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Abstract. Thurston’s boundary to the universal Teichmüller space T (H) is

the set of asymptotic rays to the embedding of T (H) in the space of geodesic
currents; the boundary is identified with the projective bounded measured

laminations PMLbdd(H) of H. We prove that each Teichmüller geodesic in

T (H) has a unique limit point in the Thurston’s boundary to T (H) unlike in
the case of closed surfaces.

1. Introduction

The Teichmüller space T (D) of the unit disk D, called the universal Teichmüller
space, consists of all quasisymmetric maps h : S1 → S1 which fix 1, i and −1 on the
unit circle S1. The Teichmüller space of an arbitrary hyperbolic surface embeds in
T (D) as a complex Banach submanifold. Some properties of Teichmüller spaces can
be easier explained by studying the universal Teichmüller space T (D). One example
where studying universal Teichmüller space T (D) simplifies the considerations is the
closure of Teichmüller spaces in terms of degenerations of hyperbolic structures-the
Thurston’s boundary.

Thurston’s boundary to the universal Teichmüller space T (D) is identified with
the space of projective bounded measured laminations PMLbdd(D) of the unit disk
D, where D is identified with the hyperbolic plane (cf. [?], [?]). Bonahon [?]
used geodesic currents to give an alternative description of Thurston’s boundary
to Teichmüller spaces of closed surfaces. Namely, the Teichmüller space of a closed
surface embeds into the space of geodesic currents (equipped with the weak* topol-
ogy) and the asymptotic rays to the image of the embedding are boundary points
of the Teichmüller space (cf. [?]). The universal Teichmüller space T (D) embeds
into the space of geodesic currents of D when an appropriate topology on geodesic
currents is introduced (cf. [?], [?], [?]) and this embedding is real analytic (cf. Otal
[?]). The image of T (D) in the space of geodesic currents is closed and unbounded,
and the space of its asymptotic rays-the Thurston’s boundary- is identified with
the projective bounded measured laminations PMLbdd(D) (cf. [?], [?]). In partic-
ular, the earthquake paths t 7→ Etµ as t → ∞ accumulate to their corresponding
projective earthquake measures [µ] ∈ PMLbdd(D) (cf. [?], [?]). The construction
of the Thurston’s boundary works for all hyperbolic surfaces simultaneously since
any invariance under a Fuchsian group is preserved under the construction.

In the case of closed surfaces, Masur [?] proved that the Teichmüller geodesic rays
obtained by shrinking the vertical directions of holomorphic quadratic differentials
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with uniquely ergodic vertical foliations converge to the projective classes of their
vertical foliations in the Thurston’s boundary. On the other hand, if the vertical
foliation of a holomorphic quadratic differential consists of finitely many cylinders
then the limit in the Thurston’s boundary is the projective class of the measured
lamination supported on finitely many simple closed geodesics homotopic to the
cylinders with equal weights (cf. [?]). In both cases the Teichmüller geodesic rays
have unique endpoints on Thurston’s boundary and the endpoints depend only
on the vertical foliations. However, when the vertical foliations of holomorphic
quadratic differentials on closed surfaces are not uniquely ergodic then the limit
sets of the corresponding Teichmüller rays consist of more than one point (cf. [?],
[?]).

We consider the limits of Teichmüller geodesic rays in the universal Teichmüller
space T (D) corresponding to integrable holomorphic quadratic differentials. When
the holomorphic quadratic differential has no zeroes in D and the natural parameter
maps the unit disk into a domain in C between the graphs of two functions, then
the Teichmüller geodesic ray has a unique endpoint in the Thurston’s boundary of
T (D) but the endpoint depends on both vertical and horizontal foliations of ϕ (cf.
[?]). We extend this result to all integrable holomorphic quadratic differentials.

The hyperbolic plane is identified with the unit disk D and the visual boundary
of the hyperbolic plane is identified with the unit circle S1. A (hyperbolic) geodesic
in D is uniquely determined by it endpoints; the space of geodesics of D is identified
with S1 × S1 − diag. Let ϕ be an arbitrary integrable holomorphic quadratic
differential on the unit disk D. Each vertical trajectory of ϕ has two distinct
endpoints on the boundary circle S1 of the unit disk D (cf. [?]). Thus each vertical
trajectory of ϕ is homotopic to a unique geodesic of D relative ideal endpoints on
S1. Let vϕ be the set of the geodesics in D homotopic to the vertical trajectories of
ϕ. Given a box of geodesics [a, b] × [c, d] ⊂ S1 × S1 − diag, denote by I[a,b]×[c,d] a
subarc of a horizontal trajectory that intersects each vertical trajectory of ϕ with
one endpoint in [a, b] and the other endpoint in [c, d].

We define a measured lamination µϕ of D supported on vϕ by

µϕ([a, b]× [c, d]) =

∫
I[a,b]×[c,d]

1

l(x)
dx

where l(x) is the length of a vertical trajectory through x ∈ I[a,b]×[c,d] and the
integration is in the natural parameter of ϕ. We obtain (cf. Proposition ?? and
Theorem ??)

Proposition 1. Let µϕ be the measured lamination homotopic to the vertical fo-
liation of an integrable holomorphic quadratic differential ϕ on D defined above.
Then

‖µϕ‖Th = sup
[a,b]×[c,d]

µϕ([a, b]× [c, d]) <∞

where the supremum is over all boxes [a, b]× [c, d] with cr(a, b, c, d) = 2.
The measured lamination µϕ satisfies

µϕ({a} × [c, d]) = 0

for all a ∈ S1 and [c, d] ⊂ S1, and in particular it does not have atoms.
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For ε > 0, let Tε be the Teichmüller mapping that shrinks the vertical trajectories
by a multiplicative constant ε. The path ε 7→ Tε as ε → 0+ leaves every bounded
subset of the universal Teichmüller space T (D). We obtain

Theorem 1. Let

ε 7→ Tε

be the Teichmüller ray in T (D) that shrinks the vertical trajectories of an integrable
holomorphic quadratic differential ϕ by a multiplicative constant ε > 0. Then

Tε → [µϕ] ∈ PMLbdd(D)

as ε→ 0+, where µϕ is the measured lamination defined above and the convergence
is in the weak* topology.

In particular, the limit set of any Teichmüller ray in T (D) consists of a unique
point.

Remark 1. The limit point µϕ depends on the vertical foliation and the lengths
of the vertical trajectories unlike for closed surfaces. The lengths of vertical tra-
jectories are given by the transverse measure to the horizontal foliation. Therefore
the limit points depend on both vertical and horizontal foliations of ϕ.

Remark 2. The measure µϕ([a, b]×[c, d]) is the modulus of the vertical trajectories
of ϕ with one endpoint in [a, b] and another endpoint in [c, d] (cf. Proposition ??).

2. Thurston’s boundary via geodesic currents

We identify the unit disk D with the hyperbolic plane; the visual boundary to D
is the unit circle S1. A homeomorphism h : S1 → S1 is said to be quasisymmetric
if there exists M ≥ 1 such that

1

M
≤ |h(I)|
|h(J)|

≤M

for all circular arcs I, J with a common boundary point and disjoint interiors such
that |I| = |J |, where |I| is the length of I. A homeomorphism is quasisymmetric if
and only if it extends to a quasiconformal map of the unit disk.

Definition 2.1. The universal Teichmüller space T (D) consists of all quasisym-
metric maps h : S1 → S1 that fix −i, 1, i ∈ S1.

If g : D → D is a quasiconformal map, denote by K(g) its quasiconformal
constant. The Teichmüller metric on T (D) is given by d(h1, h2) = infgK(g), where

g runs over all quasiconformal extensions of the quasisymmetric map h1 ◦h−1
2 . The

Teichmüller topology is induced by the Teichmüller metric.
Bonahon’s approach [?] to Thurston’s boundary of the Teichmüller space T (S)

of a closed surface S is to embed T (S) into the space of geodesic currents on S.
A geodesic current on S is a positive Borel measure on the space of geodesics
(S1 × S1 \ diag)/Z2 of the universal covering D of S that is invariant under the
action of the covering group π1(S). Each point in the Teichmüller space T (S) is a
quasisymmetric map

h : S1 → S1

that conjugates the covering Fuchsian group π1(S) onto another Fuchsian group.
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The Liouville measure L on the space of geodesic of D is given by

L(A) =

∫
A

dαdβ

|eiα − eiβ |2

for any Borel set A ⊂ S1 × S1 − diag. If A = [a, b]× [c, d] then

L([a, b]× [c, d]) = log
(a− c)(b− d)

(a− d)(b− c)
.

To each quasisymmetric map of h : S1 → S1 that conjugates π1(S) onto another
Fuchsian group, we assign the pull back h∗(L) of the Liouville measure. This
assignment is a homeomorphism of T (S) onto its image in the space of geodesic
currents for S when equipped with the weak* topology (cf. [?]). The set of the
asymptotic rays to the image of T (S) is identified with the projective measured
laminations on S-the Thurston’s boundary of T (S) (cf. [?]).

The universal Teichmüller space T (D) maps into geodesic currents by taking the
pull backs by quasisymmetric maps of the Liouville measure. There is no invariance
condition on the quasisymmetric maps or on the pull backs of the Liouville measure.
A geodesic current α is bounded if

sup
[a,b]×[c,d]

α([a, b]× [c, d]) <∞

where the supremum is over all [a, b]× [c, d] with L([a, b]× [c, d]) = log 2. The pull
backs h∗(L) for h quasisymmetric are bounded geodesic currents.

The space of bounded geodesic currents is endowed with the family of Hölder
norms parametrized with the Hölder exponents 0 < ν ≤ 1 (cf. [?]). The pull backs
of the Liouville measure define a homeomorphism of T (D) onto its image in the
bounded geodesic currents; the homeomorphism is differentiable with a bounded
derivative given by a Hölder distribution (cf. [?]) and, in fact, Otal [?] proved
that it is real-analytic. The asymptotic rays to the image of T (D) are identi-
fied with the space of projective bounded measured laminations (cf. [?]). Thus
Thurston’s boundary of T (D) is the space PMLbdd(D) of all projective bounded
measured laminations on D (and an analogous statement holds for any hyperbolic
Riemann surface). Alternatively, the space of geodesic currents can be endowed
with the uniform weak* topology (cf. [?]) and Thurston’s boundary for T (D) is
again PMLbdd(D) (cf. [?]).

3. The asymptotics of the modulus

Let (a, b, c, d) be a quadruple of distinct points on S1 given in the counter-
clockwise order. Denote by Γ[a,b]×[c,d] the family of all differentiable curves whose

interiors are in D that have one endpoint on the arc [a, b] ⊂ S1 and the other end-
point on the arc [c, d] ∈ S1. An admissible metric ρ for the family Γ[a,b]×[c,d] is a
non-negative measurable function on D such that the ρ-length of each γ ∈ Γ[a,b]×[c,d]

is at least one, namely

lρ(γ) =

∫
γ

ρ(z)|dz| ≥ 1.

The modulus mod(Γ[a,b]×[c,d]) of the family Γ[a,b]×[c,d] is given by

mod(Γ[a,b]×[c,d]) = inf
ρ

∫
D
ρ(z)2dxdy

where the infimum is over all admissible metrics ρ.
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The following lemma is an easy consequence of the asymptotic properties of the
moduli (cf. [?]).

Lemma 3.1 (cf. [?]). Let (a, b, c, d) be a quadruple of points on S1 in the coun-
terclockwise order. Let Γ[a,b]×[c,d] consist of all differentiable curves γ in D which

connect [a, b] ⊂ S1 with [c, d] ⊂ S1. Then

mod(Γ[a,b]×[c,d])−
1

π
L([a, b]× [c, d])− 2

π
log 4→ 0

as mod(Γ[a,b]×[c,d])→∞, where L is the Liouville measure.

Remark 3.2. Note that simultaneously mod(Γ[a,b]×[c,d]) → ∞ and L([a, b] ×
[c, d])→∞.

4. The convergence of Teichmüller rays

Let ϕ be an integrable holomorphic quadratic differential on the unit disk D. In
other words, ϕ : D→ C is holomorphic and

‖ϕ‖ =

∫∫
D
|ϕ(z)|dxdy <∞.

We define the width of a curve γ in D. By Strebel [?], the unit disk D can
be decomposed into countably many disjoint open strips S(βi) up to a countable
family of singular vertical trajectories, where βi is an open interval on a horizon-
tal trajectory and S(βi) is the union of maximal non-singular intervals of vertical
trajectories intersecting βi. The strips S(βi) are open and simply connected. The
quantity √

ϕ(z)dz2

is well defined on each S(βi) since it is simply connected and does not contain any
zeroes of ϕ. Any Borel A ⊂ βi has well-defined width

width(A) =

∫
A

|Re
√
ϕ(z)dz2|.

If γ ⊂ S(βi), denote by πβi(γ) the projection of γ onto βi along the vertical
trajectories. Then the width of γ is defined by

width(γ) =

∫
πβi (γ)

|Re
√
ϕ(z)dz2|.

Assume that γ is not contained in a single strip. Consider the collection of Borel
sets πβi(γ ∩ S(βi)) for all i with γ ∩ S(βi) 6= ∅. If a subarc of βi is homotopic
relative vertical trajectories to a subarc of βi1 , then we identify them and assume
this identification without further mention. We define the width by

width(γ) =

∞∑
i=1

width(γ ∩ [S(βi)− ∪i−1
k=0S(βk)]).

The definition width(γ) is given in terms of the strips S(βi). To see that width(γ)
is independent of the choice of the strips, let S(β′j) be another countable collection
of disjoint open strips that covers D up to countable union of singular vertical
trajectories. The two strips S(βi) and S(β′j) are either disjoint or they intersect
in an open strip S(βi,j), where βi,j is an open subinterval on βi which can be
homotoped modulo vertical trajectories to subinterval of β′j . The homotopy is
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measure preserving for
∫
∗ |Re

√
ϕ(z)dz2|. Since βi − ∪jβi,j is at most countable

(which is of measure zero), it follows that

width(γ ∩ S(βi)) =
∑
j

width(γ ∩ [S(βi,j)−
j−1∑
k=0

S(βi,k)]).

This implies that width(γ) is independent of the choice of the covering by the strips.

Proposition 4.1. Let Γ = Γ([a, b]× [c, d]) be the family of rectifiable arcs in D with
one endpoint in [a, b] ⊂ S1 and the other endpoint in [c, d] ⊂ S1. Denote by Tε the
Teichmüller map of D that shrinks the vertical trajectories of ϕ by the multiplicative
constant ε > 0. Then

lim sup
ε→0+

ε ·mod(Tε(Γ)) ≤ mod(Γv([a, b], [c, d]))

where Γv([a, b], [c, d]) is the set of vertical trajectories with one endpoint in [a, b]
and the other endpoint in [c, d].

Proof. By Strebel [?], almost every point of S1 is on a finite distance from an

interior point of D in the metric
√
|ϕ(z)||dz|. Let a′, b′, c′, d′ ∈ S1 be on the finite

distance from an interior point such that [a, b] ⊂ [a′, b′] and [c, d] ⊂ [c′, d′]. Let
Γ′ = Γ([a′, b′]× [c′, d′]). Namely, let

Γ′ = {γ|γ is rectifiable and has endpoints in [a′, b′] and [c′, d′]}.

Since Γ ⊂ Γ′, we have mod(Tε(Γ)) ≤ mod(Tε(Γ
′)). Let la′,b′ and lc′,d′ be two sim-

ple non-intersecting differentiable arcs in D with endpoints a′, b′ and c′, d′, respec-
tively. Let D′ be the subset of D with boundary consisting of arcs la′,b′ , [b′, c′] ⊂ S1,
lc′,d′ and [d′, a′] ⊂ S1. Let Γ′′ = Γ(la′,b′ × lc′,d′) be the family of rectifiable curves
in D′ that connect la′,b′ and lc′,d′ . Then each curve in Γ′ contains a curve in Γ′′

and we have

(1) mod(Tε(Γ
′)) ≤ mod(Tε(Γ

′′)).

Fix η > 0 and define

Γ′′>η = {γ ∈ Γ′′|w(γ) > η}
and

Γ′′≤η = {γ ∈ Γ′′|w(γ) ≤ η}.
By the subadditivity of the modulus

mod(Tε(Γ
′′)) ≤ mod(Tε(Γ

′′
>η)) +mod(Tε(Γ

′′
≤η)).

We first consider mod(Tε(Γ
′′
>η)). Define the metric ρε(w) = 1

η |
√
ϕε(w)dw2| for

w ∈ D′ε, where ϕε is the terminal holomorphic quadratic differential on Tε(D′) = D′ε.
Recall that the terminal quadratic differential on Tε(D′) is obtained as follows. Let
ζ be the natural parameter of ϕ on D′, i.e. dζ2 = ϕ(z)dz2; let ω = Tε,ζ(ζ), where
Tε,ζ shrinks the vertical direction of ζ by the multiplicative constant ε > 0. Then
define ϕε(ω)dω2 = dω2. If w = Tε(z) then ϕε(w)dw2 = dω2.

The metric ρε is allowable for Tε(Γ
′′
>η) since width(Tε(γ)) > η for all ε > 0 and

all γ ∈ Tε(Γ′′>η). Then

mod(Tε(Γ
′′
>η)) ≤

∫∫
Tε(D′)

ρε(w)2dA =
ε

η2

∫∫
D′
|ϕ(w)|dA
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which gives

(2) lim sup
ε→0+

ε ·mod(Tε(Γ
′′
>η)) = 0.

We estimate mod(Tε(Γ
′′
≤η)). Let z0 ∈ D′ be fixed. Denote by dϕ the path metric

defined by integrating |
√
ϕ(z)dz2|. Let d0 = maxz∈la′,b′∪lc′,d′ d

ϕ(z0, z). For R > 0

define D′R = {z ∈ D′|dϕ(z0, z) ≤ R}. Given ε1 > 0 there exists R > 2d0 such that∫∫
D′−D′R

|ϕ(z)|dA < ε1.

Denote by Γv(la′,b′ , lc′,d′) the set of vertical trajectories γ connecting la′,b′ with
lc′,d′ . The choice R > 2d0 and the fact that the vertical trajectories are geodesics
for dϕ implies that Γv(la′,b′ , lc′,d′) ⊂ D′R. From now on we choose R = R(ε1) as
above.

For M > 0, define (Γ′′≤η)M = {γ ∈ Γ′′≤η|γ ⊂ D′M}. Note that

Γ′′≤η = (Γ′′≤η)R+1 ∪ [Γ′′≤η − (Γ′′≤η)R+1]

which gives

mod(Tε(Γ
′′
≤η)) ≤ mod(Tε((Γ

′′
≤η)R+1) +mod(Tε(Γ

′′
≤η − (Γ′′≤η)R+1)).

Since Tε is ε−1-quasiconformal, we have

ε·mod(Tε(Γ
′′
≤η−(Γ′′≤η)R+1)) ≤ ε·ε−1·mod(Γ′′≤η−(Γ′′≤η)R+1) = mod(Γ′′≤η−(Γ′′≤η)R+1).

Define metric ρ(z) =
√
|ϕ(z)dz2| for z ∈ D′ − D′R and ρ(z) = 0 otherwise. Then

ρ(z) is allowable for the family Γ′′≤η − (Γ′′≤η)R+1. Thus

(3) lim sup
ε→0+

ε ·mod(Tε(Γ
′′
≤η − (Γ′′≤η)R+1)) ≤

∫∫
D′−D′R

|ϕ(z)|dA < ε1.

We estimate mod(Tε((Γ
′′
≤η)R+1). Note that D′R+1 is a compact metric space for

the distance dϕ. Similar to the above

ε ·mod(Tε((Γ
′′
≤η)R+1)) ≤ mod((Γ′′≤η)R+1).

By Keith [?], we have that

lim sup
η→0+

mod((Γ′′≤η)R+1) ≤ mod(lim sup
η→0+

(Γ′′≤η)R+1).

We establish that

(4) lim sup
η→0+

(Γ′′≤η)R+1 = Γv(la′,b′ , lc′,d′).

Let γn : I → D′R+1 be a sequence of uniformly Lipschitz parametrizations of
curves in (Γ′′≤ηn)R+1 with ηn → 0 as n→∞ that converges to γ : I → D′R+1. Then

width(γ) = 0.

Indeed, width(γ) = c > 0 implies that width(γn) > c/2 > 0 for all n large enough.
This contradicts γn ∈ (Γ′′≤η)n)R+1.

Since width(γ) = 0, this implies γ ∈ Γv(la′,b′ , lc′,d′). Since Γv(la′,b′ , lc′,d′) ⊂
(Γ′′≤η)R+1 by our choice of R > 0, we obtain (??). Then (??), (??), (??) and (??)
imply that

(5) lim sup
ε→0+

ε ·mod(Tε(Γ)) ≤ mod(Γv(la′,b′ , lc′,d′)).
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It remains to be proved that Γv(la′,b′ , lc′,d′) can be replaced by Γv([a, b]× [c, d])
in (??). Note that (??) is true for all la′,b′ and lc′,d′ . Choose a sequence lka′,b′ and

lkc′,d′ such that lka′,b′ → [a′, b′] ⊂ S1 and lkc′,d′ → [c′, d′] ⊂ S1 as k → ∞ in the

Hausdorff topology on closed subsets of D̄ = D∪S1. Denote by D′k the subset of D
corresponding to lka′,b′ and lkc′,d′ . Define

Γkv([a′, b′], [c′, d′]) = Γv([a
′, b′], [c′, d′]) ∩ D′k.

We claim that

(6) lim
k→∞

mod(Γv(l
k
a′,b′ , l

k
c′,d′)− Γkv([a′, b′], [c′, d′])) = 0.

Indeed, let C > 0 be the lower bound on the distance dϕ between lka′,b′ and lkc′,d′

over all k. Then ρ(z) = 1
C

√
|ϕ(z)||dz| is admissible for Γv(l

k
a′,b′ , l

k
c′,d′). Let Ak be

the union of the maximal vertical trajectories in D that connect lka′,b′ and lkc′,d′ and

do not connect [a′, b′] and [c′, d′]. Then Ak ⊃ Ak+1 for all k (since we can choose
lka′,b′ and lkc′,d′ such that D′k ⊂ D′k+1).

We claim that ∩∞k=1Ak = ∅. Assume that a horizontal trajectory γ belongs to
the union that makes Ak. Then there exists either a Euclidean neighborhood of
[a′, b′] or a Euclidean neighborhood of [c′, d′] in D̄ = D ∪ S1 such that γ is disjoint
from this neighborhood. There exists k′ > k such that γ does not intersect either
lk
′

a′,b′ or lk
′

c′,d′ . Thus γ does not belong to ∩∞k=1Ak and ∩∞k=1Ak = ∅. This gives∫∫
Ak

|ϕ(z)|dxdy → 0

as k →∞ and (??) follows. From (??) and (??) we get

(7) lim sup
ε→0+

ε ·mod(Tε(Γ) ≤ lim
k→∞

mod(Γkv([a′, b′], [c′, d′])).

By Keith [?], we have that

lim
k→∞

mod(Γkv([a′, b′], [c′, d′])) ≤ mod(lim sup
k→∞

Γkv([a′, b′], [c′, d′]))

where lim supk→∞ Γkv([a′, b′], [c′, d′]) is computed with respect to the Euclidean met-
ric on D̄ = D ∪ S1. Assume the sequence subarc γk ∈ Γkv([a′, b′], [c′, d′]) converges
to γ. Let z1 and z2 be two arbitrary points on γ. Then there exists k large enough
such that γk has points as close as we want to z1 and z2. This implies that the
horizontal distance between z1 and z2 is arbitrary small, and therefore z1 and z2 lie
on the same vertical trajectory. Thus γ is a subset of a single vertical trajectory and
we can assume that the vertical trajectory is non singular. Given z1, z2 ∈ γ, there
exists an open nonsingular vertical strip which contains the subarc of the vertical
trajectory with endpoints z1 and z2. Then the whole subarc from z1 to z2 is in γ
because any γk with points zk1 and zk2 close to z1 and z2 is completely contained in
the strip. Therefore γ is a connected subarc of a vertical trajectory of ϕ. If γ were
not maximal trajectory then it would have endpoints z∗1 and z∗2 of which at least
one is in D. But observing the horizontal strip containing [z∗1 , z

∗
2 ] we conclude that

γ can be extended beyond z∗1 or z∗2 which is a contradiction. Therefore every limit
γ is a maximal vertical trajectory that necessarily belongs to Γv([a

′, b′], [c′, d′]).
Therefore

(8) lim sup
ε→0+

ε ·mod(Tε(Γ) ≤ mod(Γv([a
′, b′], [c′, d′])).
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We choose sequences [a′k, b
′
k] ⊃ [a, b] and [c′k, d

′
k] ⊃ [c, d] on finite distance from

z0 such that a′k → a, b′k → b, c′k → c and d′k → d as k → ∞. The inequality (??)
holds for these sequences and we need to prove that it holds for Γv([a, b], [c, d]) as
well. It is enough to prove that

mod(Γv([a
′
k, b
′
k], [c′k, d

′
k])− Γv([a, b], [c, d]))→ 0.

Let Dk be the union of trajectories in Γv([a
′
k, b
′
k], [c′k, d

′
k])− Γv([a, b], [c, d]). It is

clear that ∩∞k=1Dk = ∅. Define ρ(z) = 1/lv(z)
√
|ϕ(z)dz2| for z ∈ Dk and ρ(z) = 0

otherwise, where lv(z) is the length of the vertical trajectory through z with respect
to the metric dϕ. Then ρ is allowable metric for the family Γv([a

′
k, b
′
k], [c′k, d

′
k]) −

Γv([a, b], [c, d]). Then we have

mod(Γv([a
′
k, b
′
k], [c′k, d

′
k])− Γv([a, b], [c, d])) ≤

∫∫
Dk

1

lv(z)2
|ϕ(z)|dxdy.

We claim that lv(z) has a positive lower bound in Dk. Indeed, since intervals [a′k, b
′
k]

and [c′k, d
′
k] are disjoint and decreasing, their distance in dϕ metric is positive which

implies that any vertical trajectories connecting them must have lengths bounded
below by a positive constant. Thus 1

lv(z)2 is bounded above. Then ∩∞k=1Dk = ∅
implies that

∫∫
Dk

1
lv(z)2 |ϕ(z)|dxdy → 0 as k →∞. The proof is finished. �

Theorem 4.2. Let Γ be the family of rectifiable arcs in D with one endpoint in
[a, b] ⊂ S1 and the other endpoint in [c, d] ⊂ S1. Denote by Tε the Teichmüller map
of D that shrinks the vertical trajectories of ϕ by the multiplicative constant ε > 0.
Then

lim
ε→0+

ε ·mod(Tε(Γ)) = mod(Γv([a, b], [c, d]))

where Γv([a, b], [c, d]) is the set of vertical trajectories with one endpoint in [a, b]
and the other endpoint in [c, d].

Proof. We keep the notation as in the proof of Proposition ??. Since Γv([a, b], [c, d]) ⊂
Γ, it follows that mod(Γv([a, b], [c, d])) ≤ mod(Γ). Because Γv([a, b], [c, d]) consists
of only vertical trajectories, it follows that

ε ·mod(Tε(Γv([a, b], [c, d]))) = mod(Γv([a, b], [c, d])).

Thus

mod(Γv([a, b], [c, d])) ≤ lim inf
ε→0

ε ·mod(Tε(Γv([a, b], [c, d]))).

The opposite inequality is obtained in Proposition ?? and theorem follows. �

We give an equivalent definition of mod(Γv([a, b], [c, d])).

Proposition 4.3. Let ϕ be an integrable holomorphic quadratic differential on the
unit disk D. Then

mod(Γv([a, b], [c, d])) =

∫
I

1

l(z)
|Re(

√
ϕ(z)dz)|

where I is at most countable set of horizontal arcs that intersects each trajectory of
Γv([a, b], [c, d]) in one point and no other vertical trajectories up to countably many
of them, and l(z) is the length of the vertical trajectory through z.
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Proof. Let ρ(z) = 1
l(z) |Re(

√
ϕ(z)dz)|. Then ρ(z) is allowable for the family Γv([a, b], [c, d]).

It follows that mod(Γv([a, b], [c, d])) ≤
∫
I

1
l(z) |Re(

√
ϕ(z)dz)|.

We claim that ρ(z) is extremal metric which proves that we have equality
above. Using Beurlings sufficient condition for extremal metric [?], we need to
show that if

∫
γ
h0(z)|dz| ≥ 0 for all γ ∈ Γv([a, b], [c, d]) and some h0 : D → R then∫∫

D h0(z)ρ(z)2dxdy ≥ 0. By transferring the integration to the natural parameter,
we get that γ are subsets of vertical lines which implies |dz| = dy and ρ(z) = 1.
Then

∫
γ
h0(z)|dz| =

∫
I
h0(z)dy ≥ 0 and an integration in the x direction gives the

desired inequality (cf. [?]). �

Define a measured lamination µϕ as follows. The support of µϕ is a geodesic
lamination obtained by taking geodesics in D which are homotopic to the vertical
trajectories of ϕ, i.e. a geodesic in the support has endpoints equal to a vertical
trajectory of ϕ. For a box of geodesics [a, b]× [c, d], define

µϕ([a, b]× [c, d]) = mod(Γv([a, b], [c, d])).

Proposition 4.4. Let µϕ be the measured lamination corresponding to an integrable
holomorphic quadratic differential ϕ on D as above. Then

µϕ({a} × [c, d]) = 0

for all a ∈ S1 and [c, d] ⊂ S1 with a /∈ [c, d].

Proof. We recall that D is covered by countably many mutually disjoint open strips
S(βi) up to countably many vertical trajectories. Assume on the contrary that
µϕ({a} × [c, d]) > 0. Then there exists an open strip S(βi0) such that∫

Xi0

|Re(
√
ϕ(z)dz2)|) > 0,

where βi0 is the open arc on a horizontal trajectory and Xi0 = βi0 ∩Γv({a}× [c, d]).

By the definition,
∫
Xi0
|Re(

√
ϕ(z)dz2)| is the µϕ-measure of the geodesics of the

support of µϕ that are homotopic to the vertical trajectories of ϕ intersecting βi0 .
For z ∈ Xi0 , let l(z) be the length of the maximal vertical trajectory through z.

Note that S(βi0) might not contain maximal vertical trajectory through z. Since
ϕ is integrable, we have that∫

Xi0

l(z)|Re(
√
ϕ(z)dz2)| <∞

which implies that l(z) <∞ for a. a. z ∈ Xi0 .
Let z1, z2 ∈ Xi0 be such that there exists z′1, z

′
2 ∈ Xi0 with z1 < z′1 < z′2 < z2 for

a linear order on βi0 , and l(z′1) and l(z′2) finite. Let γzi , γz′i be the rays starting at

zi, z
′
i respectively that have a as their endpoint. Note that vertical rays γz1 and γz2

do not intersect βi′0 except at their initial points because any two points in D can

be joined by at most one geodesic arc in the metric |
√
ϕ(z)dz2| (cf. [?, Theorem

14.2.1, page 72]). Both rays have their endpoint a. Let [z1, z2] be the subarc of the
vertical trajectory between z1 and z2. Then γz1 ∪ γz2 ∪ [z1, z2] is the boundary of
a simply connected domain U inside D.

For z ∈ [z1, z2], let γz be the ray of the vertical trajectory with the initial point z
that starts in the direction of U . Then γz never leaves U because it cannot intersect
its boundary except at z and it necessarily accumulates at a. Moreover, the ray γz
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cannot contain critical points of ϕ. Indeed, if it does contain a critical point then
there exist two vertical rays starting at the critical point which make a geodesic and
whose both accumulation points on S1 are equal to a. However, a geodesic must
have two different accumulation points (cf. [?, Theorem 19.4 and Theorem 19.6])
which gives a contradiction. Therefore every vertical trajectory in U is non-critical
and its full extension accumulates at a ∈ S1 and intersects [z1, z2] in exactly one
point. Therefore, U is foliated by γz for z ∈ (z1, z2).

Consider the conformal mapping from U into C using the natural parameter
dw2 = ϕ(z)dz2. Since U is simply connected and without zeroes, the natural
parameter is conformal on U . It follows that w maps injectively the prime ends of
U onto the prime ends of w(U). The point a ∈ ∂U is accessible by vertical rays
γz, for all z ∈ (z1, z2), and they define a prime end of U . Since γz′1 and γz′2 have
finite lengths, it follows that the endpoints of w(γz′1) and w(γz′2) are different in

∂w(U) and they define different prime ends. This is impossible since w−1 maps
both points to the prime end corresponding to a. Contradiction. Thus we obtained
that µϕ({a} × [c, d]) = 0. �

Putting the above statements together gives

Theorem 4.5. Let ϕ be an integrable holomorphic quadratic differential on D and
let Tε be the Teichmüller mapping that shrinks the vertical trajectories of ϕ by a
multiplicative constant ε > 0. The Teichmüller ray ε 7→ Tε for ε > 0 has a unique
limit point [µϕ] on Thurston’s boundary PMLbdd(D) of T (D) as ε→ 0+, where [µϕ]
is the projective class of a bounded measured lamination µϕ corresponding to ϕ.

Proof. The convergence Tε → [µϕ] as ε → 0+ in the weak* topology on measures
follows immediately from Theorem ?? and Proposition ??. It remains to be proved
that µϕ is Thurston bounded.

Note that by the definition the measured lamination µϕ is independent under
multiplication of ϕ by positive constants. Let [a, b]× [c, d] be such that its Liouville
measure satisfies

L([a, b]× [c, d]) = log 2.

Denote by Γ([a, b], [c, d]) the family of all rectifiable arcs in D that have one endpoint
in [a, b] and other endpoint in [c, d]. Then

mod(Γ([a, b], [c, d])) ≤ const

for all L([a, b]× [c, d]) = log 2. Since Γv([a, b], [c, d]) ⊂ Γ([a, b], [c, d]), we have that

µϕ([a, b]× [c, d]) = mod(Γv([a, b], [c, d])) ≤ const

and ‖µϕ‖Th <∞. �

5. From integrable holomorphic quadratic differentials to bounded
measured laminations

Let ϕ be an integrable holomorphic quadratic differential on D (i.e. a holomor-
phic function ϕ : D → C such that ‖ϕ‖L1(D) =

∫∫
D |ϕ(z)|dxdy < ∞). Let A(D) be

the space of all integrable holomorphic quadratic differentials on D.
Given ϕ ∈ A(D), we defined a corresponding bounded measured lamination

µϕ([a, b]× [c, d]) = mod(Γv([a, b], [c, d]))
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or equivalently

µϕ([a, b]× [c, d]) =

∫
I

1

l(z)
|Re(

√
ϕ(z)dz)|

where I is transverse arc to Γv([a, b], [c, d]).
It follows that if c > 0 then µcϕ = µϕ. Therefore we obtain a map from the space

PA(D) of projective integrable holomorphic quadratic differentials to the space of
bounded measured laminations MLbdd(D),

V/l : PA(D)→MLbdd(D).

We prove that V/l : PA(D)→MLbdd(D) is injective.

Theorem 5.1. The map

V/l : PA(D)→MLbdd(D).

defined by

V/l(ϕ) = µϕ

is injective.

Proof. We assume that µϕ = µϕ′ and need to prove that ϕ = cϕ′ for some c > 0.
Since µϕ = µϕ′ we have that their geodesic laminations supports |µϕ| and |µϕ′ | are
the same. In other words each leaf of the vertical foliation ϕ is homotopic to a leaf
of the vertical foliation of ϕ′ relative their two endpoints on the unit circle, and
vice versa.

Additionally, assume that the corresponding leaves of the vertical foliations are
not only homotopic but that they are equal to each other. In other words, the
vertical foliations of ϕ and ϕ′ are equal. If z0 ∈ D is a regular point of both
ϕ and ϕ′, denote by ζ and ζ ′ the corresponding natural parameters in a regular
neighborhood U of z0. Then f = ζ ′ ◦ ζ−1 is a conformal mapping from ζ(U) ⊂ C
onto ζ ′(U) ⊂ C that maps vertical lines onto vertical lines. It follows then that
f(ζ) = aζ ′ + b for some a ∈ R. Thus f∗(dζ2) = a2dζ2 = dζ ′2.

We obtained that for each regular point z0 of ϕ and ϕ′ there exist a neighborhood
U 3 z0 and a constant c > 0 such that ϕ = cϕ′ in U . Since the set of regular points
of ϕ and ϕ′ is connected and dense in D then ϕ = cϕ′ in D and the proof is finished
in this case.

It remains to prove that the vertical foliations of ϕ and ϕ′ are the same under
the assumption that µϕ = µϕ′ . Let {S(βi)}∞i=1 be a family of vertical strips with
transverse horizontal arcs βi that covers D up to countably many singular vertical
trajectories. The arcs βi have metric |

√
ϕ(z)dz| and we isometrically identify them

with [0, ai], where ai is the length of βi. The variable in [0, ai] is x and the integra-

tion with respect dx corresponds to integration with respect |
√
ϕ(z)dz| in D. The

arc [0, ai] is a horizontal arc in the natural parameter
∫ √

ϕ(z)dz for ϕ(z).
For βi, let S(βi, [0, x]) be the subs trip of S(βi) of vertical rays going through

[0, x] ⊂ [0, ai]. The area of S(βi, [0, x]) is

Aϕβi(x) =

∫
[0,x]

lϕ(vϕβi(t))dt,

where vϕβi(t) is the vertical trajectory of ϕ through the point t ∈ [0, x] ⊂ βi and

lϕ(·) is the length in the |
√
ϕ(z)dz| metric. The modulus of the vertical trajectories
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in S(βi, [0, x]) is

Mϕ
βi

(x) =

∫
[0,x]

1

lϕ(vϕβi(t))
dt.

If necessary, we multiply ϕ′ by a positive constant such that ‖ϕ′‖L1 = ‖ϕ‖∞.
Since the supports of µϕ and µϕ′ are the same, to each S(βi, [0, x]) there corre-

sponds a vertical strip S̃(βi, [0, x]) of vertical trajectories vϕ
′

βi
(t) of ϕ′ with the same

endpoints on S1 as vϕβi(t). Note that vϕ
′

βi
(t) does not necessarily pass through t ∈ βi

or even intersects βi.

Let Aϕ
′

βi
(x) andMϕ′

βi
(x) denote the area of S̃(βi, [0, x]) and the modulus of vertical

trajectories of ϕ′ in S̃(βi, [0, x]). We have the following lemma.

Lemma 5.2. Let βi be a transverse horizontal arcs to a vertical strip S(βi) isomet-
rically identified with [0, ai] in the natural parameter of ϕ. Then for a.e. x ∈ [0, ai],
we have

d

dx
Mϕ′

βi
(x) ≤

d
dxA

ϕ′

βi
(x)

[lϕ(vϕ
′

βi
(x))]2

,

where lϕ(·) is the ϕ-length and vϕ
′

βi
(x) is the horizontal trajectory of ϕ′ whose end-

point agree with the endpoints of vϕβi(x).

Proof. For x ∈ [0, ai] and small ε > 0 we denote

Lx(ε) = inf{lϕ(vϕ
′

βi
(t)) : t ∈ [x, x+ ε]}.

Then Lx(ε)−1 is admissible for S̃(βi, [x, x + ε]). Since, Lx(ε) is non-increasing it
has a limit as ε→ 0+. In fact, we have

Lx(ε) −−−−→
ε→0+

lϕ(vϕ
′

βi
(t)).

To see this, note first that Lx(ε) ≤ lϕ(vϕ
′

βi
(x)) and we only need to estimate the

limit from below. For this, fix δ > 0 and choose points ξ0, . . . , ξk ∈ vϕ
′

βi
(x), so that

(9)

k∑
i=1

|ξi − ξi−1| ≥ lϕ(vϕ
′

βi
(x))− δ

2
.

We want to show that for small η the curves vϕ
′

βi
(x + η) have length at least

lϕ(vϕ
′

βi
(x)) − δ. If the set of vertical trajectories S(βi) foliates a neighborhood of

vϕβi(x) (or at least a neighborhood on one side) then S̃(βi) must foliate a neighbor-

hood of vϕ
′

βi
(x) (or at least a neighborhood on one side). Indeed, otherwise there

would be a vertical trajectory in S̃(βi) with no corresponding trajectory in S(βi)
and that would contradict µϕ = µϕ′ . By choosing a small η > 0, we get that a sub-

arc of vϕ
′

βi
(x+ε) is within small euclidean to the subarc of vϕ

′

βi
(x) between ξ0 and ξk.

Since ϕ is continuous, it follows that for η > 0 small enough, each vϕ
′

βi
(x+ε) for ε < η

has points ξ′0, . . . , ξ
′
k on the ϕ-distance less than δ

4k from ξ0, . . . , ξk, respectively.
Therefore by (??) we have

lϕ(vϕ
′

βi
(x+ η)) ≥

k∑
i=1

|ξ′i − ξ′i−1| ≥
k∑
i=1

(
|ξi − ξi−1| −

δ

2k

)
≥ lϕ(vϕ

′

βi
(x))− δ.
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Thus Lx(ε) ≥ lϕ(vϕ
′

βi
(x)) − δ for all ε < η which implies that limε→0+ Lx(ε) =

lϕ(vϕ
′

βi
(x)) because δ > 0 is arbitrary. Thus for a.e. x ∈ [0, ai] we have

d

dx
Mϕ′

βi
(x) = lim

ε→0+

modS̃(βi, [x, x+ ε])

ε
≤ lim sup

ε→0+

Aϕ
′

βi
(x+ ε)−Aϕ

′

βi
(x)

εL2
x(ε)

=
d
dxA

ϕ′

βi
(x)

[lϕ(vϕ
′

βi
(x))]2

,

and the proof is complete. �

Using the above lemma we establish the next lemma which finishes the proof.

Lemma 5.3. If for every βi and for every x ∈ [0, ai] we have Mϕ
βi

(x) = Mϕ′

βi
(x)

then the vertical foliations of ϕ and ϕ′ are equal.

Proof. By the previous lemma and absolute continuity of Mϕ
βi

(x) we have

d
dxA

ϕ
βi

(x)

[lϕ(vϕβi(x))]2
=

1

[lϕ(vϕβi(x))]2
lim
ε→0

1

ε

∫ x+ε

x

lϕ(vϕβi(t))dt =

1

lϕ(vϕβi(x))
=

d

dx
Mϕ
βi

(x) =
d

dx
Mϕ′

βi
(x) ≤

d
dxA

ϕ′

βi
(x)

lϕ(vϕ
′

βi
(x))

.

Since lϕ(vϕβi(x)) ≤ lϕ(vϕ
′

βi
(x)) with equality implying that the two curves are the

same, from the above inequality we obtain

d

dx
Aϕβi(x) ≤ d

dx
Aϕ
′

βi
(x)

for a.e. x ∈ [0, ai].
Thus

Aϕβi(x) =

∫ x

0

d

dt
Aϕβi(t)dt ≤

∫ x

0

d

dt
Aϕ
′

βi
(t)dt ≤ Aϕβi(x)

for all x ∈ βi. Since

‖ϕ‖L1 =
∑
i

Aϕβi(ai) ≤
∑
i

Aϕ
′

βi
(ai) = ‖ϕ′‖L1

and ‖ϕ‖L1 = ‖ϕ′‖L1 , we necessarily have equality for each term βi and for all
x ∈ [0, ai].

Thus Aϕβi(x) = Aϕ
′

βi
(x) for all x ∈ [0, ai] which implies d

dxA
ϕ
βi

(x) = d
dxA

ϕ′

βi
(x).

The first inequality in the proof gives
d
dxA

ϕ
βi

(x)

[lϕ(vϕβi
(x))]2

≤
d
dxA

ϕ′
βi

(x)

[lϕ(vϕ
′

βi
(x))]2

which together with

the above inequality gives lϕ(vϕ
′

βi
(x)) = lϕ(vϕβi(x)) for all x. By the uniqueness of

geodesics in simply connected domains, we obtain that all vertical trajectories of ϕ
and ϕ′ are the same. �

The above lemma together with the above finishes the proof of the theorem. �

Given an integrable holomorphic quadratic differential ϕ on the unit disk, we
denote by νϕ the measured lamination whose support is homotopic to the leaves of

the vertical foliation of ϕ and the transverse measure is given by
∫
I
Re(

√
ϕ(z)dz),

where I is an arc intersecting the leaves of the vertical foliation corresponding to
the leaves of νϕ. We first prove that νϕ is Thurston bounded.
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Proposition 5.4. Let ϕ be an integrable holomorphic quadratic differential on
the unit disk D. Then the vertical foliation measure νϕ defined above is Thurston
bounded.

Proof. Let V≥1 be the the set of all vertical trajectories of ϕ whose ϕ-length is ≥ 1.
Let V<1 be the the set of all vertical trajectories of ϕ whose ϕ-length is < 1. Let
D≥1 = ∪γ∈V≥1γ and D<1 = ∪γ∈V<1γ.

Let [a, b]× [c, d] ⊂ (S1 × S1)− diag be a box of geodesics with cr(a, b, c, d) = 2.
This implies that 1

C ≤ mod(D(a, b, c, d)) ≤ C for some C > 1, where D(a, b, c, d) is

the quadrilateral with interior D and a-sides [a, b] ⊂ S1 and [c, d] ⊂ S1. Let I be a
differentiable transverse arc to the leaves of the vertical foliation with one endpoint
in [a, b] and the other endpoint in [c, d] that does not contain zeros of ϕ. Then we
have

‖ϕ‖L1 >

∫∫
D≥1

|ϕ(z)|dA =

∫
I∩D≥1

lϕ(vϕ(z))dx ≥
∫
I∩D≥1

dx,

where x is the real part of the natural parameter along I. Moreover, we have

C ≥ mod(D(a, b, c, d)) ≥ mod(V<1) =

∫
I∩D<1

1

lϕ(vϕ(z))
dx ≥

∫
I∩D<1

dx.

Since νϕ([a, b]× [c, d]) =
∫
I
dx ≤ ‖ϕ‖L1 + C, we have that ‖νϕ‖Th <∞. �

Note the formula

‖ϕ‖L1 =

∫
S1×S1−diag

dµϕ

dνϕ
dµϕ.
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