ δ([µ], [ν]).

The above inequality holds for an arbitrary pair of points in T (H∞) which are
lifts of points in T (∆/Gn). Thus we obtain the inequality d ≤ δ on the set of all
pairs of points with TLC complex structures. These are dense in T (H∞)×T (H∞)
and the theorem follows. 2

A direct consequence of the above theorem is that any biholomorphic isomor-
phism of T (H∞) is an isometry for the Teichmüller metric.

10. Conclusions and Open Problems

In the Teichmüller spaces of finite surfaces every two points are connected by
a unique geodesic determined by the Beltrami coefficient of the Teichmüller-type.
In the infinite-dimensional non-separable Teichmüller spaces of open (geometrically
infinite) Riemann surfaces every two points are connected by a geodesic while the
uniqueness of the geodesic is false. The Teichmüller space T (H∞) of the univer-
sal hyperbolic solenoid H∞ is an infinite-dimensional separable Banach manifold.
However, we do not know whether there is a geodesic connecting any two points in
T (H∞) due to the non-compactness of a family of K-quasiconformal maps.

We showed (Theorem 5.1) that there is dense set in T (H∞)×T (H∞) connected
by unique geodesics described by holomorphic quadratic differentials on H∞ (Te-
ichmüller-type Beltrami coefficients determine these unique geodesics). This dense
set contains all pairs of marked TLC complex structures on H∞, but it is strictly
larger. A. Epstein, V. Markovic and the author [12], showed that not every Te-
ichmüller class has a Teichmüller-type Beltrami coefficient representative. However,
it is possible to have extremal maps of a different type (and even if extremal maps
do not exist, it is still possible to have geodesics) and we ask:

Question 1. Are any two points in T (H∞) connected by a (unique) geodesic?

We showed that infinitesimally extremal is equivalent to being extremal in the
Teichmüller class of maps (Theorem 8.1). However, if any infinitesimal class has
an extremal representative it is not guaranteed that any Teichmüller class has
an extremal representative due again to the non-compactness of a family of K-
quasiconformal maps. However, an implicit function argument could presumably
be used to give a positive answer locally.

The Teichmüller space T (H∞) has a natural complex structure which induces
the Kobayashi metric. We proved that the Kobayashi metric equals the Teichmüller
metric on T (H∞).
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Question 2. Is it true that each complex biholomorphic map of T (H∞) is geomet-
ric, i.e. comes from a self-map of H∞?

Since the Kobayashi metric equals the Teichmüller metric, one needs to show
that a linear isometry of the tangent spaces at X and Y produces a linear isometry
of A(X) and A(Y ) in the L1-norm and that such isometry induces a complex
isomorphism between X and Y . This is an outline due to Royden for closed surfaces
which is extended to arbitrary Riemann surfaces by several authors [27],[10], [9],
[18], [11] and [20]. The second step seems easier to extend due to the analysis
in [20]. The first step seems harder. In the finite surface case, it follows by the
duality between integrable holomorphic differentials and Beltrami differentials on a
surface. For geometrically infinite surfaces, this was obtained by producing a pre-
dual to the space of integrable holomorphic quadratic differentials which consists
of asymptotically trivial Beltrami differentials [9]. Since H∞ is compact such space
does not exist.

The modular group Mod(H∞) consists of baseleaf preserving quasiconformal
maps of H∞ up to homotopy [24] and it acts on T (H∞).

Question 3. Is true that the action of the modular group Mod(H∞) has dense
orbits?

It is known that this action has orbits with accumulation points [21], but it
is much harder to completely understand the quotient space T (H∞)/Mod(H∞).
This question is equivalent to the conjecture of Ehrenpreis which states that any
two closed Riemann surfaces have large finite covers that are almost conformal [5]
(Sullivan made this observation).

There was a recent progress in understanding the quotient T (H∞)/Mod(H∞)
for the case of the punctured solenoid. Namely, V. Markovic and the author [22]
showed that the orbit of the basepoint in T (H∞) accumulates to the basepoint and
that the closure of the orbit is uncountable. In [21] we take the orbit of a non-TLC
points and show that they accumulate on points not in the orbit, while in [22] we
consider the orbit of a special TLC point which is a substantial progress.

It is also interesting to understand properties of the modular group. For example,
any finite subgroup is cyclic [21]. Another question is to understand the dynamics
of their action on T (H∞) similar to the closed surface case [32], [13], [3]. A positive
answer to Question 1 could help in the view of the approach of Bers [3].
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[12] A. Epstein, V. Markovic and D. Šarić, Extremal maps for the universal hyperbolic solenoid,
preprint, available at arxiv: http://www.arxiv.org/abs/math.DS/0604411.

[13] A. Fathi, F. Laudenbach, V. Poenaru, Travaux de Thurston sur les surface, Astérisque,
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