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Abstract. Let X be an infinite area hyperbolic surface. We introduce the
Thurston’s boundary to the Teichmüller space T (X) of the surface X using

two invariants of the hyperbolic metric: the Liouville currents and the length

spectrum. The Thurston’s boundary to T (X) using Liouville (geodesic) cur-
rents is identified with the space PMLbdd(X) of projective bounded measured

laminations on X which naturally extends Thurston’s result for closed surfaces

(cf. [9], [5]). The Thurston’s boundary using the length spectrum of X is a
“closure” of PMLbdd(X), and it coincides with PMLbdd(X) when X can be

decomposed into a countable union of geodesic pairs of pants whose boundary
geodesics {αn}n∈N have pinched lengths. When the lengths of the boundary

curves of the geodesic pairs of pants {αn}n are only bounded from the above

and the lengths of a subsequence {αnk} go to zero, the Thurston’s boundary
using the length spectrum is strictly larger than PMLbdd(X).

1. Introduction

Fix a complete, borderless, infinite area hyperbolic surface X. The space of all
quasiconformal deformations of X modulo isometries and isotopies is an infinite-
dimensional manifold called the Teichmüller space T (X) of X. We study the lim-
iting behavior of the quasiconformal deformations of X when the dilatations of
the quasiconfomal maps increase without bound. This study uses two different in-
variants of the hyperbolic metric: the Liouville currents and the length spectrum.
Thurston [22], [9] used the length spectrum to compactify the Teichmüller space
of a closed surface by adding to it the space of projective measured laminations of
the surface. Bonahon [5] used Liouville currents to give an alternative description
of the Thurston’s boundary for the Teichmüller space of a closed surface.

In [18], the Hölder topology on the space of geodesic currents of an infinite
area hyperbolic surface X is introduced in order to give a natural definition of the
Thurston’s boundary to the Teichmüller space T (X) of an infinite area hyperbolic
surface X. The Thurston’s boundary is identified with the space PMLbdd(X) of
projective bounded measured laminations on X analogous to the case of closed
surfaces. Our first contribution is an improvement in the choice of the topology
on the geodesic currents. Namely, we adopt the uniform weak* topology (cf. [14])
to the space of the geodesic currents and prove that the Thurston’s boundary to
T (X) is identified with PMLbdd(X) as before (cf. [18]).

In the second part, we use the length spectrum of infinite hyperbolic surfaces in
order to give an alternative definition of the Thurston’s boundary for T (X). Since
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we consider the length spectrum, it is natural to restrict our attention to complete,
borderless, infinite hyperbolic surfaces that are obtained by gluing countably many
geodesic pairs of pants (cf. [21], [3], [1]). It turns out that the Thurston’s boundary
using the length spectrum is a closure (in an appropriate sense) of PMLbdd(X) and
it is strictly larger than PMLbdd(X) for certain classes of surfaces X. When the
lengths of the geodesic boundaries of the pairs of pants are pinched between two
non-zero constants, then the Thurston’s boundary to T (X) is equal to PMLbdd(X).
However, when the lengths of the geodesic boundaries of the pairs of pants are
bounded from the above and a sequence of lengths goes to zero, then the Thurston’s
boundary of T (X) is larger than PMLbdd(X). More details follow.

Let X be a complete, borderless hyperbolic surface of infinite area (e.g. the
hyperbolic plane H, the complement of a Cantor set in the Riemann sphere, a
topologically finite hyperbolic surface with funnel ends, and infinite genus surface).

The universal covering X̃ is isometrically identified with the hyperbolic plane H and
the isometry continuously extends to an identification of the boundary at infinity
∂∞X̃ with the unit circle S1. The space G(X̃) of oriented geodesics of X̃ is identified

with (∂∞X̃ × ∂∞X̃) − diag ≡ (S1 × S1) − diag by assigning to each geodesic the
pair of its endpoints, where diag is the diagonal of S1 × S1.

The set [a, b] × [c, d] ⊂ (S1 × S1) − diag is called a box of geodesics, where
[a, b], [c, d] ⊂ S1 are disjoint closed arcs. The Liouville measure of the box of
geodesic [a, b]× [c, d] is (cf. [5])

L([a, b]× [c, d]) = log
(a− c)(b− d)

(a− d)(b− c)
.

If A ⊂ (S1 × S1)− diag is a Borel set, then its Liouville measure is given by

L(A) =

∫
A

|dx| · |dy|
|x− y|2

.

The identification of G(X̃) with (S1 × S1) − diag induces a full support, π1(X)-

invariant Borel measure on G(X̃) via the pull-back of the Liouville measure on
(S1 × S1)− diag.

Two different hyperbolic metrics on X induce different identifications of G(X̃)
and (S1 × S1) − diag which in turn induce different measures on the space of

geodesics G(X̃) via pull-backs of their Liouville measures. Denote by M(G(X̃))

the space of all positive Borel measures (called geodesic currents) on G(X̃). The
Teichmüller space T (X) consists of all marked hyperbolic metrics on X modulo
isometries homotopic to the identity via bounded homotopies. The Liouville map

L : T (X)→M(G(X̃))

is defined by assigning to each marked hyperbolic metric the pull-back of the Li-
ouville measure under the identification of X̃ and H2 induced by the hyperbolic
metric (cf. Bonahon [5]).

When X is a finite closed surface of genus at least two, Bonahon [5] proved

that the Liouville map is a homeomorphism onto its image when M(G(X̃)) is
equipped with the weak* topology. Moreover, the projectivization P (L(T (X)))
of the image L(T (X)) under the Liouville map remains a homeomorphism onto

its image in the space of projective geodesic currents P (M(G(X̃))). Bonahon [5]

proved that the boundary of P (L(T (X))) inside P (M(G(X̃))) consists of projective
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measured laminations PML(X) of the closed surfaceX thus introducing Thurston’s
boundary to T (X).

From now on, we assume that X is a hyperbolic surface of infinite area. A
positive Borel measure m on G(X̃), called a geodesic current, is said to be bounded
if

sup
[a,b]×[c,d]

m([a, b]× [c, d]) <∞

where the supremum is over all boxes of geodesics [a, b]×[c, d] with L([a, b]×[c, d]) =

log 2. Denote by M(G(X̃)) the space of bounded geodesic currents on G(X̃). The

Liouville map L : T (X)→M(G(X̃)) is injective. IfM(G(X̃)) is equipped with the
weak* topology then the Liouville map is not a homemorphism onto its image. In
[19], a new topology on M(G(X̃)) is introduced by embedding M(G(X̃)) into the

space of Hölder distributions on G(X̃) satisfying certain boundedness conditions.
The Liouville map is an analytic homeomorphism onto its image in the space of the
Hölder distributions (cf. Otal [15], and [19]).

The Hölder topology onM(G(X̃)) is used to introduce Thurston’s boundary to
the Teichmüller space T (X) when X is a hyperbolic surface of infinite area (cf. [19]).
It turns out that the Thurston’s boundary for T (X) is the space of all projective
bounded measured laminations PMLbdd(X) of X as in the case of closed surfaces.
Unlike for closed surfaces, the Thurston’s bordification T (X) ∪ PMLbdd(X) is not
compact, in fact it is not even locally compact.

The Hölder topology onM(G(X̃)) is complicated for applications. The first con-

tribution in this paper is simplifying the description of the topology on M(G(X̃))

while obtaining the same Thurston’s boundary to T (X). The topology onM(G(X̃))
that we use is called the uniform weak* topology and it is first introduced on the
space MLbdd(X̃) in [14] for the purposes of studying the relation between the earth-
quake measures and hyperbolic structures obtained by the corresponding earth-
quakes.

A box of geodesic Q∗ = [1, i]×[−1,−i] is said to be the standard box of geodesics.
If Q is a box of geodesics with L(Q) = log 2, then there is a unique isometry γQ
of H2 which maps Q onto Q∗. A sequence of measures mk ∈ M(G(X̃)) converges

to m ∈ M(G(X̃)) as k →∞ in the uniform weak* topology if for every continuous

function f : G(X̃)→ R with its support in Q∗ we have that

sup
Q

∫
Q∗
fd(γQ)∗(mk −m)→ 0

as k → ∞, where the supremum is over all boxes Q with L(Q) = log 2 (cf. [14]).
In other words, all pull-backs of mk −m to the standard box Q∗ must converge at
the same speed to zero when integrated against a continuous function with support
in Q∗. The “uniformity” comes from the fact that we consider pull-backs over all
boxes of G(X̃) of the Liouville measure log 2 in the supremum. We obtain

Theorem 1. Let X be a complete hyperbolic surface without border with possibly
infinite area. Then the Liouville map

L : T (X)→M(G(X̃))

is a homeomorphism onto its image when M(G(X̃)) is equipped with the uniform

weak* topology. The image L(T (X)) is closed and unbounded in M(G(X̃)).
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The projectivization

PL : T (X)→ P (M(X̃))

of the Liouville map is a homeomorphisms and the image P (L(T (X))) is not closed

in P (M(X̃)). The boundary of P (L(T (X))) is the space PMLbdd(X) of projective
bounded measured laminations-the Thurston’s boundary to T (X).

Thurston [9] introduced boundary to the Teichmüller space of a closed surface
of genus at least two using the length spectrum of the marked hyperbolic metrics
on the surface. We consider an analogous construction for infinite area hyperbolic
surfaces. In the context of infinite area hyperbolic surfaces, it is reasonable to
restrict attention to surfaces whose hyperbolic metric is determined by its marked
length spectrum. The study of the length spectrum properties for infinite surfaces
is started by Shiga [21], and it was further developed by various authors(e.g. [1],
[2], [3] [13], [11], [16],...). Most of the above work is done for the case of complete
infinite area hyperbolic surfaces that have geodesic pants decomposition whose cuffs
have length bounded from the above by a constant M > 0.

From now on we assume that X is a complete, borderless infinite area hyperbolic
surface that has a geodesic pants decomposition. Let S denote the set of all simple
closed geodesics on X for a fixed hyperbolic metric m0. A choice of a hyperbolic
metric m on X induces a function from S to R which assigns to each α ∈ S the
length of the geodesic in the metric m that is homotopic to α. Thus we have an
injective map

X : T (X)→ RS≥0.

When X is a closed hyperbolic surface then the above map is a homeomorphism
onto its image if RS≥0 is equipped with the weak* topology (cf. [9]). In the case of
an infinite surface with a geodesic pants decomposition, the length spectrum metric
is defined by (cf. [21], [2])

dls(m,m1) = sup
α∈S

∣∣∣ log
lm1

(α)

lm(α)

∣∣∣.
Shiga [21] proved that the topology induced by the length spectrum metric on
T (X) is equal to the Teichmüller topology when the surface X has an upper and
lower bounded geodesic pants decomposition. Allessandrini, Liu, Papadopoulos
and Su [1] proved that the length spectrum on T (X) is not even complete when X
contains a sequence of simple closed geodesics whose length goes to zero. Thus the
two topologies in this case are different.

We introduce a normalized supremum norm on RS≥0 by

‖f‖norm∞ = sup
α∈S

∣∣∣ f(α)

lm0(α)

∣∣∣
where m0 is a fixed hyperbolic metric on X and f ∈ RS≥0. The normalized supre-

mum norm induces the same topology on T (X) as the length spectrum metric (cf.
Lemma 8.1).

Analogous to the closed surface case, we projectivize X and obtain an injective
map

PX : T (X)→ PRS≥0.
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By definition, the length spectrum Thurston boundary of T (X) consists of the
boundary points of the image PX (T (X)) of T (X), where PRS≥0 is given the quo-

tient topology with respect to the normalized supremum norm on RS≥0.

Theorem 2. Let X be an infinite area hyperbolic surface that has a geodesic pants
decomposition {αn}n∈N. Then the length spectrum Thurston’s boundary of T (X) is
the closure of the space of projective bounded measured laminations PMLbdd(X) in
PRS , where PRS has the quotient topology induced by the topology on RS coming
from the normalized supremum norm.

If the lengths of {αn}n∈N are pinched between two positive constants then the
length spectrum Thurston’s boundary is equal to PMLbdd(X).

If the lengths of {αn}n∈N are bounded from the above and there exists a sub-
sequence {αnk} whose lengths converge to 0, then the length spectrum Thurston’s
boundary is strictly larger than PMLbdd(X).

The Thurston’s boundary to the Teichmüller space of a closed surface of genus
at least two is the same whether we use the length spectrum or geodesic currents.
However, for infinite surfaces the geodesic currents give a “canonical answer” which
agrees with the finite case, while the length spectrum gives a larger set.

Let P = {αn} be a geodesic pants decomposition of X such that supn lX(αn) <
∞ and that there exists a subsequence lX(αnj ) → 0. For each αn, let γn be a
shortest closed geodesic in X that intersects αn in either 2 or 1 points. Define a
space MLP(X) to consists of all measured laminations µ such that

µ(αn) ≤ O(lX(αn))

and

µ(γn) ≤ o(| log lx(αn)|).

Note that MLbdd(X) (MLP(X).

Theorem 3. Let X be a complete, borderless, infinite hyperbolic surface that has
an upper bounded geodesic pants decomposition P = {αn} with a subsequence whose
lengths converge to zero. Then the length spectrum Thurston’s boundary to T (X)
is contained in MLP(X).

Moreover, if µ ∈MLP(X) satisfies µ|αn ≤ o(| log lX(αn)|) and either

(1) the angles between the geodesics of the support of µ and αn are bounded
from below by a positive constant; or

(2) µ(αn) ≥ clX(αn) for some c > 0 or µ(αn) = 0,

then the projective class of µ is in the length spectrum Thurston’s boundary of
T (X).

In addition, given a hyperbolic surface X whose every geodesic pants decom-
position does not have an upper bound on the lengths of cuffs but that can be
decomposed into bounded polygons with at most n sides (cf. Kinjo [11]) then
the length spectrum Thurston’s boundary equals PMLbdd(X). Moreover, if X is
the surface constructed by Shiga [21] such that the length spectrum metric is in-
complete, then the length spectrum Thurston’s boundary is strictly larger than
PMLbdd(X) (cf. §8.4).
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Question: If a sequence of points in T (X) converges to a projective bounded
measured lamination in the length spectrum Thurston’s boundary, is it true that it
also converges in the Thurston’s boundary of T (X) introduced by geodesic currents?

2. Teichmüller spaces of geometrically infinite hyperbolic surfaces

Let X0 be a complete hyperbolic surface without boundary whose area is infinite.
The universal covering X̃0 of the surface X0 is isometrically identified with the
hyperbolic plane H. The boundary at infinity ∂∞X̃0 is identified with the unit
circle S1.

The Teichmüller space T (X0) of the surface X0 is the space of equivalence classes
of all quasiconformal maps f : X0 → X where X is an arbitrary complete hyperbolic
surface modulo an equivalence relation. Two quasiconformal maps f1 : X0 → X1

and f2 : X0 → X2 are equivalent if there exists an isometry I : X1 → X2 such that
f−1

2 ◦ I ◦ f1 is homotopic to the identity under a bounded homotopy. Denote by [f ]
the equivalence class of a quasiconformal map f : X0 → X.

The Teichmüller distance on T (X0) is defined by

dT ([f1], [f2]) =
1

2
log inf

g'f2◦f−1
1

K(g)

where the infimum is taken over all quasiconformal maps g homotopic to f2 ◦ f−1
1

and K(g) is the quasiconformal constant of g. The Teichmüller topology on T (X0)
is the topology induced by the Teichmüller distance.

Let f : X0 → X be a quasiconformal map. Denote by f̃ : H → H a lift of f to
the universal covering. Then f̃ : H→ H extends by continuity to a quasisymmetric
map h : S1 → S1 that conjugates the covering group of X0 onto the covering group
of X. We normalize h to fix 1, i and −1 by post-composing it with an isometry of
H, if necessary.

Recall that h : S1 → S1 is a quasisymmetric map if it is an orientation preserving
homeomorphism and there exists M ≥ 1 such that

1

M
≤
∣∣∣h(ei(x+t))− h(eix)

h(eix)− h(ei(x−t))

∣∣∣ ≤M
for all x, t ∈ R.

The Teichmüller space T (X) is in a one to one correspondence with the space of
quasisymmetric maps of S1 that fix 1, i and −1, and that conjugate the covering
group of X0 onto a subgroup of the isometry group of H. From this point on, we
consider the Teichmüller space T (X) to be the space of normalized quasisymmetric
maps. A sequence hn ∈ T (X) converges in the Teichmüller topology to h ∈ T (X) if

sup
x,t∈R

∣∣∣hn ◦ h−1(ei(x+t))− hn ◦ h−1(eix)

hn ◦ h−1(eix)− hn ◦ h−1(ei(x−t))

∣∣∣→ 0

as n→∞.
The universal Teichmüller space T (H) is the Teichmüller space of the hyperbolic

plane H and it consists of all normalized quasisymmetric maps of S1 without any
requirements on conjugating covering groups because H is simply connected. The
universal Teichmüller space T (H) contains multiple copies of Teichmüller spaces
of all hyperbolic surfaces. In what follows, we mainly work with T (H) since all
the constructions, arguments and statements remain true under the conjugation
requirement.
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3. Measured laminations and earthquakes

A geodesic lamination on a hyperbolic surface X is a closed subset of X that
is foliated by non-intersecting complete geodesics called leaves of the lamination.
Geodesic lamination on X lifts to a geodesic lamination on H that is invariant
under the action of the covering group of X. A stratum of a geodesic lamination
is either a leaf of the lamination or a connected component of the complement. A
connected component of the complement of a geodesic lamination in H is isometric
to a possibly infinite sided geodesic polygon whose sides are complete geodesics and
possibly arcs on S1.

A measured lamination µ on X is an assignment of a positive Borel measure on
each arc transverse to a geodesic lamination |µ| that is invariant under homotopies
relative leaves of |µ|. The geodesic lamination |µ| is called the support of µ. A
measured lamination on X lifts to a measured lamination on H that is invariant
under the covering group of X.

A left earthquake E : X0 → X with support geodesic lamination λ is a surjective
map that is isometry on each stratum of λ such that each stratum is moved to the
left relative to any other stratum. An earthquake of X0 lifts to an earthquake of H
where the support is the lift of the support on X0 (cf. Thurston [22]).

We give a definition of a (left) earthquake E : H → H with support geodesic
lamination λ on H. A left earthquake E : H→ H is a bijection of H whose restriction
to any stratum of λ is an isometry of H; if A and B are two strata of λ then

E|B ◦ (E|A)−1

is a hyperbolic translation whose axis weakly separates A and B that moves B to
the left as seen from A (cf. Thurston [22]).

An earthquake E : H → H induces a transverse measure µ to its support λ
which defines a measured lamination µ with |µ| = λ (cf. [22]). An earthquake of H
extends by continuity to a homeomorphism of S1. Thurston’s earthquake theorem
states that any homeomorphism of S1 can be obtained by continuous extension of
a left earthquake (cf. Thurston [22]).

Given a measured lamination µ, there exists a map Eµ : H→ H whose transverse
measure is µ and that satisfies all properties in the definition of an earthquake of
H except being onto (cf. [22], [10]). Eµ is uniquely determined by µ up to post-
composition by an isometry of H2.

We define Thurston’s norm of a measured lamination µ as

‖µ‖Th = sup
J
µ(J)

where the supremum is over all hyperbolic arcs J of length 1.
Since we are working with quasisymmetric maps, we consider measured lamina-

tions whose earthquakes induces quasisymmetric maps of S1. An earthquake Eµ

extends by continuity to a quasisymmetric map of S1 if and only if ‖µ‖Th <∞ (cf.
[22], [10], [16], [17]).

Denote by MLbdd(H) the space of all measured laminations on H with finite
Thurston’s norm. The above result gives a bijective map

EM : T (H)→MLbdd(H)

defined by

EM : h 7→ µ
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where µ is measured lamination induced by unique earthquake E : H → H whose
continuous extension to S1 equals h.

Note that ‖tµ‖Th = t‖µ‖Th, for t > 0. Then, for ‖µ‖Th <∞, we have that the
earthquake path t 7→ Etµ|S1 , for t > 0, defines a path of quasisymmetric maps,
which is a path in T (H) when the maps are normalized to fix 1, i and −1.

4. Liouville measure, geodesic currents and uniform weak* topology

Let G(H) be the space of unoriented complete geodesics in the hyperbolic plane
H. Each geodesic is determined by two ideal endpoints on S1 which gives

G(H) ∼= (S1 × S1 − diag)/Z2

where diag is the diagonal in S1 × S1 and Z2 interchanges elements in a pair. If
[a, b], [c, d] ⊂ S1 are disjoint closed arcs, then the set ([a, b] × [c, d])/Z2 is called a
box of geodesics. We write [a, b]× [c, d] in place of ([a, b]× [c, d])/Z2 for short.

Liouville measure on G(H) is given by

L(A) =

∫
A

dtds

|eit − eis|2

for any Borel set A ⊂ G(H). If A = [a, b]× [c, d], then we have

L([a, b]× [c, d]) = | log
(c− a)(d− b)
(d− a)(c− b)

|.

In other words, Liouville measure of a box of geodesics is the logarithm of a cross-
ratio of the four endpoints defining the box. Consequently, Liouville measure is
invariant under isometrics of H.

A geodesic current α is a positive Borel measure on G(H). Define supremum
norm of α by

‖α‖sup = sup
L(Q)=log 2

α(Q)

The space M(G(H)) consists of all geodesic currents with finite supremum norm.
Note that measured laminations are geodesic currents whose support consist of

geodesic laminations. If a measured lamination has finite Thurston’s norm then it
has finite supremum norm. Thus

MLbdd(H) ⊂M(G(H)).

We define the uniform weak* topology onM(G(H)) which will be used to intro-
duce Thurston’s boundary to Teichmüller spaces of infinite surfaces. The uniform
weak* topology was introduced in [14] on the space MLbdd(H).

BoxQ∗ = [−i, 1]×[i,−1] is said to be the standard box. LetQ be a box of geodesic
with L(Q) = log 2. Then there exists an isometry γQ of H that maps Q onto the
standard box Q∗. A sequence αn ∈ M(G(H)) converges to α ∈ M(G(H)) in the
uniform weak* topology if for any continuous f : G(H)→ R with supp(f) ⊂ Q∗,

sup
Q

∫
Q∗
fd((γQ)∗(αn − α))→ 0

as n→∞ (cf. [14]).
The uniform weak* topology was first introduced on MLbdd(H) (cf. [14]). The

main result in [14] is that the earthquake measure map

EM : T (H)→MLbdd(H)
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is a homeomorphism for the uniform weak* topology on MLbdd(H). In other words,
the uniform weak* topology is a natural topology on measured laminations which
makes correspondence between quasisymmetric maps and their earthquake mea-
sures bi-continuous.

5. Embedding of Teichmüller space into geodesic currents space

We define a map from the universal Teichmüller space T (H) into the space of
geodesic currents M(G(H)). Namely, the Liouville map

L : T (H)→M(G(H))

is defined by
L(h) = h∗L

where h ∈ T (H).

Theorem 5.1. The Liouville map

L : T (H)→M(G(H))

is a homeomorphism onto its image, where M(G(H)) is equipped with the uniform
weak* topology. In addition, L(T (H)) is closed and unbounded subset of M(G(H)).

Proof. We first establish that L is injective. Indeed, h ∈ T (H) is normalized to
fix 1, i,−1 ∈ S1. For x ∈ S1 − {1, i,−1}, denote by Qx a box of geodesics whose
defining intervals on S1 have endpoints 1, i,−1 and x. Then L(h(Qx)) uniquely
determines h(x). Thus L is injective.

We prove that L is continuous. Consider hn → h in T (H). Let f : G(H)→ R be
a continuous function with supp(f) ⊂ Q∗. Define L(hn) = αn and L(h) = α. Let
Q be a box of geodesics with L(Q) = log 2 and γQ : Q∗ 7→ Q as before.

To estimate ∣∣∣ ∫
Q∗
fd
[(
γQ

)∗(
αn − α

)]∣∣∣,
we divide Q∗ into finitely many boxes of geodesics {Qi}mi=1 such that

|max
Qi

f −min
Qi

f | < ε0

for all 1 ≤ i ≤ m and fixed ε0 to be determined later.
Let

s =

m∑
i=1

(max
Qi

f)χQi

be a simple function approximating f .
Then∣∣∣ ∫
Q∗

(f − s)d
[(
γQ

)∗(
αn − α

)]∣∣∣ ≤ ε0(α(Q) + αn(Q)) ≤ 3α(Q)ε0 ≤ 3ε0‖α‖sup

where the second inequality holds for all n ≥ n0 with n0 large enough such that hn
is close enough to h in T (H) (cf. Lemma 9.1).

By using Lemma 9.1 again,∣∣∣ ∫
Q∗
sd
[(
γQ

)∗(
αn − α

)]∣∣∣ ≤ εmax
Q∗
|f |

for all n ≥ n1, where n1 = n1(δ, ε) is large enough such that hn ∈ N(h, δ, ε) with
δ = mini L(Qi).
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By choosing ε0 and ε small enough, we can make
∣∣∣ ∫Q∗ fd[(γQ)∗(αn − α

)]∣∣∣
as small as we want for all n ≥ max{n0, n1}, where n0, n1 depend on ε0, ε. Thus
αn → α as n→∞ and L is continuous.

We prove that L−1 : L(T (H)) → T (H) is continuous. Consider αn → α in
M(G(H)) with L(hn) = αn and L(h) = α.

First we prove that there is an upper bound on the quasisymmetric constants
of {hn}. Assume on the contrary that the quasisymmetric constants of {hn} go
to infinity. Then there exists a sequence of boxes {Qn} with L(Qn) = log 2 and
αn(Qn) → ∞ as n → ∞. Subdivide each Qn into two boxes of equal Liouville
measure 1

2 log 2 and, for each n, choose one box Q′n of the two sub-boxes of Qn
such that αn(Q′n)→∞ as n→∞.

Let Q#
n be a box such that L(Q#

n ) = log 2, Q′n b Q
#
n and(

γQ#
n

)−1(
Q′n

)
⊂
[
ei

25π
16 , ei

31π
16

]
×
[
ei

9π
16 , ei

15π
16

]
.

Let f : G(H) → R be a non-negative continuous function with supp(f) ⊂ Q∗ and
f |[

ei
25π
16 ,ei

31π
16

]
×
[
ei

9π
16 ,ei

15π
16

] = 1. By αn → α, there exists n0 such that, for all

n ≥ n0,∫
Q∗
fd((γQ#

n
)∗αn) ≤

∫
Q∗
fd((γQ#

n
)∗α) + 1 ≤ sup

L(Q)=log 2

∫
Q∗
fd((γQ)∗α) + 1.

On the other hand, ∫
Q∗
fd((γQ#

n
)∗αn) ≥ αn(Q′n)→∞

which gives a contradiction with the above inequality. Thus the quasisymmetric
constants of the sequence {hn} are uniformly bounded.

To prove that hn → h in T (H), it is enough to prove that

sup
L(Q)=log 2

|αn(Q)− α(Q)| → 0

as n→∞.
Let Qδ be a sub-box of Q such that

γQ(Qδ) = [−ie−iδ, e−iδ]× [ieiδ,−e−iδ].

Then Q−Qδ is union of four boxes Qi(δ), i = 1, . . . , 4, such that L(Qi(δ))→ 0
as δ → 0 for all i. Since {hn} is a bounded sequence in T (H), it follows that
αn(Qi(δ)) → 0 and α(Qi(δ)) → 0 as δ → 0 uniformly in n. Finally, let fδ :
G(H) → R be a positive continuous function with supp(fδ) ⊂ Q∗, ‖fδ‖∞ = 1 and
fδ|[−ieiδ,e−iδ]×[ieiδ,−e−iδ] = 1.

It follows∣∣∣αn(Qδ)− α(Qδ)
∣∣∣ ≤ ∣∣∣ ∫

Q∗
fδd((γQ)∗(αn − α))

∣∣∣+ |αn(Q−Qδ)|+ |α(Q−Qδ)|.

Since |αn(Q − Qδ)| and |α(Q − Qδ)| are as small as we want (uniformly in n) for
δ > 0 small enough and ∣∣∣ ∫

Q∗
fδd((γQ)∗(αn − α))

∣∣∣→ 0
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as n→∞ for each f continuous with supp(f) ⊂ Q∗, it follows that

|αn(Qδ)− α(Qδ)|

is small for n large. Thus

sup
Q
|αn(Q)− α(Q)| → 0

as n→∞.
We prove that L(T (H)) is closed inM(G(H)). Indeed, let αn → α inM(G(H)),

where L(hn) = αn for hn ∈ T (H). Consequently,

sup
L(Q)=log 2

|
∫
Q∗
fd((γQ)∗αn)| ≤ C(f)

where C(f) is independent of n.
Then hn = L−1(αn) is bounded in T (H) (already proved above). It follows that

there exists a subsequence hnk which pointwise converges to a quasisymmetric map
h on S1. Let β = L(h). Thus

αn(Q)→ β(Q)

as n→∞ for each box of geodesics Q.
This implies ∫

Q∗
fd((γQ)∗αn)→

∫
Q∗
fd((γQ)∗β)

as n→∞. Thus α = β by the uniqueness of measures.
Finally, L(T (H)) is unbounded because L−1(M) is bounded whenever M ⊂

M(G(H)) is bounded by the proof above. �

6. The fundamental lemma

Lemma 6.1. Let βn ∈MLbdd(H) be a bounded (in Thurston’s norm) sequence that
converges in the weak* topology to β ∈ MLbdd(H). Assume Q = [a, b] × [c, d] is a
box of geodesics with β(∂Q) = 0. Then, for tn > 0 and tn →∞ as n→∞,

1

tn
L(Etnβn(Q))→ β(Q)

as n→∞.

Proof. Since βn → β in weak* topology as n → ∞ and β(∂Q) = 0 we have
βn(Q)→ β(Q) as n→∞.

Fix ε > 0. Let a′ ∈ [d, a] be such that

β(∂([a′, a]× [c, d])) = 0

and

β([a′, a]× [c, d]) <
ε

2
.

Then there exists n0 such that, for all n ≥ n0,

βn([a′, a]× [c, d]) < ε.
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We partition measured lamination β into a finite sum of measured laminations
as follows

(1)

βn1 (B) = βn(B ∩Q),
βn2 (B) = βn(B ∩ {[a, b]× [c′, c)}),
βn3 (B) = βn(B ∩ {[a, b]× [b, c′)}),
βn4 (B) = βn(B ∩ {[a′, a)× [c, d]}),
βn5 (B) = βn(B ∩ {[d, a′)× [c, d]}),
βn6 (B) = βn(B)−

∑5
i=1 β

n
i (B),

where B ⊂ G(H) is any Borel set. Note that βni are defined by restricting βn to
boxes of geodesics with some of the boxes not being closed. This is done to avoid
ambiguity because an intersection of two boxes along their boundaries might have
non-zero βn-mass. For example, βn2 is defined by restricting to box [a, b] × [c′, c)
because βn([a, b]× {c}) might be non-zero and we defined β1

n by restricting to box
[a, b] × [c, d]. In this case the support of βn2 might contain geodesics in [a, b] × {c}
while βn2 ([a, b]×{c}) = 0 (because the support is defined as the smallest closed set
whose complement has zero mass). Similar property holds for other measures.

Let An be the stratum of βn that separates the support of βn5 from the support
of βn4 . Note that An could be either a hyperbolic polygon or a geodesic. In the case
that An is a geodesic then it is in the support of both βn4 and βn5 . We normalize
earthquakes Etnβn and Etnβ

n
i , for i = 1, . . . , 6, to be identity on stratum(that

contains) An. Let a′′ be a point on the boundary of An in interval [a′, a] and let c′′

be a point of An in interval [c, d].
Then we have

Etnβn |[a′′,c′′] = Etnβ
n
4 ◦ Etnβ

n
1 ◦ Etnβ

n
2 ◦ Etnβ

n
3 ◦ Etnβ

n
6

and
Etnβn |[c′′,a′′] = Etnβ

n
5 ◦ Etnβ

n
6 .

We estimate L(Etnβn([a, b] × [c, d])) from the above. The action of earthquake
Etnβ

n
6 fixes points b and d, and possibly moves a towards b and possibly moves

c towards d because it moves all points to the left relative the stratum An. This
decreases the Liouville measure of the box [a, b] × [c, d] and we delete Etnβ

n
6 from

the definition of Etnβn .
Earthquake Etnβ

n
3 moves b towards c and it can at most reach point c′. Similar,

earthquake Etnβ
n
5 moves d towards a and the closest it can get is a′. Therefore, it

is enough to consider the action of Etnβ
n
4 ◦ Etnβn1 ◦ Etnβn2 on box [a, c′]× [c, a′].

Without loss of generality we assume that the support of βni for i = 4, 1, 2 is finite
since earthquakes with non-finite support are (pointwise) limits of earthquakes with
finite support and Liouville measure of boxes is a continuos function of the vertices
of boxes.

Let T be a hyperbolic translation whose repelling fixed point is in [a, b] and
attracting fixed point is in [c′, c]. Then Liouville measure of [a, T (c′)]× [c, a′] is less
than Liouville measure of [a, T 1(c′)] × [c, a′]), where T1 is hyperbolic translation
which shares repelling fixed point with T , whose attracting fixed point is c and
that has the same translation length (cf. Lemma 9.4). In other words, we increase
Liouville measure if we move the attracting fixed point to be at the starting point
of the second interval and keep the same translation length.

Note that each geodesic of the support of βn2 has one endpoint in [a, b] and the
other endpoint in [c′, c). By applying the above to the geodesics in the support of
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βn2 one at a time, we can assume that the support of βn2 is in [a, c′] × [c, a′]. The
same reasoning (using Lemma 9.4) applies to the support of βn4 so we can assume
its support is also in [a, c′]× [c, a′].

From now on we assume that the support of measured lamination βn4 + βn1 + βn2
consists of finitely many geodesics inside box [a, c′]× [c, a′]. Let T be a hyperbolic
translation with repelling fixed point in [a, c′] and attracting fixed point in [c, a′].
Let T1 be a hyperbolic translation with the translation length equal to the trans-
lation length of T whose repelling fixed point is a and attracting fixed point is c.
Then Lemma 9.2 gives

L([a, T (c′)]× [T (c), a′]) ≤ L([a, T1(c′)]× [T1(c), a′]).

In other words, Liouville measure of the image of a box is largest when the axis of
the hyperbolic translation is positioned from left endpoint of one boundary interval
to right endpoint of the other boundary interval defining the box.

By applying the above reasoning to geodesics of βn4 + βn1 + βn2 one at a time,
Liouville measure of Etnβ

n
4 ◦ Etnβn1 ◦ Etnβn2 ([a, c′] × [c, a′]) is less than or equal to

Liouville measure of [a, c′] × [T (c), a′], where T is the hyperbolic translation with
repelling fixed point a, attracting fixed point c and translation length βn4 ([c, d] ×
[a′, a]) + βn1 ([a, b]× [c, d]) + βn2 ([a, b]× [c′, c]) = βn([a′, b]× [c′, d]).

By the choice of a′ and c′, we have that

βn([a′, b]× [c′, d]) ≤ βn([a, b]× [c, d]) + 2ε

for n ≥ n0. Then Lemma 9.3 gives

(2) L(Etnβn([a, b]× [c, d])) ≤ tn(βn([a, b]× [c, d]) + 2ε) + L([a, b]× [c, d])

for n ≥ n0(ε). Dividing by tn and letting n→∞, we get

lim sup
n→∞

1

tn
L(Etnβn([a, b]× [c, d])) ≤ β([a, b]× [c, d])

because ε > 0 is arbitrary.
We find lower bound for L(Etnβn([a, b] × [c, d])). Let ε > 0 be fixed. Since

β(∂Q) = 0, it follows that there exists b′ ∈ [a, b] and d′ ∈ [c, d] such that

βn([b′, b]× [c, d]) + βn([a, b]× [d′, d]) ≤ ε

for n ≥ n0(ε), and

β([b′, b]× [c, d]) + β([a, b]× [d′, d]) ≤ ε.

Let c′ be the endpoint of a geodesic in |βn| ∩ ([a, b′]× [c, d′]) that is closest to c in
interval [c, d′], and c′ = c if |βn| ∩ ([a, b′] × [c, d′]) = ∅. Let a′ be the endpoint of
a geodesic in |βn| ∩ ([a, b′] × [c, d′]) that is closest to a in the interval [a, b′], and
a′ = b′ if |βn| ∩ ([a, b′]× [c, d′]) = ∅.

We write βn as a finite sum of measured laminations as follows. For a Borel set
B ⊂ G(H), define

(3)

βn1 (B) = βn(B ∩ ([a′, b′]× [c′, d′])),
βn2 (B) = βn(B ∩ ([a, b]× (d′, d]))),
βn3 (B) = βn(B ∩ ((b′, b]× [c, d]))),

βn4 (B) = βn(B)−
∑3
i=1 β

n
i (B).
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Normalize earthquakes Etnβn and Etnβ
n
i , for i = 1, 2, 3, to be identity on the

stratum of βn that separates |βn1 | and |βn2 |. Note that the stratum might be common
geodesic. Then we have

(4)
Etnβn |[a′,d′] = Etnβ

n
1 ◦ Etnβn3 ◦ Etnβn4 ,

Etnβn |[d′,a′] = Etnβ
n
2 ◦ Etnβn4 .

We consider the image of [a′, b] × [c′, d] under Etnβn . Since Etnβ
n
4 is a left

earthquake, chosen normalization implies that a′ and c′ are fixed, and possibly b
is moved towards c′, and possibly d is moved towards a′ for the fixed orientation
on S1. These movements increase Liouville measure and since we are looking for a
lower bound, we ignore the action of Etnβ

n
4 . In similar fashion, earthquakes Etnβ

n
2

and Etnβ
n
3 can only increase Liouville measure of [a′, b]× [c′, d] and we ignore them.

It remains to estimate Liouville measure of Etnβ
n
1 ([a′, b]× [c′, d]). By Lemma 9.5,

we have that L(Etnβ
n
1 ([a′, b]× [c′, d])) is larger than L([a′, T (b)]× [T (c), d]), where

T is a hyperbolic translation with the translation length βn1 ([a′, b] × [c′, d]) whose
repelling fixed point is b′ and attracting fixed point is d′.

From above we obtain

L(Etnβn([a, b]× [c, d])) ≥ L([b′, T (b)]× [d′, d])

and Lemma 9.3 gives

L([b′, T (b)]× [d′, d]) ≥ tnβn1 ([a′, b′]× [c′, d′]) + log
d2

4

where d is the distance between geodesics l(a′, d) and l(b, c′). The above choice of
b′ and d′, and the fact that ε > 0 is arbitrary gives

lim inf
n→∞

1

tn
L(Etnβn([a, b]× [c, d])) ≥ β([a, b]× [c, d]).

�

7. Convergence of earthquake paths in Thurston’s closure

We first prove that each box of geodesics Q = [a, b] × [c, d] is the limit (in the
Hausdorf topology) of a sequence of increasing (in the sense of inclusions) boxes
Qn with β(∂Qn) = 0. Indeed, ∂Q = ({a} × [c, d]) ∪ ({b} × [c, d]) ∪ ([a, b] × {c}) ∪
([a, b] × {d}). Consider a small open interval Ia ⊂ S1 around a. Since β is locally
finite, there exists at most countably many a′ ∈ Ia such that β({a′} × [c, d]) > 0.
Choose an ∈ Ia such that β({an} × [c, d]) = 0. Similarly we choose bn close to b
such that β({bn} × [c, d]) = 0. In the same fashion, we choose cn close to c and dn
close to d such that

β(∂([an, bn]× [cn, dn])) = 0

and set Qn = [an, bn]× [cn, dn].
Next we prove the convergence of the earthquake paths in Thurston’s boundary.

Theorem 7.1. Let β ∈ MLbdd(H) and let Etβ, for t > 0, be left earthquake with
measure tβ. Then

1

t
(Etβ |S1)∗L→ β

as t→∞ in the uniform weak* topology on M(G(H)).
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Proof. Without loss of generality we can assume that ‖β‖Th = 1. Let ht = Etβ |S1 ,
for t > 0, be the restriction of the earthquake path to the boundary S1 of H. Let

αt = (ht)
∗L

be the image of ht ∈ T (H) in M(H).
Assume on the contrary that 1

tαt does not converge to β in the uniform weak*
topology as t → ∞. Then there exists a continuous function f : G(H) → R with
supp(f) ⊂ Q∗, a sequence of boxes Qn with L(Qn) = log 2 and a sequence tn →∞
as n→∞ such that, for all n ∈ N,

(5)
∣∣∣ ∫
Q∗
fd
[(
γQn

)∗( 1

tn
αtn − β

)]∣∣∣ ≥ C0 > 0.

Define

α′tn = (γQn)∗αtn
and

βn = (γQn)∗β.

Note that by Lemma 9.3

1

tn
α′tn(Q) ≤ βn(Q) +

1

tn
L(Q) ≤

(L(Q)

log 2
+ 1
)
‖β‖Th +

1

tn
L(Q) = C(Q)

for all n such that tn ≥ 1. Also

βn(Q) ≤
(L(Q)

log 2
+ 1
)
‖β‖Th

for all n.
The above two inequalities imply that both βn and 1

tn
α′tn are uniformly bounded

on each box Q. Then there exist subsequences 1
tnk

α′tnk
and βnk that converge in

weak* topology on M(G(H)) to α# and β#, respectively, as k →∞.
Then (5) gives

(6)
∣∣∣ ∫
Q∗
fd(α# − β#)

∣∣∣ ≥ C0.

On the other hand, Lemma 6.1 implies that α# and β# agree on all boxes Q#

with β#(∂Q#) = 0. These boxes are dense among all boxes in G(H) and α# = β#

contradicting (6). The contradiction proves theorem. �

The above theorem proves that Thurston’s boundary contains the space of pro-
jective bounded measured laminations on X. It remains to prove the opposite.

Proposition 7.2. A limit point of P (L(T (X))) in PM(G(X̃)) is necessarily a
projective bounded measured lamination.

Proof. Let β be the limit point of a sequence [αk] ∈ P (L(T (X))), where [αk] is the
projective class of αk ∈ L(T (X)). Then there exists tk →∞ as k →∞ such that

1

tk
αk → β

as k →∞ in the uniform weak* topology.
Recall that α ∈ L(T (X)) implies that

e−α([a,b]×[c,d]) + e−α([b,c]×[d,a]) = 1
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for all boxes [a, b]× [c, d] of G(X̃) (cf. Bonahon [5]). This implies that if αk([a, b]×
[c, d])→∞ then αk([b, c]× [d, a])→ 0 as k →∞.

Assume that the support of β contains two intersecting geodesics (m,n) and

(p, q). The geodesic (m,n) ∈ G(X̃) separates points p and q. Then there exists a
box of geodesics Q(m,n) = [a1, b1]× [c1, d1] containing (m,n) and a box of geodesics
Q(p,q) = [a2, b2]× [c2, d2] containing (p, q) such that [a1, b1] ⊂ (b2, c2) and [c1, d1] ⊂
(d2, a2).

Since tk →∞ as k →∞ and both geodesics (m,n) and (p, q) are in the support
of β, we have that αk(Q(m,n))→∞ and αk(Q(p,q))→∞ as k →∞. The boxes are
chosen such that Q(m,n) ⊂ [b2, c2]× [d2, a2]. This implies αk([b2, c2]× [d2, a2])→∞
as k →∞ which is in a contradiction with αk(Q(p,q))→∞. Thus the geodesics of
the support of β do not intersect. Therefore β is a measured lamination. Bound-
edness of β follows because L(G(X̃)) consists of bounded measures. �

The proof of Theorem 1 from Introduction is now completed.

8. Thurston’s boundary for Teichmüller spaces of infinite surfaces
using the length spectrum

In this section we consider infinite type hyperbolic surfaces and introduce the
“length spectrum” Thurston’s boundary to their Teichmüller spaces. It turns out
that the length spectrum Thurston’s boundary differs from Thurston’s boundary
introduced using geodesic currents.

Let X0 be a complete hyperbolic surface without boundary that has a geodesic
pants decomposition. In other words, X0 is formed by gluing infinitely many geo-
desic pairs of pants along their boundaries.

Let {αn}n∈N be the family of cuffs (i.e. boundary components) of a geodesic
pants decomposition of X0 as above. Then each αn is a simple closed geodesic. We
say that X0 has an upper-bounded pants decomposition if there exists M > 0 such
that, for each n ∈ N,

lX0(αn) ≤M
where lX0(αn) is the length of αn for the hyperbolic metric of X0 (cf. [1]). The
surface X0 has a lower bounded pants decomposition if there exists m > 0 such that,
for each n ∈ N,

lX0(αn) ≥ m.

8.1. General infinite surfaces. Denote by S the set of all simple closed geodesics
on a complete, borderless infinite hyperbolic surface X0 with a geodesic pants de-
composition. Let RS≥0 be the space of non-negative functions on the set of all simple

closed geodesics S of X0. We define a map X from the Teichmüller space T (X0)
into RS≥0, for [f ] ∈ T (X0) and α ∈ S,

X ([f ])(α) = lf(X0)(f(α)),

where f(X0) is the image hyperbolic surface under quasiconformal mapping f and
lf(X0)(f(α)) is the length of the simple closed geodesic on f(X0) that is in the

homotopy class of a simple closed curve f(α). The map X : T (X0) → RS≥0 is
injective.

The length spectrum metric on T (X0) is given by

dls(X1, X2) = sup
δ∈S

{
| log

lX2
(δ)

lX1
(δ)
|
}
.
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Shiga [21] proved that if X0 has an upper and lower bounded geodesic pants de-
composition {αn}n∈N then the Teichmüller distance induces the same topology as
the length-spectrum distance on T (X0).

We introduce the normalized supremum norm on RS by

‖f‖norm∞ = sup
δ∈S

|f(δ)|
lX0

(δ)

for all f ∈ RS . Note that the normalized supremum norm on RS is infinite at some
points. We consider only the subset of RS where the normalized supremum is finite
and, for simplicity, denote it by RS .

Proposition 8.1. The length spectrum metric on T (X0) is locally biLipschitz equiv-
alent to the normalized supremum norm on X (T (X0)).

Proof. Indeed, if

sup
δ∈S

∣∣∣ lX1
(δ)

lX0(δ)
− lX2

(δ)

lX0(δ)

∣∣∣ < ε

then

sup
δ∈S

lX1
(δ)

lX0(δ)

∣∣∣1− lX2
(δ)

lX1(δ)

∣∣∣ < ε.

Note that there exists a quasiconformal map from X0 and X1. Thus there exists

M > 1 such that 1/M ≤ lX1
(δ)

lX0
(δ) ≤M (cf. Wolpert [24]). The above and symmetry

implies ∣∣∣ lX2
(δ)

lX1
(δ)
− 1
∣∣∣, ∣∣∣ lX1

(δ)

lX2
(δ)
− 1
∣∣∣ ≤Mε

for all δ ∈ S, and one direction is obtained since | log x| ' |x− 1| for 1/2 < x < 2.
The other direction is obtained by reversing the order of the above inequalities and
the two metrics are locally biLipschitz. �

Allessandrini, Liu, Papadopoulos and Su [2] proved that T (X0) is not com-
plete in the length spectrum metric when there exists a sequence of simple closed
geodesics on X0 whose lengths converge to 0. Thus, X : T (X0) → RS≥0 is not a

homeomorphism onto its image for the normalized supremum norm on RS≥0 and

the Teichmüller metric on T (X0) when X0 contains a sequence of simple closed
geodesics whose lengths converge to zero.

Denote by

PX : T (X0)→ PRS≥0

the map from T (X0) into the projective space PRS≥0 = (RS≥0−{0̄})/R>0. The map

PX is injective on T (X0). The length spectrum Thurston’s boundary of T (X0) is,
by the definition, the space of all limit points in PRS≥0 of the set PX (T (X0)) for

the topology induced by the normalized supremum norm (c.f. [9] for the original
Thurston’s discussion on closed surfaces).

Note that a measured lamination µ on X0 represent an element in RS≥0 by the
formula

µ(α) = i(µ, α)

for all α ∈ S, where i(µ, α) is the intersection number.
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Proposition 8.2. Let X0 be a complete, borderless infinite hyperbolic surface
equipped with a geodesic pants decomposition. Then the length spectrum Thurston’s
boundary of T (X0) contains the space of projective bounded measured lamination
PMLbdd(X0) and it equals the closure of PMLbdd(X0) for the topology on PRS≥0

induced by the normalized supremum norm.

Proof. Let µ ∈ MLbdd(X0) be a bounded measured lamination on X0. Denote
by Etµ, for t > 0, an earthquake path with the earthquake measure tµ. Then
t 7→ Etµ(X0) is an analytic path in T (X0) because µ ∈ MLbdd(X0) (cf. [16]). Let
ft be a quasiconformal map from X0 to Xt which is homotopic to Etµ.

For a geodesic arc α, denote by µ(α) the total µ-mass of the geodesics intersecting
α. For α ∈ S, the inequality

lft(X0)(ft(α)) ≤ tµ(α) + lX0
(α)

implies that

(7)
1
tX ([ft])(α)− µ(α)

lX0
(α)

≤ 1

t

for all α ∈ S and all t > 0.
To obtain the opposite inequality, we choose the universal covering of X0 such

that B(z) = e−lX0
(α)z is a cover transformation corresponding to α. Let O be the

stratum of the lift µ̃ of µ to the universal covering H that contains elX0
(α)i, and let

O1 be the stratum of µ̃ that contains i. Normalize the earthquake Etµ̃ such that
Etµ̃|O = id. Then

Bt = Etµ̃|O1
◦B

is a covering transformation that corresponds to the geodesic on ft(X0) homotopic
to ft(α). Denote by lt the translation length of Bt and l = lX0(α) the translation
length of B. Let k1 < 0 and k2 > 0 be the endpoints of the hyperbolic translation
Etµ̃|O1

, and let mt be its translation length. A direct computation (cf. [20]) gives

trace(Bt) = 2 cosh
mt − l

2
− 2k1

k2 − k1

(
cosh

mt + l

2
− cosh

mt − l
2

)
Consequently

2 cosh
lt
2

= trace(Bt) ≥ 2 cosh
mt − l

2
which implies

lt ≥ mt − l.
Since the translation length of a composition of two hyperbolic translations (with
non-intersecting axis and translating in the same direction) is at least as large as
the sum of their translation lengths (cf. [22]), it follows that

mt ≥ tµ(α).

The above two inequalities give

1

t

lt
l
≥ µ(α)

l
− 1

t

which implies

(8)
1

t

X ([ft])(α)

lX0
(α)

− µ(α)

lX0
(α)
≥ −1

t
.
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Then equations (7) and (8) give that, uniformly in α ∈ S,

lim
t→∞

1

t

X ([ft])(α)

lX0(α)
=

µ(α)

lX0(α)
.

We established that each point in PMLbdd(X0) is in the Thurston’s boundary.

Let σ ∈ RS≥0 be such that its projective class [σ] is in the length spectrum

Thurston’s boundary. We need to establish that [σ] is in the closure of PMLbdd(X0)
for the normalized supremum norm.

There exists a sequence [fn] ∈ T (X0) that converges to the projective class
[σ] ∈ PRS≥0. Let tn → ∞ as n → ∞ be such that 1

tn
X ([fn]) → σ as n → ∞.

Necessarily we have supn ‖ 1
tn
X ([fn])‖norm∞ <∞.

Let fn be represented by a sequence of earthquakes Et
′
nµn with ‖µn‖Th = 1 and

t′n > 0. Then t′n →∞ as n→∞ and the first part of the proof gives

‖ 1

t′n
X ([fn])− µn‖norm∞ <

1

t′n
.

Note that if ‖µn‖Th = 1 then ‖µn‖norm∞ ≤ 2. Then the above inequality implies

that ‖ 1
t′n
X ([fn])‖norm∞ ≤ 3 for all t′n with n large enough and the sequence

t′n
tn

is

bounded from the above and from the below by positive numbers. By choosing a

subsequence, if necessary, we can assume that
t′n
tn
→ c > 0 as n → ∞. It follows

that, as n→∞,

‖ 1

tn
X ([fn])− cµn‖norm∞ → 0

which implies

‖cµn − σ‖norm∞ → 0

and the proof is completed. �

8.2. Infinite surfaces with bounded geodesic pants decompositions. We
consider a hyperbolic surface X0 which can be decomposed into geodesic pairs of
pants with cuffs {αn}n∈N such that

1/M ≤ lX0(αn) ≤M

for some M > 1 and for all n ∈ N. We say that such X0 has a bounded geodesic
pants decomposition. The next proposition establishes that the length spectrum
Thurston’s boundary coincides with Thurston’s boundary for T (X0) introduced
using the geodesic currents.

Proposition 8.3. Let X0 be a complete, borderless, infinite hyperbolic surface with
bounded geodesic pants decomposition. Then the length spectrum Thurston’s bound-
ary is equal to the space of projective bounded measured laminations PMLbdd(X0)
on X0.

Proof. Consider a sequence of points [fk] ∈ T (X0) that converge to (the projective
class of) L∗ ∈ RS≥0 in the length spectrum Thurston’s boundary of T (X0). Let

tk → ∞ as k → ∞ be such that 1
tk
X ([fk]) → L∗ in RS≥0 − {0̄}. Let Etkβk be a

sequence of earthquakes of H such that Etkβk |S1 = fk, where ‖βk‖Th < ∞ (cf.
[22]).
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The proof of the above proposition gives

(9)
∣∣∣ 1

tk

X (Etkβk)(α)

lX0(α)
− βk(α)

lX0(α)

∣∣∣ ≤ 1

tk

for all α ∈ S.
Since 1

tk
X ([fk])→ L∗, the above inequality implies∣∣∣ βk(α)

lX0
(α)
− L∗(α)

lX0
(α)

∣∣∣⇒ 0

as k →∞ uniformly in α ∈ S. Define

‖β‖ls = sup
α∈S

β(α)

lX0
(α)

for any β ∈MLbdd(X0). The above convergence gives

sup
k∈N
‖βk‖ls = N <∞.

We use the assumption that X0 has a bounded geodesic pants decomposition
in order to prove that ‖βk‖Th is bounded in k. Indeed, let {αn}n∈N be cuffs of a
geodesic pants decomposition P = {Pi} of X0 such that there exists M > 1 with

1

M
≤ lX0

(αn) ≤M

for all n ∈ N, where {αn}n are cuffs of P. Let Pi be a geodesic pair of pants in
the above decomposition with the cuffs αij , for j = 1, 2, 3. Assume that αij , for
j = 1, 2, 3 are different geodesics of X0. Denote by Pj , j = 1, 2, 3, adjacent pair
of pants to Pi with common cuff αij . Then there exists a simple closed geodesic
α∗ij in Pij ∪Pi that intersects αij in two points such that lX0

(α∗ij ) is bounded from

the above and from the below by positive constants depending only on M > 0.
The components of Pi − ∪3

j=1(αij ∪ α∗ij ) are simply connected for each i. If two of

αij , for j = 1, 2, 3 is the same geodesic then a similar construction yields α∗ij such

that components of Pi −∪3
j=1(αij ∪ α∗ij ) are simply connected and that lX0

(α∗ij ) is

bounded in terms of M .
The above convergence of βk to L∗ and boundedness of the lengths of αij and

α∗ij on X0 imply that

βk(αij ), βk(α∗ij ) < C(M)

for some constant C = C(M) and for all i, k ∈ N and j = 1, 2, 3. Since X0 −
∪i ∪3

j=1 {αij , α∗ij} has simply connected and uniformly bounded components (that

are polygons with at most six sides) whose boundaries are subarcs of αij , α
∗
ij

, we

conclude that the supremum over all k and over all above components of the βk-mass
of the geodesics intersecting components is finite. Since each geodesic arc of length
1 on X0 can intersect at most finitely many components of X0−∪i ∪3

j=1 {αij , α∗ij},
it follows that supk∈N ‖βk‖Th <∞.

By supk∈N ‖βk‖Th < ∞, there exists a subsequence βkj and β∗ ∈ MLbdd(X0)
such that βkj → β∗ as j → ∞ in the weak* topology. (The weak* topology is
described in terms of the lifts of the measured laminations βk to the universal
covering H.) Then

L∗(α) = β∗(α)

for all α ∈ S and
‖β∗‖Th <∞.
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Thus any point in the length spectrum Thurston’s boundary is in PMLbdd(X0).
The above proposition gives that all points in PMLbdd(X0) are also in the length
spectrum Thurston’s boundary for T (X0). �

8.3. Infinite hyperbolic surfaces with upper bounded geodesic pants de-
compositions. Let X0 be a complete, borderless, infinite hyperbolic surface with
a geodesic pants decomposition P = {αn}n∈N such that

sup
n
lX0

(αn) = M <∞.

In addition, we assume that there exists a subsequence {αnj}j with lX0
(αnj ) → 0

as j → ∞. Let P 1
n and P 2

n be the geodesic pairs of pants in P with a common
cuff αn (possibly P 1

n = P 2
n). Let γn be a shortest closed geodesic in P 1

n ∪ P 2
n that

intersects αn in either one point (when P 1
n = P 2

n) or in two points (when P 1
n 6= P 2

n).
We have that (cf. [1])

lX0
(γn) ' max{1, | log lX0

(αn)|},
where for two quantities a ' b means that a/b is between two positive constants.

We define a space MLP(X0) of measured laminations on X0 adopted to the
pairs of pants decomposition P. A measured lamination µ on X0 is in MLP(X0)
if there exists a constant N > 0 such that, for all cuffs αn of P,

µ(αn) ≤ NlX0
(αn),

and
µ(γn) ≤ N max{1, o(| log lX0(αn)|)},

where o(| log lX0
(αn)|)/| log lX0

(αn)| → 0 as | log lX0
(αn)| → ∞. The second condi-

tion implies that
µ|αn ≤ N max{1, o(| log lX0(αn)|)}

whenever the measure µ has an atom at αn.
Note that if the geodesic pants decomposition P ofX0 is bounded thenMLP(X0)

coincides with MLbdd(X0).

Proposition 8.4. Let X0 be a complete, borderless, infinite hyperbolic surface
with an upper-bounded geodesic pants decomposition P = {αn}n∈N such that a
subsequence of cuffs has lengths going to zero. Then the length spectrum Thurston’s
boundary of T (X0) is contained in PMLP(X0).

Proof. Assume that the projective class of µ ∈ RS≥0 is in the length spectrum

Thurston’s boundary of T (X0). Then there exists [fk] ∈ T (X0) and tk → ∞ such
that

1

tk
X ([fk])→ µ

as tk →∞.
Let µk ∈MLbdd(X0) such that fk = Etkµk |S1 . By (9)∣∣∣ 1

tk

X ([Etkµk ])(α)

lX0
(α)

− µk(α)

lX0
(α)

∣∣∣ < 1

tk

for all α ∈ S, and it follows that

(10) sup
α∈S

∣∣∣ µk(α)

lX0(α)
− µ(α)

lX0(α)

∣∣∣→ 0

as k →∞.



22 DRAGOMIR ŠARIĆ

Denote by γn a shortest closed geodesic that intersects αn. Then γn intersects
αn in either two or one point and it is contained in the union of two pairs of pants
of P that have αn on their boundaries. By (10), there exists N > 0 such that

µk(αn) ≤ NlX0
(αn)

and

µk(γn) ≤ NlX0(γn) ' O(| log lX0(αn)|)
for all k ∈ N and for all {αn, γn}n∈N.

Note that each pair of pants is divided into simply connected components by the
union of its cuffs and three geodesics from {γn} that intersect each cuff of the pair
of pants. Therefore, any compact subset of X0 is covered by finitely many simply
connected components (that are polygons with at most six sides) whose boundary
sides are arcs in {αn, γn}n. Let µ̃k be the lift of µk to the space of geodesics G(H) of
the universal covering H. The uniformity in k of the above inequalities implies that
the total mass of measured laminations µ̃k on each compact subset K of G(H̃) is
bounded by a constant depending on the set K and independent of k. It follows that
there exists a subsequence of µ̃k which converges in the weak* topology on G(H̃)
to a measured lamination on G(H). Since µ̃k are invariant under the covering
group, it follows that the weak* limit is also invariant under the covering group
and it projects to a measured lamination on X0. Therefore µ is induced by the
intersection number of closed geodesic with a measured lamination, and from now
on we identify µ with this measured lamination. The above inequalities give

µ(αn) ≤ NlX0(αn)

and

µ(γn) ≤ NlX0(γn) ' O(| log lX0(αn)|)
for all n ∈ N. The first inequality agrees with the inequality in the definition of
MLP(X0), while the second inequality needs to be improved to get o(| log lX0(αn)|)
on the right.

We prove µ(γn) ≤ N max{1, o(| log lX0
(αn)|)} for some N > 0 by contradiction.

Assume that there exist ε > 0 and a subsequence αnj such that lX0
(αnj ) → 0 as

j →∞ and

µ(γnj ) ≥ ε| log lX0
(αnj )|.

Let P 1
nj and P 2

nj be the geodesic pairs of pants in P that have a common cuff αnj .

Let α
nj
i , for i = 1, . . . , 4, be the geodesic boundaries of P 1

nj ∪ P
2
nj . Let µ̄

nj
k and

µ̄nj be geodesic laminations on P 1
nj ∪ P

2
nj whose supports are |µk| ∩ (P 1

nj ∪ P
2
nj )

and |µ| ∩ (P 1
nj ∪ P

2
nj ) respectively, and whose transverse measures are given by the

transverse measures of µk and µ for geodesic arcs in P 1
nj ∪ P

2
nj .

Denote by Snj a complete hyperbolic surface P 1
nj ∪ P

2
nj , and let S̃nj be its uni-

versal covering. Then S̃nj is isometric to the hyperbolic plane minus a countable

number of half-planes whose boundaries are the lifts of α
nj
i , for i = 1, . . . , 4. By

definition, the boundary ∂S̃nj of S̃nj consists of all lifts of α
nj
i , for i = 1, . . . , 4,

together with the ideal boundary points. A hyperbolic geodesic in S̃nj has two

endpoints on ∂S̃nj , where both could be ideal endpoints, or both could be finite
endpoints, or one could be finite and the other ideal endpoint. Two hyperbolic
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geodesics are close if their endpoints are close, where the distance between end-
points is expressed in terms of their Euclidean distance when S̃nj is given in the
unit disk model.

Denote by ˜̄µk and ˜̄µ the lifts of µ̄k and µ̄ to the universal covering S̃nj . Then ˜̄µk
converges to ˜̄µ in the weak* topology on the measures on the space of geodesics of
S̃nj .

Note that µ(γnj ) ≥ ε| log lX0
(αnj )| and the convergence of µk to µ in the nor-

malized supremum norm implies that, for all k large enough,

µk(γnj ) ≥
ε

2
| log lX0(αnj )|.

From now, we fix one k such that the above equation holds and seek a contradiction.
A geodesic g in the support |µ̄k| of µ̄k that intersects γn is either αn, or the

image γrnj of γnj under r full Dehn twists around αn for r non-zero integer, or it
has both of its endpoints on the boundary geodesics of Snj . We consider three
possible cases for the support of µ̄k: either a subsequence of αnj is in the support

of µ̄k, or a subsequence of γ
rj
nj is in the support of µ̄k for some non-zero rj , or only

finitely many of αnj and γ
rj
nj are in the support of µ̄k.

Assume first that the support of µ̄k contains a subsequence of αnj . Denote
this subsequence by αnj in order to simplify the notation. In this case, any other
geodesic in the support of µ̄k (different from αnj ) that intersects γn can intersect
it in at most two points and it connects two boundary geodesics of Snj (possibly
the same). Since the transverse µk measure to the four boundary geodesics Snj is
bounded from the above (independently of nj) and each geodesic of the support
|µk| that is different from αnj intersects γnj in at most two points, it follows that
supnj [µk(γnj ) − µk|αnj ] < ∞. Since µk(γnj ) ≥ ε

2 | log lX0
(αnj )| → ∞ as j → ∞,

it follows that µk|αnj → ∞ as j → ∞. This implies ‖µk‖Th = ∞ which is a

contradiction.
Next assume that there exists a subsequence of γ

rj
nj that is contained in the

support of µk with non-zero integers rj . Without loss of generality, we assume
that the whole sequence γ

rj
nj is in the support |µk|. Divide the situation into two

cases: either the sequence rj is bounded or there exists a subsequence which is
unbounded. If the sequence rj is bounded, then there is an upper bound on the
number of intersections between γnj and each geodesic of |µk|. Since µk(γnj )→∞
as j →∞, it follows that µk|γrjnj →∞ as j →∞ which contradicts ‖µk‖Th <∞.

We continue with the subcase that |rj | → ∞ as j →∞. The number of intersec-
tions of γ

rj
nj with γnj is either 2|rj | if Snj is of type (0, 4), or it is |rj | if Snj is of type

(1, 1). Any other geodesic of |µ̄k| that intersects γnj connects boundary geodesics
of Snj and the number of intersections is either 2|rj | or |rj | if Snj is of type (0, 4),
and the number of intersections is |rj | if Snj is of type (1, 1). Since µk(γnj ) → ∞
as j → ∞, it follows that either |rj |µk|γnj → ∞ or |rj |µk(∂Snj ) → ∞ as j → ∞,

where ∂Snj is the union of the four boundary geodesics βi, for i = 1, . . . , 4, of Snj .
Let gp,q for p, q ∈ {1, . . . , 4}, p 6= q, be the set of geodesics of µ̄k which connect βp
to βq. Denote by µk(gp,q) the µk-measure of a geodesic arc transverse to the set
gp,q that does not intersect any other geodesics of |µ̄k|. If |rj |µk(∂Snj ) → ∞ then
there exist p 6= q such that |rj |µk(gp,q)→∞ as j →∞.

Let I be a hyperbolic geodesic arc of length 2 that is orthogonal to αnj with

midpoint on αnj . Let r′j be the number of intersections of γ
rj
nj with I. Then each
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geodesic of gp,q intersects I in at least r′j − 2 points. Lemma 8.5 below implies that

there exists c > 0 such that
r′j
rj
≥ c. Thus if |rj |µk|γnj → ∞ we also have that

r′jµk|γnj → ∞ as j → ∞. This implies that the total transverse µk-measure of I

is going to infinity as j →∞ and ‖µk‖Th =∞ which is a contradiction. Likewise,
if |rj |µk(gp,q) → ∞ then (r′j − 2)µk(gp,q) → ∞ as j → ∞ and the transverse µk-
measure of I converges to infinity as j → ∞. Then ‖µk‖Th = ∞ which is again a
contradiction.

The last case to consider is when no geodesics αnj and no geodesic γnj are in
the support of µk for all j ≥ j0 > 0. Then there exist p, q ∈ {1, . . . , 4} such that
|rj |µk(gp,q) → ∞ as j → ∞. We note that |rj | → ∞ as j → ∞ because βk(gp,q)
is bounded in j. Lemma 8.5 below implies that (r′j − 2)µk(gp,q) → ∞ as j → ∞
which gives ‖µk‖Th =∞. This is again a contradiction.

Thus the assumption µ(γnj ) ≥ ε| log lX0
(αnj )| is false. Therefore µ(γnj ) =

o(| log lX0(αnj )|). �

Lemma 8.5. Let S be a closed hyperbolic surface of the type (0, 4) or (1, 1) with
geodesic boundaries. Let α be a simple closed geodesic in S with

lS(α) ≤ 1/20.

Let γ be a shortest simple closed geodesic which intersects α in either two or one
point and let I be a closed geodesic arc of length 2 that is orthogonal to α at its
midpoint. Then there exists c > 0 such that

i(δ, γ) ≤ ci(I, γ)

for any simple geodesic δ in S which is either closed or that has its endpoints on
the boundary of S with i(δ, γ) ≥ 10.

Proof. Let γ1 be the simple closed geodesic arc connecting α to itself which is
orthogonal to α at both of its endpoints and that belongs to exactly one pair of
pants of S. Then

i(δ, γ1) ≥ 1

2
i(δ, γ)− 2.

Therefore it is enough to prove that there exists c > 0 such that

i(δ, γ1) ≤ ci(δ, I).

We lift the situation to the universal covering H of S. Denote by α̃ a bi-infinite
geodesic in H that is a component of the lift of α. The components of the lift of γ1

are all isometric to γ1 because γ1 is a simple open closed arc in S. Denote by γ̃1 a
single component of the lift of γ1 that has one endpoint C on α̃. Then the angle
between γ̃1 and α̃ is π/2. Let δ̃ be a component of the lift of δ that intersects both
γ̃1 and α̃ in points B and A, respectively. The hyperbolic triangle ABC has side
BC on γ̃1, side CA on α̃ and side AB on δ̃. Denote by x the length of BC, by y
the length of CA and by d the length of AB. Let D be a point on CA such that
the length of an arc I ′ orthogonal to CA at the point D until it meets the side AB
is 1. Let y′ be the length of DA. Let l = lX0(α). Then

i(δ, γ1) =
y

l
± 1

and

i(δ, I) =
y′

l
± 1.
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Therefore to give a lower estimate on i(δ,I)
i(δ,γ1) , it is enough to estimate y′

y when y/l

is large enough. Denote by D′ the endpoint of I ′ on AB and let d′ be the length of
DD′. For a fixed y, the quantity y′ will be the least when x is the largest possible.
Without loss of generality, we assume that x is equal to the length of γ1 which is
greater than or equal to | log lS(α)|.

The right angled triangles ABC and AD′D share a common vertex A. Let θ be
the common angle at A. The sine rules for these two triangles are

sinh x
sinα = sinh d
sinh 1
sinα = sinh d′

which in turn gives

(11) sinh d′ =
sinh 1

sinhx
sinh d.

The cosine rules are
coshx cosh y = cosh d
cosh 1 cosh y′ = cosh d′

which in turn gives

(12) cosh y′ =
cosh d′

cosh 1
.

From (12) we have

cosh2 y′ =
1 + sinh2 d′

cosh2 1
and substituting (11) and using elementary trigonometric identities, we obtain

(13) sinh y′ = tanh 1 cothx sinh y.

Since x is bounded from below and if y ≥ y0 > 0, the equation (13) implies that
there exists c0 = c0(y0) < 0 such that

y′ ≥ y + c0

which implies that
y′

y
= 1 +

c0
y
≥ 1/2 > 0

for all y ≥ y′0 with y′0 = max{y0,−2c0}. For ε0 ≤ y ≤ y′0, the equation (13) implies
that there exist 0 < c1 ≤ c2 such that c1 ≤ y′ ≤ c2. In this case we also obtain

that y′

y is bounded away from 0 independently of x. Finally, we consider the case

0 < y < ε0 where ε0 is chosen such that 1 ≥ sinh ε0
ε0
≥ 1

2 . Since 0 < y′ < y < ε0 and

by the equation (13), we obtain that y′

y is bounded away from 0 independently of

x and of 0 < y < ε0. Since any y falls in one of these cases, it follows that y′

y is

bounded away from 0 independently of x and y. The lemma follows. �

We fix a measured lamination µ ∈ MLP(X0) on X0 and consider whether it
represents a point in the length spectrum Thurston’s boundary of T (X0) via the
intersection number with simple closed geodesics. To do so, we consider the image
Xt = Etµ(X0) of X0 under the earthquake path Etµ and prove that the marked
surface Xt is in the closure (for the length spectrum metric) of the Teichmüller
space T (X0) under some additional conditions on µ. Since 1

tE
tµ → µ as t→∞ in
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the normalized supremum norm (because (9) holds for any locally finite measured
lamination), it will follow that [µ] is in the Thurston’s boundary.

We use the description of the closure of T (X0) in the Fenchel-Nielsen coordinates
for the pants decomposition P = {αn}n∈N. Namely, a marked surface f : X0 → X

is in T (X0) if and only if its Fenchel-Nielsen coordinates {( lX(αn)
lX0

(αn) , tX(αn))}n∈N are

uniformly bounded; f : X0 → X is in the closure of T (X0) if and only if { lX(αn)
lX0

(αn)}n
is bounded and |tX(αn)| = o(max{1, | log lX0

(αn)|}) for all n (cf. [18]).
We first prove that the twist estimate |tX(αn)| = o(max{1, | log lX0(αn)|}) holds

for all µ ∈MLP(X0). Fix a geodesic αn from the pants decomposition P and denote
by P in for i = 1, 2 the two pairs of pants from P that have αn on their boundary
with possibly P 1

n = P 2
n . Let γin be the shortest geodesic arc in P in that starts and

ends at αn. Then necessarily γin is orthogonal to αn at both of its endpoints. Let
γn be the geodesic homotopic to a closed curve obtained by concatenating γ1

n by
an arc on αn from the endpoint of γ1

n to the closets endpoint of γ2
n in the counter

clockwise direction, followed by γ2
n, and followed by an arc of αn from the endpoint

of γ2
n to the closets endpoint of γ1

n in the clockwise direction. The total length of
the two arcs on αn is less than the length of αn and the length of each γin is up
to an additive constant equal to 2| log lX0

(αn)|. It follows that lX0
(γn) is up to an

additive constant equal to 4| log lX0(αn)| if P 1
n 6= P 2

n and that lX0(γn) is up to an
additive constant equal to 2| log lX0(αn)| if P 1

n = P 2
n .

Since µ(γn) = o(| log lX0
(αn)|), it follows that lXt(γn) ≤ lX0

(γn) + µ(γn) which
is up to additive constant equal to 4| log lX0

(αn)| + o(| log lX0
(αn)|) if P 1

n 6= P 2
n or

is equal to 2| log lX0
(αn)| + o(| log lX0

(αn)|) if P 1
n = P 2

n . On the other hand, since
µ(αn) ≤ NlX0(αn) we have that lXt(αn) ≤ (N + 1)lX0(αn).

Assume that P 1
n = P 2

n and denote by γ∗n the shortest geodesic in P 1
n = P 2

n

that intersects αn in two points. Then lXt(γ
∗
n) = 2| log lXt(αn)| up to an additive

constant. Since lXt(αn) ≤ (N + 1)lX0
(αn) we get that lXt(γ

∗
n) ≥ 2| log lX0

(αn)| up
to an additive constant. We lift the situation to the hyperbolic plane. Let α̃n be
a single lift of αn and let γ̃∗n be a lift of γ∗n that intersects α̃n. Let γ̃n be a single
lift of γn that intersects α̃n such that γ̃n ∩ α̃n is closets to γ̃∗n ∩ α̃n. Let B∗ and
B be the minimal covering transformation whose axes are γ̃∗n and γ̃n, respectively.
Let A denote the hyperbolic translation with the translation length s such that
A ◦ B∗ = B. Namely, γn is obtained by n full twists around αn of the closed
geodesic γ∗n and s = nlXt(αn). It follows that

cosh l/2 = cos2 θ cosh
l∗ − s

2
+ sin2 θ cosh

l∗ + s

2

where l∗ = lXt(γ
∗
n), l = lX0

(γn), and 0 < θ < π is the angle between α̃n and
γ̃∗n. Since lXt(αn) is small and γ∗n is the shortest geodesic in P 1

n intersecting αn, it
follows that θ is bounded away from 0 and π. Then by dropping the first term on
the right of the above equation and some elementary estimates, we get

l ≥ l∗ + s+ const

which implies

s ≤ l − l∗ + const ≤ o(| log lX0(αn)|) + const.

When s ≥ 0 the above estimate suffices. When s ≤ 0 then we drop the second term
on the right of the above equation to obtain a similar estimate. The number s is
(up to a positive additive constant less than NlX0

(αn)) equal to the twist on αn of



THURSTON’S BOUNDARY 27

the marked surface Xt and we obtained the bound on the twists on αn for Xt of
the order o(| log lX0(αn)|).

When P 1
n 6= P 2

n the above method applies as well. The only difference is that
B = A1 ◦A2 ◦B∗, where A1 and A2 are the hyperbolic translations covering maps
whose axes are two consecutive lifts of αn that intersect γ̃∗n. The distance between
the consecutive lifts of αn is of the order | log lXt(αn)| which is large as lX0

(αn)→ 0.
Then A1 ◦A2 is a hyperbolic translation whose axis is between the axes of A1 and
A2, and whose translation length s1,2 is greater than 2s. The angle θ between the
axis of A1 ◦A2 and α̃n is either close to 0 or close to π which could make additive
constants unbounded. However, when the twist s > 0, then also s1,2 > 0 and θ is

close to π. This implies θ
2 is close to π

2 and sin2 θ is bounded away from 0. Then
as above, when s > 0,

s ≤ s1,2 ≤ l − l∗ + const ≤ o(| log lαn(X0)|) + const

and similar conclusion holds when s < 0. Thus we obtained that the bound on the
twists of Xt satisfies the condition from [18] to be in the closure of T (X0).

We consider the bounds on the ratio of lengths
lXt (αn)
lX0

(αn) , where Xt = Etµ(X0)

and µ ∈MLP(X0). We have the equation (cf. [20])

(14) cosh
l′t
2

= cos2 θ

2
cosh

m− l′

2
+ sin2 θ

2
cosh

m+ l′

2

where l′t = lXt(αn), l′ = lX0
(αn), m is the translation length of the comparison

map for Etµ̃ between a stratum O and its image A(O) where A is the covering
transformation for αn and O intersects the axis of A, and 0 ≤ θ ≤ π is the angle
between the axis of Etµ̃|A(O) (when normalized such that Etµ̃|O = id) and the axis
of A. Since µ(αn) ≤ NlX0(αn), it follows that there exists N ′ = N ′(N) > 0 such
that

m ≤ N ′l′.
When θ ≥ θ0 > 0 for each geodesic αn, the equation (14) gives that

1 + c1l
′2
t ≥ cosh

l′t
2
≥ cos2 θ0 + sin2 θ0

2
cosh

m+ l′

2
≥ 1 + c0l

′2

for some c0, c1 > 0 when l′ is small enough; this implies
l′t
l′ ≥ c > 0 for all αn and all

t > 0. The upper bound on
l′t
l′ follows from the upper bound on m independently

of the angle θ. Therefore Etµ(X0) = Xt is in the closure of T (X0) in this case.
When µ(αn) ≥ ε0l′ for all αn and some ε0 > 0, the equation (14) gives that, for

t > 2
ε0

,

cosh
l′t
2
≥ cos2 θ

2
cosh

l′

2
+ sin2 θ

2
cosh

l′

2
= cosh

l′

2

which implies
l′t
l′ ≥ c > 0 for all αn and all t > 2

ε0
. Therefore Etµ(X0) = Xt is in

the closure of T (X0) in this case as well.
However if tµ(αn) = l′ and θ is close to zero, then the first term on the right

of the equation (14) is cos2 θ while the second term is close to sin2 θ + sin2 θ( l
′

2 )2.

Then
l′t
l′ is small and converges to zero as the angle θ → 0. In this case Xt is not

in the closure of T (X0). If we take infinite sequence {αn}n such that lαn(X0)→ 0
and that { 1

µ(αn)}n is dense in a neighborhood of ∞ with the angles θn → 0, we

obtain that Xt is not in the closure of T (X0) for all t large.
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When the measured lamination µ has a subsequence of αn in its supports with
weights o(| log lX0(αn)|) and the other part of the support of µ is Thurston bounded,
then Etµ(X0) = Xt is in the closure of T (X0) (cf. [20]).

Proposition 8.6. Let X0 be a complete, borderless hyperbolic surface with an upper
bounded geodesic pants decomposition P = {αn}. Let µ be a measured lamination
in MLP(X0) such that one of the following holds:

(1) µ has finite Thurston norm except that a subsequence of αn whose lengths
go to zero have weights o(| log lX0

(αn)|),
(2) the support geodesics of µ subtend angles at least θ0 > 0 with geodesic γn,

where γn is a shortest geodesics that intersect αn in one or two points with
lX0

(αn)→ 0
(3) either µ(αn) ≥ ε0lX0

(αn) for some ε0 > 0 or µ(αn) = 0.

Then the projective class of µ ∈ MLP(X0) is in the length spectrum Thurston
boundary for T (X0).

Theorems 2 and 3 from Introduction are established by Propositions 8.2, 8.3, 8.4
and 8.6.

8.4. Two infinite surfaces with unbounded geodesic pants decomposi-
tions. The first surface X1 that we consider is introduced by Kinjo [11]. Let Γ′ be
the hyperbolic triangle group of signature (2, 4, 8). Let T ′ be the triangle fundamen-
tal polygon for Γ′ with angles π/2, π/4 and π/8. Then Γ′(T ′) tiles the hyperbolic
plane H. Let T be the union of T ′ and γ′0(T ′), where γ′0 ∈ Γ′ is a reflection in
the geodesic containing the side of T ′ which subtends the angles π/2 and π/8 of
T ′. Denote the vertices of T by a, b and c; the vertex b is where T ′ has angle
π/8 (cf. [11, Figure 2]). We choose three points a′, b′ and c′ close to a, b and
c, respectively, in the interior of the triangle T such that b′ is on the side of T ′

containing b. The surface X1 is obtained by puncturing the hyperbolic plane at the
points Γ′{a′, b′, c′} (cf. [11, Figures 2,3]). Kinjo [11] proved that the Teichmüller
space T (X1) is complete in the length spectrum metric.

Let {γi}i=1,...,8 be the elements of Γ′ that fix a. Let la be the simple closed
geodesic which separates the eight points {γi(a)}i=1,...,8 from the other punctures
of X1. We similarly define curves lb and lc, and then extend the definition using Γ′

to all other groups of eight cusps. The lengths of all Γ′(la) are the same, as well as
the lengths of all Γ′(lb), as well as the lengths of all Γ′(lc).

For the triangle T , we denote by la′,b′ the simple closed geodesic which is ho-
motopic to a simple closed curve in T that separates a′, b′ from c′. We similarly
extend the definition to lb′,c′ and lc′,a′ , and then extend it to all triangles using the
invariance under Γ′. Note that the lengths of Γ′(la′,b′) are the same, as well as the
lengths of all Γ′(lb′,c′)l, and the lengths of all Γ′(lc′,a′).

The lengths of the family of geodesics Γ′(la)∪Γ′(lb)∪Γ′(lc)∪Γ′(la′,b′)∪Γ′(lb′,c′)∪
Γ′(lc′,a′) are bounded from the below and from the above, and this family separates
the surface X1 into finite bounded polygons with uniformly bounded number of
sides. Then the proof of Proposition 8.4 extends to show that the length spectrum
Thurston’s boundary coincides with PMLbdd(X1).

Denote by X2 an infinite hyperbolic surface defined by Shiga [21] that has geo-
desic pants decomposition with cuff lengths converging to infinity. The surface X2

contains a sequence γn of simple closed geodesics with lX2
(γn) → ∞ as n → ∞
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such that for each closed geodesic δ we have

(15) lX2
(δ) ≥

∞∑
k=1

klX2
(γk)i(γk, δ),

where only finitely many terms are non-zero. Shiga [21] proved that a sequence
of full Dehn twists fn around the curve γn diverges in the Teichmüller metric and
it converges to the identity in the length spectrum metric. Thus the two metrics
produce different topologies on T (X2).

We define βn to be a measured lamination whose support is {γk}k=1,...,n such
that, for k = 1, . . . , n,

βn|γk = lX2(γk).

The projective class [βn] is in PMLbdd(X2). Define β∗ to be a measured lamination
on X2 whose support is {γk}∞k=1 such that, for all k = 1, 2, . . .,

β∗|γk = lX2(γk).

It is clear that the projective class [β∗] is not in PMLbdd(X2).
We prove that [βn]→ [β∗] as n→∞ in the normalized supremum norm. Indeed,

let δ be a simple closed geodesic in X2. Then

|βn(δ)− β∗(δ)|
lX2

(δ)
=

∞∑
k=n+1

βk(δ)

lX2
(δ)

=

∑∞
k=n+1 i(δ, γk)lX2

(γk)∑∞
k=n+1 ki(δ, γk)lX2

(γk)
≤ 1

n+ 1

and [β∗] is in the length spectrum Thurston boundary of T (X2). Therefore the
boundary is larger than PMLbdd(X2).

Open problem: Assume that a sequence in T (X0) converges to a bounded pro-
jective measured lamination in the length spectrum Thurston’s boundary. Is it true
that the sequence converges in the Thurston’s boundary introduced using Liouville
currents?

9. Appendix

We prove a standard lemma regarding neighborhoods in T (H) and Liouville
measure of boxes of geodesics under the maps in given neighborhoods.

Lemma 9.1. Let h0 ∈ T (H). Given ε > 0 and 0 < δ < log 2, there exists an open
neighborhood N(h0, δ, ε) of h0 in T (H) such that for each box of geodesics Q with

δ ≤ L(Q) ≤ log 2

we have

|α0(Q)− α(Q)| < ε

where α0 = (h0)∗L and α = h∗L, for any h ∈ N(h0, δ, ε).

Proof. Given a box of geodesics Q = [a, b]× [c, d], let m(Q) denote the modulus of
the quadrilateral with interior H whose a-sides are [a, b], [c, d] ⊂ S1 and b-sides are
[b, c], [d, a] ⊂ S1. Then m(Q) and L(Q) are continuous functions of each other with
m(Q) = 1 if and only if L(Q) = log 2.

If f0 : H→ H is a K-quasiconformal continuous extension of h0 : S1 → S1 then

1

K
m(Q) ≤ m(f0(Q)) ≤ Km(Q)

for all quadrilaterals Q with interior H.
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If δ ≤ L(Q) ≤ log 2 then there exists C = C(K, δ) ≥ 1 such that

1

C
≤ L(h0(Q)) ≤ C

(by the continuous dependence of L(Q) on m(Q)).
Furthermore, there exists C1 = C1(C) ≥ 1 such that

1

C1
≤ m(h0(Q)) ≤ C1

for all Q with δ ≤ L(Q) ≤ log 2.
Let h ∈ T (H) such that h ◦ h−1

0 has K1-quasiconformal extension to H. Then

|m(h0(Q))−m(h(Q))| ≤ (K1 − 1)m(h0(Q)).

By the uniform continuity of L(Q) in m(Q) when m(Q) is in a compact interval
[ 1
C1
, C1], we obtain

|L(h0(Q))− L(h(Q))| → 0

as K1 → 1.
Since α0(Q) = L(h0(Q)) and α(Q) = L(h(Q)), there exists a neighborhood

N(h0, δ, ε) of h0 ∈ T (H) which satisfies the conclusions of the lemma. �

We consider the behavior of the Liouville measure of a box of geodesics under a
simple (left) earthquake.

Lemma 9.2. Fix a box of geodesics Q = [a, b]× [c, d]. Let E be a simple earthquake
with the support geodesic g and the earthquake measure m ≥ 0 on g. Assume that
g separates the quadruple of points {a, b, c, d} into two non-empty sets. Then the
Liouville measure of E([a, b] × [c, d]) will be the largest when the geodesic g has
endpoints a and c.

Proof. Note that the Liouville measure of [a, b]× [c, d] is an increasing function of
the distance between the geodesic l(a, d) with endpoints a, d and the geodesic l(b, c)
with endpoints b, c.

Assume first that g has an endpoint in [c, d] and an endpoint in (d, a). Normalize
E such that it is the identity in the half-plane of the complement of g which has
point b on its boundary. We have

E([a, b]× [c, d]) = [a, b]× [c, T (d)]

where T is the hyperbolic translation with the axis g, the translation length m and
the attracting fixed point the endpoint of g in the interval [c, d]. An elementary
observation gives that point T (d) will be closets to point a for the orientation
of S1 when g has endpoints a and c. By the remark in the first paragraph the
corresponding Liouville mass will be largest. We established the lemma in this
case.

Assume that g has one endpoint in [c, d] and the other endpoint in (b, c). We
normalize E to be the identity in the half-plane of the complement of g which has
point a on its boundary. Then E fixes a, b, d and moves c closer to d. In this case
the Liouville measure is decreased and the lemma holds since the Liouville measure
is increased when g has endpoints a and c.

Assume that g has one endpoint in [a, b] and the other endpoint in [c, d]. We
normalize earthquake E such that it is the identity on the half-plane complement of
g that has interval (d, a) on its boundary. The conjugate by a hyperbolic isometry
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of a simple left earthquake is a simple left earthquake with the same measure and
the support is the image of the support of the original earthquake. Thus we can
assume that we are in the upper half-plane model H, that g has endpoints y > 0
and ∞, and that d < a = 0 ≤ y ≤ b < c on the real axis. A direct computation
gives

L(E([a, b]× [c, d])) = log
[emc+ (1− em)y][d− emb+ (em − 1)y]

d[em(c− b)]

which is the largest when y = 0. Thus if we fix one endpoint of g in the interval
[c, d] and vary the other endpoint in the interval [a, b], the largest Liuoville measure
of the image box E([a, b]× [c, d]) will be when g has endpoint a. Now we consider
g to have one endpoint a and the other endpoint in the interval [c, d]. Similar as
before, we can use the upper half-plane model H for the hyperbolic plane. We
assume that b < c = 0 ≤ y ≤ d and a =∞ on the extended real axis, where g has
endpoints y and a =∞, and the earthquake E is normalized to be the identity for
all real numbers greater than y. A direct computation gives

L(E([∞, b]× [0, d]) = log
d− e−mb+ (e−m − 1)y

−be−m

which is largest when y = 0. Thus the Liouville measure of the image under
earthquake E of box [a, b]× [c, d] is largest when the support g has endpoint a and
c. This establishes the lemma in this case.

Since the Liouville measure of [a, b] × [c, d] is equal to the Liouville measure of
[c, d]× [a, b], the cases involving the position of g where we replace [a, b] with [c, d]
are automatically proved.

It remains to consider the case when g has one endpoint in [d, a] and the other
endpoint in [b, c]. We use the upper half-plane model H and assume c < d ≤ yr ≤
a = 0 < b, where g has endpoints yr and ya =∞. The earthquake E is normalized
to be the identity for real numbers less than yr. By direct computation

L(E([c, d]× [0, b])) = log
[−c− yr(em − 1)][−d+ emb− yr(em − 1)]

[−d− yr(em − 1)][−c+ bem − yr(em − 1)]

and it is the least when y = 0. Thus we showed that if we fix one endpoint of g in
[b, c] and vary the other fixed point in [d, a] (while keeping the translation length m
fixed), largest Liouville measure will be when the fixed point is a. Next we consider
all g with one fixed point a and the other fixed point in [b, c]. Earthquake E fixes
a, c, d. The point E(b) will be closest to c when the other endpoint of g is c by the
above work. By the first paragraph in the proof, we have established that Liouville
measure of E([a, b]× [c, d]) is largest when the support geodesic g has endpoints a
and c. This covers all the cases and the proof is finished. �

In the following lemma we establish the estimate for Liouville measure of a box
of geodesics Q = [a, b]× [c, d] under simple earthquakes whose support geodesic has
endpoints a and c. This is the case of the largest increase in Liouville measure as
established in the previous lemma.

Lemma 9.3. Let Q = [a, b]×[c, d] be a box of geodesics and let d = dist(l(a, d), l(b, c))
be the distance between the geodesic l(a, d) with endpoints a, d and the geodesic l(b, c)
with endpoints b, c. Let E be a simple earthquake with the support g = l(a, c) and
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measure m > 0. Then

m+ log
d2

4
≤ L(E([a, b]× [c, d])) ≤ m+ L([a, b]× [c, d]).

Proof. Normalize E to be the identity on the half-plane complement of g which
contains d. We use the upper half-plane model H and assume that a = 0, b > 0,
c =∞ and d = −1. A direct computation yields

L(E([a, b]× [c, d])) = log(emb+ 1)

which easily give estimate in the statement of the lemma. �

The following lemma establishes when the Liouville measure of the image under
a simple earthquake of a box Q = [a, b]× [c, d] of geodesic will be largest given that
one endpoint of the support geodesic is in [a, b] and the other endpoint is in [b, c].

Lemma 9.4. Let Q = [a, b]×[c, d] be a box of geodesic. Let E be a simple earthquake
whose support geodesic g has one endpoint in [a, b] and the other endpoint varies
in [b, c]. Then E(Q) will have largest Liouville measure when the geodesic g has
endpoint c.

Proof. Let m > 0 be earthquake measure on g for the earthquake E. Let y ∈ [b, c]
be the variable endpoint of g. We use the upper half-plane model H. Assume that
b ≤ y ≤ c = 0 < d = 1 < a and the other endpoint of g is∞. A direct computation
gives

L(E([a, b]× [c, d])) = log
a(1− be−m − y + ye−m)

(a− 1)(−y + ye−m − be−m)

which is largest for y = 0. This establishes that y = c. �

In the following lemma we estimate Liouville measure of the image of a box
of geodesic under a simple earthquake when the support geodesic of the simple
earthquake belongs to the box.

Lemma 9.5. Let Q = [a, b] × [c, d] be a box of geodesics and let E be a simple
earthquake whose support is geodesic l(a′, c′) with endpoints a′ ∈ (a, b) and c′ ∈
(c, d). If E1 is a simple earthquake whose support is geodesic l(a′′, c′′) with endpoints
a′′ ∈ [a′, b) and c′′ ∈ [c′, d) whose earthquake measure m > 0 on l(a′′, c′′) equals
earthquake measure of E on l(a′, b′), then

L(E([a, b]× [c, d])) ≥ L(E1([a, b]× [c, d])).

Proof. We use the upper half-plane model H and assume that d < a < 0 ≤ a′ ≤
a′′ ≤ b = 1 < c and c′ = c′′ =∞. A direct computation gives

L(E([a, b]× [c, d])) = log
(emc+ (1− em)a′ − a)(−d+ em + (1− em)a′)

(−d+ a)(c− 1)em

which decreases when a′ increase. Thus

L(E([a, b]× [c, d])) ≥ L(E1([a, b]× [c, d]))

in the case when c′ = c′′.
To finish the proof, we assume that a′ = a′′ and c′ < c′′ in interval [c, d] for the

orientation of S1. This case is by symmetry reduced to the previous case and the
proof is completed. �
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