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EXTREMAL MAPS OF THE UNIVERSAL HYPERBOLIC SOLENOID

ADAM EPSTEIN, VLADIMIR MARKOVIC AND DRAGOMIR ŠARIĆ

Abstract. We show that the set of points in the Teichmüller space of the universal hyperbolic solenoid
which do not have a Teichmüller extremal representative is generic (that is, its complement is the set of the
first kind in the sense of Baire). This is in sharp contrast with the Teichmüller space of a Riemann surface

where at least an open, dense subset has Teichmüller extremal representatives. In addition, we provide
a sufficient criteria for the existence of Teichmüller extremal representatives in the given homotopy class.
These results indicate that there is an interesting theory of extremal (and uniquely extremal) quasiconformal
mappings on hyperbolic solenoids.
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1. Introduction

The Teichmüller space T (S) of a Riemann surface S consists of all marked complex structures on S. A
marked complex structure on S is a homotopy class of quasiconformal maps from S to an arbitrary Riemann
surface up to post composition by a conformal map. The homotopy class [id] of the identity map id : S → S
is the basepoint of T (S). The distance between the basepoint and the homotopy class [f ] of a quasiconformal
map f : S → S1 is the infimum of the logarithms of quasiconformal constants over all quasiconformal maps
in the marked complex structure(≡homotopy class [f ]) of f . A quasiconformal map f1 : S → S1 in the
homotopy class [f ] is called extremal if its quasiconformal constant K(f1) is equal to the infimum of the
quasiconformal constants over all maps in [f ]. In this case, the (Teichmüller) distance between [id] and [f ]
is simply:

dist([id], [f ]) = logK(f1).

If µ is a Beltrami coefficient of an extremal map f : S → S1, then each quasiconformal map f tµ with the

Beltrami coefficient tµ, −1
‖µ‖∞

< t < 1
‖µ‖∞

, is extremal as well. The path t 7→ [f t
|ϕ|
ϕ ] ∈ T (S) is a geodesic for

the above distance.

Teichmüller’s fundamental result [18] states that each marked complex structure of an analytically finite
(closed with at most finitely many points deleted) Riemann surface S contains a unique extremal map with

Beltrami coefficient k |ϕ|ϕ , where ϕ is a holomorphic quadratic differential on S and 0 < k < 1. The natural

parameter for ϕ partitions S into Euclidean rectangles and the extremal map is an affine stretching on each
rectangle. Teichmüller’s theorem is a highly non-trivial generalization of a result of Grötzsch concerning
a single rectangle. We say that such extremal maps, their Beltrami coefficients and their corresponding

geodesics t 7→ [f t
|ϕ|
ϕ ] are of Teichmüller type.

The Teichmüller theorem completely answers all questions about extremal and uniquely extremal quasi-
conformal mappings for analytically finite Riemann surfaces. However, for Riemann surfaces that are not
analytically finite there exists a rich theory about extremal mappings. A modern approach to extremal
maps for arbitrary Riemann surfaces started with Reich and Strebel. They showed that Teichmüller maps
are extremal on arbitrary Riemann surfaces by generalizing the original approach of Grötzsch to Riemann
surfaces. Using, what is today called Reich-Strebel inequality and results of Hamilton [5] and Krushkal
[6], they characterized extremal quasiconformal maps [12]. It is worth noting that every marked complex
structure of a Riemann surface contains an extremal map by the pre-compactness of a family of normalized
K-quasiconformal maps. Strebel [15] showed that not every extremal map is of Teichmüller type and that
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there could be more than one extremal map in a given homotopy class on analytically infinite Riemann sur-
faces. The corresponding characterization for uniquely extremal maps has been obtained by Bozin, Lakic,
Markovic and Mateljevic [1] (see [8], [13], [2], [20] for some applications of these results).

Sullivan [17] introduced the universal hyperbolic solenoid H as the inverse limit of the system of un-
branched finite degree covers of a compact surface. The universal hyperbolic solenoid H is a compact space
which is locally homeomorphic to a 2-disk times a Cantor set. Sullivan [17] introduced a complex structure
on H and showed that the Teichmüller space T (H) of the solenoid is a separable complex Banach manifold.
Nag and Sullivan [9] observed that T (H) embeds in the universal Teichmüller space as a closure of the union
of Teichmüller spaces of all compact Riemann surfaces. In the remark at the end of Section 2, we use the
embedding to give an alternative definition of T (H) as a subset of the universal Teichmüller space and the
metric on it is given in terms of this subset (this description uses terms more familiar with the standard Te-
ichmüller theory). The questions that we consider can be directly restated in these terms.) The Teichmüller
distance on T (H) is defined similar to above and we consider the questions about the existence and the
structure of extremal quasiconformal maps. Unlike for Riemann surfaces, the existence of extremal maps on
the solenoid is not guaranteed, and in fact it is an interesting open problem whether they always exist. In
[14], it is showed that Teichmüller type maps are uniquely extremal. The question was raised whether each
marked complex structure contains a Teichmüller map. If the answer were yes, this would show both the
existence and the uniqueness of the extremal maps.

There are reasons why one would expect to have a positive answer. The solenoid H is a compact space
and T (H) is the closure of the union of Teichmüller spaces of all compact Riemann surfaces. (Recall that by
Teichmüller’s theorem each marked complex structure on a compact surface contains a Teichmüller map.)
On the other hand, Lakic [7] showed that the set of points in the Teichmüller space of an analytically infinite
Riemann surface which contain a Teichmüller extremal map is open and dense. The set of points which do
not have a Teichmüller representative is nowhere dense and closed, in particular of first kind in the sense of
Baire. By analogy, one would expect the subset of T (H) without Teichmüller extremal maps is at most of
first kind, if not empty. We obtain a somewhat unexpected result:

Theorem 1. The set of points in the Teichmüller space T (H) of the universal hyperbolic solenoid H which

do not have a Teichmüller extremal representative is generic in T (H). That is, the set of points that do have

a Teichmüller representative is of the first kind in the sense of Baire with respect to the Teichmüller metric.

By the above theorem, a large set of points in T (H) do not have a Teichmüller extremal representative. It
is interesting to determine when a given marked complex structure has a Teichmüller extremal representative.
A sufficient condition for the case of infinite Riemann surfaces is given by Strebel’s Frame Mapping Condition
[16]. This condition depends on the existence of ends of the Riemann surface. Since the universal hyperbolic
solenoid H is a compact space, it has no ends. However, we obtain a sufficient condition, where a given
complex structure has a Teichmüller representative if it is well approximated with locally constant (rational)
complex structures (see below for the definition of locally constant complex structures).

A complex structure on an arbitrary compact Riemann surface lifts to a special complex structure on the
solenoid H, namely a transversely locally constant complex structure. Each transversely locally constant
marked complex structure on H has a Teichmüller extremal representative which comes by lifting the extremal
Teichmüller representative from the surface. Therefore, it is interesting to consider only non transversely
locally constant complex structures. In Section 3 we define a notion of being well-approximated by transversely

locally constant complex structures. (Recall that the transversely locally constant complex structures are
dense in T (H) by [17]. Therefore each non transversely locally constant complex structure is approximated
by transversely locally constant complex structures.) We show:

Theorem 2. If a non locally transversely constant marked complex structure is well-approximated by trans-

versely locally constant complex structures then it contains a Teichmüller extremal representative.

The immediate consequence of Theorem 1 and Theorem 2 is
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Corollary 1. The set of points in T (H) which are not well-approximated by transversely locally constant

marked complex structures is generic in T (H).

This is analogous with the fact that the set of real numbers which are not well approximated by rational
numbers is of full measure. We remark that the existence of extremal maps in arbitrary marked complex
structure is open. Further, the existence of a geodesic connecting the basepoint with any marked complex
structure is implied by the existence of an extremal map but it is not necessarily equivalent to it. This is
illustrated by an example of L. Zhong [19] for Riemann surfaces.

2. Preliminaries

We define the universal hyperbolic solenoid H introduced by Sullivan [17], see also [10] and [14]. Let (S, x)
be a fixed compact surface of genus at least 2 with a basepoint. Consider all finite sheeted unbranched
coverings πi : (Si, xi) → (S, x) such that πi(xi) = x. There is a natural partial ordering ≥ given by
(Sj , xj) ≥ (Si, xi) whenever there exists a finite unbranched covering πi,j : (Sj , xj) → (Si, xi) such that
πi,j(xj) = xi and πj = πi ◦ πi,j . Given any two finite unbranched covers (Si, xi) and (Sj , xj) of (S, x),
there exists a third finite unbranched cover (Sk, xk) which covers both such that πi ◦ πi,k = πj ◦ πj,k = πk,
πi,k(xk) = xi and πj,k(xk) = xj . In other words, (Sk, xk) ≥ (Si, xi) and (Sk, xk) ≥ (Sj , xj). Thus the system
of covers is inverse directed and the inverse limit is well defined. The universal hyperbolic solenoid is by
definition

H = lim
←

(Si, xi).

We give an alternative definition for the universal hyperbolic solenoid H. Denote by ∆ the unit disk. Let
G be a Fuchsian group such that ∆/G is a compact Riemann surface of genus at least two. Let Gn be the
intersection of all subgroups of G of index at most n. Then Gn is a finite index characteristic subgroup of
G. The profinite metric on G is defined by

d(α, β) = max
αβ−1∈Gn

1

n

for all α, β ∈ G. The profinite completion Ĝ of G is a compact topological group homeomorphic to a Cantor
set. The action of G on the product ∆×Ĝ is defined by γ(z, t) := (γ(z), tγ−1) for all γ ∈ G and (z, t) ∈ ∆×Ĝ.

The universal hyperbolic solenoid is H := (∆ × Ĝ)/G. For more details on this definition see [10].

The solenoid H is a compact space locally homeomorphic to a 2-disk times a Cantor set. Path components
of H are called leaves. Each leaf is dense in H and homeomorphic to the unit disk. The profinite group
completion Ĝ supports a unique left and right translation invariant measure m of full support (the Haar

measure). The Haar measure m induces a holonomy invariant measure on the solenoid H = (∆ × Ĝ)/G.
This measure allows for the integration of quantities which induce local measures on leaves of H, e.g. the
absolute value of a quadratic differential.

The complex structure on H is given by an assignment of holomorphic charts on leaves(making the leaves
holomorphic to the unit disk) which vary continuously for the transverse variation in local charts [17]. From
the results of Candel [3], it follows that H supports hyperbolic metric for each conformal class (induced by a

complex structure). Note that by fixing a Fuchsian groupG the solenoid H = (∆×Ĝ)/G has already induced
complex structure and hyperbolic metric from the unit disk ∆ (see [10]). The induced complex structure
is locally constant in the transverse direction and all locally transversely constant complex structures on H
arise in this way [17], [9].

The Teichmüller space T (H) consists of all differentiable quasiconformal maps (which are continuous for

the transverse variation in local charts) from fixed complex solenoid H = (∆ × Ĝ)/G onto an arbitrary
complex solenoid modulo homotopy and post-composition by conformal maps. The requirement of the
continuity for the transverse variation in local charts can be achieved by requiring the differentiable maps to
vary continuously in the C∞-topology on C∞ maps (for more details see [14]). Equivalently, the Teichmüller
space T (H) is the space of all smooth Beltrami coefficients which are continuous for the transverse variations

3



in the C∞-topology modulo the above condition. Thus a point in T (H) is an equivalence class [µ] of a smooth
Beltrami coefficient µ on H. The main point is that the leafwise Beltrami equations give a transversely
continuous solution (see [14]). It is also possible to weaken the condition on differentiability of the Beltrami
coefficients as long as they are leafwise equivalent(as elements of the universal Teichmüller space) to the
restriction on leaves of a smooth Beltrami coefficient on H (for more details see [14]). A Beltrami coefficient

µ on H is extremal if ‖µ‖∞ = infν∈[µ] ‖ν‖∞. A Beltrami coefficient µ is of Teichmüller type if µ = k |ϕ|ϕ for a

holomorphic quadratic differential 0 6= ϕ and 0 < k < 1. They are corresponding to the similar notions for
quasiconformal maps given in Introduction.

The space A(H) consists of all holomorphic quadratic differentials on H which are continuous for the
transverse variation in local charts. The Bers norm of ϕ ∈ A(H) is given by ‖ϕ‖Bers := ‖ϕρ−2‖∞, where
ρ is the hyperbolic length element on the leaves of H. The space A(H) is a complex Banach space for the
Bers norm and the closure of A(H) for the L1-norm given by ‖ϕ‖L1 =

∫

H
|ϕ|dm is the space of all integrable

quadratic differentials which are holomorphic(and defined) on almost all leaves of H without transverse
continuity requirement(see [14]).

The space N(H) of infinitesimally trivial Beltrami differentials consists of all smooth Beltrami differentials
µ such that

∫

H
µϕdm = 0, for all ϕ ∈ A(H). In fact, a smooth Beltrami differential µ is infinitesimally trivial

if and only if there exists a path of smooth Beltrami coefficients t 7→ νt such that νt = tµ+ o(t) and νt is a
trivial deformation of H, i.e. the quasiconformal map fνt is homotopic to the identity (see [14]).

The tangent space to the Teichmüller space T (H) at the base point is given by the space L∞(H) of

smooth Beltrami differentials on H = (∆× Ĝ)/G modulo the space N(H) of infinitesimally trivial Beltrami
differentials(for details see [14]). (Our terminology assumes that any Beltrami coefficient µ satisfies ‖µ‖∞ < 1,
while any Beltrami differential µ satisfies ‖µ‖∞ < ∞.) A Beltrami differential µ on H is infinitesimally

extremal if ‖µ‖∞ = infν ‖ν‖∞, where the infimum is over all ν such that µ− ν ∈ N(H). The tangent space
L∞(H)/N(H) is Banach in the quotient topology even though L∞(H) and N(H) are not complete (see [14]).
There is a natural pairing between L∞(H) and A(H) given by

(µ, ϕ) 7→

∫

H

µϕdm.

The pairing descends to the pairing of L∞(H)/N(H) and A(H). The tangent space L∞(H)/N(H) embeds
in the dual A(H)∗ but it is strictly smaller [14].

Remark. We give an alternative description of the Teichmüller space T (H). Fix a Fuchsian group G such
that ∆/G is a compact Riemann surface of genus at least two. A quasiconformal map f : ∆ → ∆ is said
to be almost invariant with respect to G if ‖Belt(f ◦ γ ◦ f−1)‖∞ → 0 as d(γ, id) → 0. In other words, the
Beltrami coefficient of f is very close to be invariant under the push forward by elements of a finite index
subgroup Gn of G of some large index (i.e. n is large). In particular, a lift of a quasiconformal map from the
Riemann surface ∆/Gn for any finite index subgroup Gn of G is almost invariant for G. The Teichmüller
space T (H) is isomorphic to a subset of the universal Teichmüller space T (∆) consisting of all classes with
almost invariant (for G) representatives. The distance dist([id], [f ]) is given by the infimum of the logarithm
of the quasiconformal constants of all almost invariant maps homotopic to f . The question about extremal
representatives can be considered in this setting as well. However, it appears that working directly on the
solenoid H is somewhat better suited for our purposes due to the strong technical tools developed using the
Reich-Strebel inequality for the solenoid [14]. In fact, one would presumably be able to replace integration in
the transverse direction by the limit of the average of integrals over fundamental regions for Gn as n→ ∞.

3. A sufficient condition for Teichmüller maps

A Teichmüller Beltrami coefficient µ = k |ϕ|ϕ , for some 0 < k < 1 and for some holomorphic quadratic

differential ϕ 6= 0 on the solenoid H, is uniquely extremal in its Teichmüller class and it determines a geodesic

t 7→ [t |ϕ|ϕ ], t ∈ (−1/k, 1/k). Moreover, this is unique geodesic connecting the basepoint [0] with [µ = k |ϕ|ϕ ]

(see [14]).
4



If µ = k |ϕ|ϕ , k ∈ R+, is a Beltrami differential, then the linear functional Λµ : ψ 7→
∫

H µψdm, for ψ ∈ A(H),

achieves its norm on the vector ϕ
‖ϕ‖L1

. In that case, ‖µ‖∞ = k is equal to the norm of the functional Λµ

and any other ν in the infinitesimal class of µ(i.e. any ν such that µ − ν ∈ N(H)) satisfies ‖ν‖∞ > ‖µ‖∞.
In other words, µ is uniquely infinitesimally extremal.

It is not, a priori, clear whether each Teichmüller (or infinitesimal) class contains a Teichmüller type
Beltrami coefficient. If this is the case, this would certainly be a nice situation similar to Teichmüller
spaces of compact surfaces. On the other hand, on infinite Riemann surfaces there exist Teichmüller (and
infinitesimal) classes of Beltrami coefficients (and differentials) which do not contain a Teichmüller type
Beltrami coefficient (and differential). Strebel [15] gave a very useful sufficient condition (called the Frame
Mapping Condition) to determine when a given class contains a Teichmüller type representative.

We find a sufficient condition for a given Beltrami coefficient µ on the solenoid H to be equivalent to a
Teichmüller type Beltrami coefficient in both infinitesimal and Teichmüller classes. We point out that the
Strebel’s Frame Mapping Condition depends on the non-compactness of the given Riemann surface, whereas
the solenoid is a compact space. Therefore we need a different approach. If µ is a transversely locally constant
Beltrami coefficient then it is a lift of a Beltrami coefficient on a Riemann surface Si covering S for the base
complex structure on H(≡ ∆ × Ĝi/Gi, where S ≡ ∆/Gi, Gi a Fuchsian group). Since on Si any Beltrami
coefficient is equivalent to a Teichmüller type Beltrami coefficient, by lifting the corresponding holomorphic
quadratic differential on Si to H, we obtain a Teichmüller coefficient equivalent to µ (either infinitesimally
or in Teichmüller sense). Therefore we restrict our attention to non transversely locally constant Beltrami
coefficients on H and look for a sufficient condition.

Let Sn ≡ ∆/Gn (S1 = S) be a sequence of finite sheeted coverings of S such that ∩∞n=1Gn = {id} (we
assume that Gn+1 < Gn). One can think about Sn as an approximating sequence for H.

Let µ be a non-trivial (in the Teichmüller sense) Beltrami coefficient on ∆/Gn such that [µ] = [k |ϕ|ϕ ], for

0 < k < 1 and ϕ normalized such that ‖ϕ‖Bers = 1. Let Bn : T (∆/Gn) → A(∆/Gn) be the map given
by Bn([µ]) = kϕ, where µ, k and ϕ are as above. The map Bn is continuous for the Teichmüller metric on
T (∆/Gn) and the Bers norm on the unit ball in A(∆/Gn) (see [4]).

Definition 3.1. Let µ be a Beltrami coefficient on H not equivalent to a transversely locally constant
Beltrami coefficient. Let Sn be an increasing sequence of finite coverings of S, ϕn a sequence of holomorphic
quadratic differentials on Sn and ϕ̃n their lifts to H. Given a sequence 0 < kn < 1, define a sequence of

Beltrami coefficients µn = kn
|ϕn|
ϕn

on Sn and their lifts µ̃n = kn
|ϕ̃n|
ϕ̃n

on H. Assume that [µ̃n] → [µ̃] for some

0 < kn < 1. The Teichmüller class [µ] of the Beltrami coefficient µ is well-approximated by transversely

locally constant Beltrami coefficients if there exists a sequence µn as above such that

∞
∑

n=1

‖Bn([µn]) −Bn+1([µn+1])‖Bers <∞.

Proof of Theorem 2. Consider the lifts ϕ̃n on H of holomorphic quadratic differentials ϕn on Sn. Then
∑∞

n=1 ‖ϕ̃n−ϕ̃n+1‖Bers <∞ by the assumption, which implies that ϕ̃n converges uniformly to a holomorphic
quadratic differential ψ on H. Note that ψ is not a lift of a holomorphic quadratic differential on Sn, for
any n. Since ψ = ϕ̃k +

∑∞
n=k(ϕ̃k+1 − ϕ̃k) and ‖ϕ̃n‖Bers = 1, we conclude that ψ 6= 0. By the uniform

convergence ϕ̃n → ψ, we get that µ is Teichmüller equivalent to k |ψ|ψ , for k depending on the distance from

[0] to [µ]. ✷

A similar statement can be made for the infinitesimal case. Let µ be a Beltrami differential on H rep-
resenting a tangent vector [µ] which does not come from lifting a tangent vector of the Teichmüller space
of a compact surface, i.e. the coset µ + N(H) does not contain a transversely locally constant Beltrami
differential. Similar to Teichmüller classes, it is also true that transversely locally constant Beltrami differ-
entials approximate each Beltrami differential on H. (Recall that each tangent vector is a continuous linear
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functional on the space of holomorphic quadratic differentials A(H) and the approximation is with respect
to the dual norm.)

Let Sn be a sequence of compact Riemann surfaces “approximating” H as above. Define B′n : T (Sn) →

A(Sn) by B′n([µn]) = kϕn, where µn− k |ϕn|
ϕn

∈ N(Sn) and ‖ϕn‖Bers = 1. We say that the infinitesimal class

of a non transversely locally constant Beltrami differential µ on H is well-approximated with transversely

locally constant Beltrami differentials if there exists a sequence of Beltrami differentials µn on Sn whose
lifts µ̃n on H approximate µ in the sense of the linear functionals on A(H) such that

∑∞
n=1 ‖B

′
n([µn]) −

B′n+1([µn+1])‖Bers < ∞. We obtain an analogous statement to Theorem 2(and similar proof) for the
infinitesimal class.

Theorem 2’. If a non transversely locally constant infinitesimal class of a Beltrami differential on the

universal hyperbolic solenoid is well-approximated by transversely locally constant infinitesimal classes of

Beltrami differentials then it is infinitesimally equivalent to a Teichmüller Beltrami differential.

4. Teichmüller classes without Teichmüller representatives

In this section we consider the question of existence of Teichmüller representatives for arbitrary Teichmüller
classes in T (H). We show that Teichmüller representative does not always exist. It is true that there exists a
dense subsets of points in T (H) which have Teichmüller representative by the density of transversely locally
constant structures on H (which come from complex structures on finite sheeted covers of S).

Lakic [7] showed that even though not all Teichmüller classes of Beltrami coefficients on infinite Riemann
surfaces have Teichmüller representative, the one that do form an open, dense subset of the corresponding
Teichmüller space. Therefore, for infinite Riemann surfaces this set is quite large and for finite Riemann
surfaces it equals the whole Teichmüller space.

We show that, quite unexpectedly, for T (H) the set of points which do not have Teichmüller Beltrami
coefficient representative is generic. This means that the set of elements in T (H) that do have a Teichmüller
Beltrami representative is contained in a countable union of closed nowhere dense subsets of T (H).

Let Arg : C − {0} → (−π, π] be the standard argument function defined on non-zero complex numbers.
Let ∆r = {z ∈ C; |z| < r}. Given a holomorphic function f : ∆1 → C and 0 < r < 1, denote by ‖f |∆r

‖Bers
the supremum of |f(z)|ρ−2(z) over ∆r, where ρ is the hyperbolic length density on the unit disk ∆ = ∆1.
Let ‖f‖Bers denote the Bers norm, namely the supremum of |f(z)|ρ−2(z) over the unit disk ∆1 if it exists.
Given a measurable set S ⊂ ∆1, denote by |S| its Euclidean area. In what follows, we use the following
lemma.

Lemma 4.1. Let ǫ > 0, 0 < r < 1, N > M > 0 and let ϕ, ψ be two holomorphic functions on the unit disk

∆1 such that ‖ϕ‖Bers, ‖ψ‖Bers ≤ N , ‖ϕ|∆r
‖Bers ≥ M . Assume that there exists a measurable set S ⊂ ∆1

with |S| = p > 0 such that ‖Arg(ψϕ )|S‖∞ ≤ ǫ. Then there exists k > 0 and δ(ǫ, p, r,M,N) > 0 such that

‖(ψ − kϕ)|∆r
‖Bers < δ(ǫ, p, r,M,N),

where δ(ǫ, p, r,M,N) → 0 as ǫ→ 0 for fixed p, r,M,N .

Proof. Assume that the lemma is not true for some 0 < r < 1, p > 0 and N > M > 0. Then there
exists δ > 0, there exist two sequences ϕn, ψn of holomorphic functions which satisfy ‖ϕn‖Bers, ‖ψn‖Bers ≤
N , ‖ϕn|∆r

‖Bers ≥ M and, there exists a sequence of measurable set Sn ⊂ ∆1, |Sn| = p, such that

‖Arg(ψn

ϕn
)|Sn

‖∞ ≤ 1
n and for each k > 0 there exists z = z(k) ∈ ∆r with

(1) |ψn(z) − kϕn(z)| ≥ δ > 0.

We find a contradiction with the above statement.

Since ‖ϕn‖Bers, ‖ψn‖Bers ≤ N , there exist convergent subsequences ϕnk
→ ϕ, ψnk

→ ψ with ‖ϕ‖Bers, ‖ψ‖Bers <
∞. The convergence is uniform on compact subsets of ∆1. For simplicity of notation write ϕn,ψn in place

6



of ϕnk
, ψnk

. There exists r1, r < r1 < 1, such that |∆r1 ∩ Sn| ≥
p
2 for all n. Also ϕn → ϕ and ψn → ψ

uniformly on ∆r1 , namely ‖(ϕn − ϕ)|∆r1
‖Bers, ‖(ψn − ψ)|∆r1

‖Bers → 0 as n→ ∞.

Since ‖ϕn|∆r
‖Bers ≥M for each n, we have ‖ϕ|∆r

‖Bers ≥M and in particular ϕ is not identically equal
to zero. If ψ ≡ 0, then the above inequality (1) fails by taking k > 0 small enough and n large enough.

Assume that ψ is not a zero function. The number of zeros of ϕ and ψ in ∆r1 is finite. Let R be the
union of disk neighborhoods of the zeros small enough such that |Sn ∩ (∆r1 −R)| ≥ p

3 . Given q > 0, define

Dq = {z ∈ ∆r1 −R; |Arg(
ψ

ϕ
)(z)| ≤ q}

and

Dn
q = {z ∈ ∆r1 −R; |Arg(

ψn
ϕn

)(z)| ≤ q},

and let D0 = ∩∞k=1D 1

k
and Dn

0 = ∩∞k=1D
n
1

k

.

There exists n0 such that ‖(ϕn −ϕ)|∆r1
‖Bers ≤ q and ‖(ψn −ψ)|∆r1

‖Bers ≤ q for all n > n0. Then there
exists a universal constant c > 0 such that Dcq ⊃ Dn

q for n > n0. In addition, Dn
q ⊃ Sn ∩ (∆r1 − R) for

n > n0 whenever 1
n0

< q. Therefore |Dcq| ≥
p
3 , for each q > 0. By the monotonicity of a positive measure,

we obtain |D0| = limn→∞ |D 1

n
| ≥ p

3 .

We have Arg(ψϕ )(z) = 0 for all z ∈ D0. Since |D0| > 0, we obtain that ϕ(z) = kψ(z) for a fixed k > 0

and for all z ∈ ∆1. But then ‖(ϕn − kψn)|∆r1
‖Bers → 0 as n → ∞, which again gives a contradiction with

(1). ✷

Let A1 be the unit sphere in L1-norm of the space A(H) of transversely continuous holomorphic quadratic
differentials on the solenoid H. For a given natural number N , define

A1(N) = {ϕ ∈ A1; ‖ϕ‖Bers ≤ N}.

Let X ⊂ T (H) be the set of points that do have a Teichmüller representative. For [µ] ∈ X let k |ϕ|ϕ ,

0 < k < 1, ϕ ∈ A1, be that representative. Define the map π : X → A1, by

π([µ]) = ϕ,

for [µ] 6= [0] and

π([0]) = 0.

We need the following proposition.

Proposition 4.2. Let [µ] ∈ X, where µ is a Beltrami coefficient on H. If [µ] is an element to the closure of

the set π−1(A1(N)) ∪ {[0]} then [µ] ∈ π−1(A1(N)) ∪ {[0]}.

Proof. Let [µn] ∈ π−1(A1(N)) such that [µn] → [µ] in the Teichmüller metric. We need to show that
[µ] ∈ π−1(A1(N)) ∪ {[0]}. If [µ] = [0] then we are done. Therefore, we assume that [µ] 6= [0]. Without loss

of generality, we assume that µn = kn
|ϕn|
ϕn

and µ = k |ϕ|ϕ for ϕn, ϕ ∈ A1. Then kn → k as n → ∞ by our

assumption. We have that ϕn ∈ A1(N) and we need to show that ϕ ∈ A1(N).

There exist νn ∈ [µn] such that ‖Belt((fνn)−1 ◦ fµ)‖∞ → 0 as n → ∞ because [µn] → [µ]. Then
νn = µ+ o(1), where ‖o(1)‖∞ → 0 as n → ∞. Also ‖νn‖∞ > kn by the unique extremality of µn [14], and
we apply the δ-inequality of [1] to νn and µn:

∫

H

∣

∣

∣

ν̃n(fn) − µ̃n(fn)

1 − ν̃n(fn)µ̃n(fn)

∣

∣

∣

2

|ψ|dm ≤ C
(

‖νn‖∞ −Re

∫

H

νnψdm
)

,

for all ψ ∈ A1, where fn = fνn and where ν̃n, µ̃n are the Beltrami coefficients of the inverse maps of
fνn , fµn , respectively. The proof of the δ-inequality for the solenoid follows the same lines as the proof for
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Riemann surfaces using the Reich-Strebel inequality for the solenoid [14]. Note that ν̃n(fn) = −νnλνn
and

µ̃n(fn) = −µnλνn
+ o(1), where λνn

= (fn)z

(fn)z
.

Then we obtain
∫

H

|µ− µn|
2|ψ|dm ≤ C1(k −Re

∫

H

µψdm) + o(1).

We let ψ = ϕ in the above and obtain
∫

H

∣

∣

∣

|ϕ|

ϕ
−

|ϕn|

ϕn

∣

∣

∣

2

|ϕ|dm→ 0

as n→ ∞. This implies that

Re

∫

H

|ϕn|

ϕn
ϕdm→ 1

as n→ ∞.

By the definition ϕ = π([µ]). By our assumption, ‖ϕn‖Bers ≤ N and it is enough to show that ‖ϕ‖Bers ≤
N . Denote by α the product of leafwise hyperbolic area measure and the transverse measure on H. We scale

the transverse measure in such fashion that α(H) = 1. Define Hn,ǫ = {x ∈ H : |Arg(ϕn(x)
ϕ(x) )| < ǫ}. We show

that limn→∞ α(Hn,ǫ) = 1, for all ǫ > 0. Assume on the contrary that lim infn→∞ α(Hn,ǫ) ≤ 1− δ, for δ > 0.
Then we have

Re

∫

H

|ϕn|

ϕn
ϕdm ≤

∫

Hn,ǫ

|ϕ|dm+ cos ǫ

∫

H−Hn,ǫ

|ϕ|dm.

The zeros of ϕ make a closed subset of H which is leafwise discrete and whose α-measure is 0. Moreover,
there exists an open neighborhoodU of the zeros of arbitrary small α-measure whose intersection with any leaf
consists of hyperbolic disks. For any such neighborhood U , we have C(U) = inf(z,t)∈H−U |ϕ(z, t)ρ−2(z, t)| >
0. From the above we get, for U small enough, that

lim inf
n→∞

Re

∫

H

|ϕn|

ϕn
ϕdm ≤ 1 − (1 − cos ǫ)(δ − α(U))C(U) < 1

which contradicts
∫

H
|ϕn|
ϕn

ϕdm→ 1 as n→ ∞. Therefore limn→∞ α(Hn,ǫ) = 1 as n→ ∞.

We fix δ > 0. By the above, there exists n1 such that α(Hn1,δ/2) > 1 − δ/2. Further, there exists
n2 ≥ n1 such that α(Hn2,δ/4) > 1 − δ/4, and so on. In general, we find nj such that nj ≥ nj−1 and

α(Hnj ,δ/2j ) > 1 − δ/2j. Define H0 = ∩∞j=1Hnj ,δ/2j . Then α(H0) ≥ 1 − δ and the sequence Arg(
ϕnj

ϕ )

converges to zero uniformly on H0. For simplicity of notation, rename the sequence ϕnj
to ϕn.

Consider lifts ϕ̃, ϕ̃n of ϕ,ϕn to the universal covering ∆1× Ĝ of H. Recall that for a finite index subgroup
Gk ofG we have ∆1×Ĝk/Gk ≡ H. Given ǫ > 0 there exists k such that supz∈∆1

|ϕ̃(z, t1)−ϕ̃(z, t2)|ρ
−2(z) < ǫ,

for all t1, t2 ∈ Ĝk. Let ωk be a fundamental polygon for Gk. Then ωk × Ĝk is a fundamental set for the
action of Gk on ∆1 × Ĝk.

Let ck = h-area(ωk). Then m(Ĝk) = 1/ck because of the normalization α(H) = 1. Given t ∈ Ĝk, denote

by ωδ,nk,t the set of all (z, t) ∈ ωk×Ĝk such that |Arg( ϕ̃n

ϕ̃ )(z, t)| < δ. Let Ĝδ1,nk = {t ∈ Ĝk; h-area(ωδ,nk,t ) < δ1}.

Then we obtain

1 − δ ≤ α(H0) ≤ δ1m(Ĝδ1,nk ) + ck(1/ck −m(Ĝδ1,nn ))

which implies

m(Ĝδ1,nk ) ≤
δ

ck − δ1
.

The above implies that ωδ,nk,t has Lebesgue measure bounded from below for each t ∈ Ĝk−Ĝ
δ1,n
k and Lemma

4.1 applies to such t. Thus, by Lemma 4.1, there exists a sequence of functions kn : Ĝk − Ĝδ1,nk → R+ such
8



that

(2) ‖(ϕ̃n − knϕ̃)|
ωk×(Ĝk−Ĝ

δ1,n

k
)
‖Bers ≤ dn → 0

as n→ ∞.

We claim that there exists a sequence tn ∈ Ĝk − Ĝδ1,nk such that lim supn→∞ kn(tn) ≥ 1. Suppose on
the contrary that there exists c > 0 such that ‖kn‖∞ ≤ 1 − c for all large n. From (2) and by the above
assumption, we obtain

∫

ωk×(Ĝk−Ĝ
δ1,n

k
)

|ϕ̃n|dm− dn ≤

∫

ωk×(Ĝk−Ĝ
δ1,n

k
)

kn|ϕ̃|dm ≤ (1 − c)

∫

ωk×(Ĝk−Ĝ
δ1,n

k
)

|ϕ̃|dm.

This implies

(3)

∫

ωk×(Ĝk−Ĝ
δ1,n

k
)

|ϕ̃n|dm/(1 − c) − dn/(1 − c) ≤

∫

ωk×(Ĝk−Ĝ
δ1,n

k
)

|ϕ̃|dm.

Note that

(4)

∫

ωk×Ĝ
δ1,n

k

|ϕ̃n|dm ≤ ‖ϕn‖Bers α(ωk × Ĝδ1,nk ) ≤ Nck
δ

ck − δ1
→ 0

as δ → 0, for fixed k and δ1, and uniformly in n. If we take n large enough and δ small enough in (3) and
(4), we get that

∫

H
|ϕ|dm > 1 which is a contradiction with our choice of ϕ.

Therefore, there exists tn such that lim supn→∞ kn(tn) ≥ 1. From (2) we get that ‖ϕ̃|ωk×tn‖Bers ≤
‖ϕ̃n|ωk×tn‖Bers/kn(tn) + dn/kn(tn). Consequently, we have that ‖ϕ‖Bers ≤ N + ǫ by letting n → ∞. Since
ǫ was arbitrary, we get that ‖ϕ‖Bers ≤ N . ✷

Before proving the Theorem 1. we need to prove the next lemma.

Let S0 be a compact Riemann surface of genus two at least two. Let γ be a non-diving simple closed
geodesic (in the corresponding hyperbolic metric). We cut S0 along γ to obtain a bordered hyperbolic surface
Sb0. Denote by Sn a compact Riemann surface obtained by gluing n copies of Sb0 along their boundaries such
that Sn is Zn-cover of S0. Given r, 0 < r < 1, we denote by Rn,r a subsurface of Sn which consists of [rn]
consecutive copies of Sb0 in Sn, where [rn] is the smallest integer less that or equal to rn. The hyperbolic
metric on S0 lifts to a unique hyperbolic metric on Sn and both hyperbolic metrics lift to a transversely locally
constant hyperbolic metric on H. Denote by R̃n,r the lift of Rn,r to H. It is then clear that α(R̃n,r) = [nr]/n.

If f is a leafwise quadratic differential on H, we define ‖f‖L1 :=
∫

H |f |dm. Define a non-holomorphic
quadratic differential on H by

ϕ̃n =

{

0, on H− R̃n,r
ϕ̃0, on R̃n,r

Note that ϕ̃n is the lift of

ϕn =

{

0, on Sn −Rn,r
ϕ0, on Rn,r

Lemma 4.3. There exists a holomorphic quadratic differential ψ̃n ∈ A(H) such that

∥

∥

∥

ψ̃n

‖ψ̃n‖L1

−
ϕ̃n

‖ϕ̃n‖L1

∥

∥

∥

L1

→ 0,

as n→ ∞, for fixed r. Moreover, we can choose ψ̃n to be the lift of a holomorphic quadratic differential ψn
on Sn.
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Proof. Let A(Sn) denote the space of holomorphic quadratic differentials on Sn. We define a linear functional
σ : A(Sn) → C by

σ(f) =

∫

Sn

ϕ̄nρ
−2f,

for f ∈ A(Sn). It is a standard fact for Riemann surfaces that there exists a unique ψn ∈ A(Sn) such that

σ(f) =
∫

Sn
ψ̄nρ

−2f , for all f ∈ A(Sn). Denote by ψ̃n the lift of ψn to H.

We consider c-neighborhood Un(c) of the two boundary curves of Rn,r in the hyperbolic metric on Sn, for
c > 0. We claim that for any ǫ > 0 there exist n0 and c > 0 such that

(5) ρ−2|ϕn − ψn| < ǫ

on Sn − Un(c) for all n > n0.
To show the claim, we assume that it is not true (and arrive at a contradiction). Then there exist ǫ > 0,

a sequence cn > 0 and a sequence zn ∈ Sn − Un(cn) such that cn → ∞ as n→ ∞ and

(6) ρ−2(zn)|ϕn(zn) − ψn(zn)| ≥ ǫ

for all n. We arrange that either zn ∈ Sn − Rn,r or zn ∈ Rn,r for all n after possibly taking a subsequence.

Consider a Z-cover S̃ of S0 which is made by gluing together infinitely many Sb0. Note that S̃ is also Z-cover

of each Sn. We arrange that the covering maps S̃ → Sn have a lift of zn in a fixed copy of Sb0 in S̃. We

denote by ϕ̃n, ψ̃n the lifts of ϕn, ψn to S̃ as well as to H and the meaning should be read from the context.
Define a linear functional on A(S̃) by

σ̃n(f) :=

∫

S̃

−
ϕ̃n ρ

−2f,

for all f ∈ A(S̃). Then σ̃n satisfies

σ̃n(f) =

∫

S̃

−

ψ̃n ρ
−2f

for all f ∈ A(S̃) by the Bers’ reproducing formula. Note that A(Sn) does not lift to a subset of A(S̃).

By the choice of the covering maps S̃ → Sn, we have that either ϕ̃n → ϕ̃0 on S̃ uniformly on compact
subsets if zn ∈ Rn,r, or ϕ̃n → 0 uniformly on compact subsets otherwise. Then either

lim
n→∞

∫

S̃

−
ϕ̃n ρ

−2f =

∫

S̃

−
ϕ̃0 ρ

−2f

for all f ∈ A(S̃) in the first case or

lim
n→∞

∫

S̃

−
ϕ̃n ρ

−2f = 0

in the second case.
It is clear that ‖ψ̃n‖Bers ≤ 3‖ϕ0‖Bers < ∞ for all n because ‖σ̃n‖ ≤ ‖ϕ0‖Bers. Therefore, ψ̃n has a

subsequence which converges uniformly on compact subsets of S̃ to a holomorphic quadratic differential
ψ̃ ∈ A(S̃). Then

(7) lim
n→∞

∫

S̃

−

ψ̃n ρ
−2f =

∫

S̃

−

ψ̃ ρ−2f.

On the other hand, ψ̃ 6= ϕ̃0 in the first case and ψ̃ 6= 0 in the second case by (6) and the fact that the

inequality prevails in the lifts to a compact subset of S̃. Thus we obtain two different presentations for the
limiting linear functional. This is a contradiction to the uniqueness of the presentation of linear functionals
in the above form. Therefore, we showed that given ǫ > 0 there exists c > 0 such that ρ−2|ϕn − ψn| < ǫ in
Sn − Un(c) for all n large enough.

Note that the hyperbolic area of Un(c) is constant in n for a fixed c > 0 by our choice of coverings. Since

the genus of Sn goes to infinity as n → ∞, we conclude that α(Ũn(c)) → 0 as n → ∞, where Ũn(c) is the
lift of Un(c) to H. Then by (5) and by the above, we get

∫

H |ϕ̃n − ψ̃n|dm ≤
∫

H−(Ũn(c)) |ϕ̃n − ψ̃n|ρ
−2ρ2dm+

∫

Ũn(c) |ϕ̃n − ψ̃n|ρ
−2ρ2dm ≤

≤ ǫα(H− Un(c)) +Mα(Un(c)) → 0
10



as n→ ∞. In other words, we showed that limn→∞ ‖ϕ̃n − ψ̃n‖L1 = 0.

It is clear that ‖ϕ̃n‖L1 = [rn]
n ‖ϕ0‖L1(S0). By the above, we also get that ‖ψ̃n‖L1 − [rn]

n ‖ϕ0‖L1(S0) → 0 as

n→ ∞. This implies that both ‖ϕ̃n‖L1 and ‖ψ̃n‖L1 are bounded from below independently of n. Moreover,
their difference converges to 0 as n→ ∞. Thus we obtain

∥

∥

∥

ψ̃n

‖ψ̃n‖L1

−
ϕ̃n

‖ϕ̃n‖L1

∥

∥

∥

L1

≤
k[nr]

n‖ϕ0‖L1(S0)
‖ϕ̃n − ψ̃n‖L1 → 0,

for some constant k > 0 as n→ ∞. ✷

Proof of Theorem 1. To prove that the set of points which do not have a Teichmüller representative is
generic we need to prove that the set X is of first category. Recall that

X = {[0]} ∪ (∪π−1(A1(N))),

where the second union is over all N ∈ N. It is enough to show that each of the sets π−1(A1(N)) is of the
first category. We prove this by contradiction.

Assume that for some N the set π−1(A1(N)) is of the second category. Then the closure π−1(A1(N))c

has non-empty interior. Moreover, by Proposition 4.2 every element in π−1(A1(N))c that has a Teichmüller

representative must be in π−1(A1(N)). Let [µ = k |ϕ|ϕ ] be a transversely locally constant Beltrami coefficient

on H such that the point [µ] is an element of the interior of the set π−1(A1(N))c. We assume that µ is lifted
from a surface S0, that is ϕ ∈ A1 is a lift of a holomorphic quadratic differential ϕ0 on a closed Riemann
surface S0 of genus at least two. We will show that there exists a transversely locally constant sequence
[µn] → [µ] such that ξn = π([µn]) are unbounded in the Bers norm. Since for n large enough we have that
[µn] is an element of the interior of the set π−1(A1(N))c we will obtain a contradiction.

We keep the notation Sn for Zn cover of S0 and Rn,r for [rn]/n proportion of Sn as above. Consider a
Beltrami coefficient

(8) µn =
{ k |ϕ|ϕ , H− R̃n,r

(1 + r)k |ϕ|ϕ , R̃n,r

for r > 0 small enough such that ‖µn‖∞ < 1. The Beltrami coefficient µn is not smooth at the lift of two
boundary curves of Rn,r to the solenoid H and it can be smoothly approximated in arbitrary small area
neighborhoods of the lift. Therefore, we can work with µn as well and we refer the reader to [14] for more
details.

Let λn(ψ) =
∫

H µnψdm, for ψ ∈ A(H), be the corresponding linear functional. Denote by ϕ̃n the non-
holomorphic quadratic differential which is the lift of

(9) ϕn =
{ ϕ0, Rn,r

0, Sn −Rn,r
.

By Lemma 4.3, there exist holomorphic quadratic differentials ψ̃n on H such that

(10)
∥

∥

∥

ψ̃n

‖ψ̃n‖L1

−
ϕ̃n

‖ϕ̃n‖L1

∥

∥

∥

L1

→ 0

as n→ ∞.

Denote by ‖λn‖ = supψ∈A1
|λn(ψ)| the operator norm of λn. Then ‖λn‖ ≤ (1 + r)k because ‖µn‖∞ =

(1 + r)k. Since λn(ϕ̃n/‖ϕ̃n‖L1) = (1 + r)k and by (10), we have that ‖λn‖ → (1 + r)k as n → ∞. There
exists ξn ∈ A1 (which is the lift of a holomorphic quadratic differential on Sn) and there exists ln > 0 such

that ln
|ξn|
ξn

∈ [µn].
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Let k(µn) = infν∈[µn] ‖ν‖∞. The Teichmüller contraction inequality [14] applied to µn gives

‖µn‖∞ − k(µn) ≤ C(‖µn‖∞ − sup
ψ∈A1

Re

∫

H

µnψdm)

where C > 0 is a fixed constant. The right hand side of the above inequality converges to zero as n → ∞.
Therefore the left hand side converges to zero as well. Since ‖µn‖∞ = (1 + r)k, then we have k(µn) = ln →
(1 + r)k as n→ ∞.

We use another standard formula which is an easy consequence of the Reich-Strebel inequality developed
for the solenoid in [14] in the course of proof of the Teichmüller contraction. Namely, we get

1 + ln
1 − ln

≤

∫

H

|1 − µn
ξn

|ξn|
|2

1 − |µn|2
|ξn|dm

where ln
|ξn|
ξn

∈ [µn] is an important condition (the formula is not true for arbitrary holomorphic quadratic

differential). Further,

∫

H

|1 − µn
ξn

|ξn|
|2

1 − |µn|2
|ξn|dm ≤

∫

H−R̃n,r

(1 + k)2

1 − k2
|ξn|dm+

∫

R̃n,r

[1 + (1 + r)k]2

1 − [(1 + r)k]2
|ξn|dm

which implies that

1 + ln
1 − ln

≤
1 + k

1 − k

∫

H−R̃n,r

|ξn|dm+
1 + (1 + r)k

1 − (1 + r)k

∫

R̃n,r

|ξn|dm.

From the above inequality and by ln → (1 + r)k, we get that limn→∞

∫

H−R̃n,r
|ξn|dm = 0, for each

0 < r < 1. To see this assume on the contrary that lim supn→∞
∫

H−R̃n,r
|ξn|dm = δ > 0. Then by taking

lim supn→∞ in the above inequality, we obtain 1+ln
1−ln

≤ 1+k
1−k δ+

1+(1+r)k
1−(1+r)k (1−δ) which is impossible. By Cantor

diagonal argument, there exists a sequence rn → 0, 0 < rn < 1, such that nrn → ∞ and
∫

H−R̃n,rn
|ξn|dm→ 0

as n→ ∞. Clearly limn→∞ α(R̃n,rn
) = 0. For simplicity, we write R̃n = R̃n,rn

.

Finally, we assume that ‖ξn‖Bers ≤ N . Then we have that

1 = ‖ξn‖L1 ≤

∫

H−R̃n

|ξn|dm+ ‖ξn‖Bers α(R̃n) =

∫

H−R̃n

|ξn|dm+Nα(R̃n) → 0

as n→ ∞. This is a contradiction. Therefore ξn is not bounded in the Bers norm.
✷

5. Infinitesimal Teichmüller classes without Teichmüller representatives

A tangent vector to T (H) at the basepoint [0] is represented by a Beltrami differential µ. It defines a

continuous linear functional on A(H) via the natural pairing. If µ is infinitesimally equivalent to k |ϕ|ϕ (i.e.

µ− k |ϕ|ϕ ∈ N(H)) then the linear functional achieves norm on the unique vector ϕ
‖ϕ‖L1

∈ A(H). A question

whether each infinitesimal Teichmüller class contains a Beltrami coefficient of the Teichmüller type k |ϕ|ϕ , for

k ∈ R+ and 0 6= ϕ ∈ A(H), is analogous to the question of the existence of Teichmüller representative for
marked complex structures. An equivalent question is whether the induced linear functional achieves its
norm on A(H). We obtain an analogous result to Theorem 1:

Theorem 3. The set of points in the tangent space of T (H) at the basepoint [0] which do not achieve its

norm on A(H) is generic.
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Proof. Denote by B(H) = L∞(H)/N(H) the tangent space to T (H) at the basepoint. Let X ⊂ B(H) be
the set of points that do achieve its norm. That is, each λ ∈ X achieves its norm on some ϕ ∈ A1. We define
π : X → A1 by π(λ) = ϕ if λ achieves its norm on ϕ ∈ A1. Then we have X = ∪∞N=1π

−1(A1(N)) ∪ {[0]}).

We show that if λ ∈ π−1(A1(N))
c

achieves its norm then λ ∈ π−1(A1(N)) Let λn ∈ π−1(A1(N)) and

assume that λn → λ. Let µn = kn
|ϕn|
ϕn

be the Teichmüller Beltrami differential representing λn, where

ϕn ∈ A1 and let µ = k |ϕ|ϕ be the Teichmüller Beltrami differential representing µ, where ϕ ∈ A1. Then

kn → k and
∫

H

kn
|ϕn|

ϕn
ψdm→

∫

H

k
|ϕ|

ϕ
ψdm

as n→ ∞ for all ψ ∈ A(H). By letting ψ = ϕ in the above, we get
∫

H

|ϕn|

ϕn
ϕdm→ 1

as n → ∞. In the proof of Proposition 4.2, we showed that the above convergence implies that ϕ ∈ A1(N),
which proves the claim.

Same as in the proof of Theorem 1 , we prove that X is of the first category. It is enough to prove that
each π−1(A1(N)) is of the first kind. We do this by contradiction.

Assume that for some N the set π−1(A1(N)) is of the second kind. Therefore, the closure π−1(A1(N))
c

has non-empty interior. Then there exists λ0 ∈ (π−1(A1(N)))◦ which is transversely locally constant. This
implies that any sequence of transversely locally constant λn which converge to λ0 must have bounded Bers
norm. We find a contradiction with this statement by constructing a convergent sequence with unbounded
Bers norm below.

Assume that λ0 ∈ B(H) achieves its norm on ϕ̃0 ∈ A1, where ϕ̃0 is the lift of a holomorphic quadratic
differential ϕ0 on a Riemann surface S0. As in Section 4, define a non-holomorphic quadratic differential on
H by

ϕ̃n =

{

0, on H− R̃n,r
ϕ̃0, on R̃n,r

Note that ϕ̃n is the lift of

ϕn =

{

0, on Sn −Rn,r
ϕ0, on Rn,r

By Lemma 4.3, there exist a sequence ψ̃n ∈ A(H) such that
∥

∥

∥

ψ̃n

‖ψ̃n‖L1

− ϕ̃n

‖ϕ̃n‖L1

∥

∥

∥

L1

→ 0 as n → ∞. We

define ψn := ψ̃n

‖ψ̃n‖L1

, i.e. ψn is a positive multiple of ψ̃n which belongs to A1.

Consider linear functionals

λn(f) =

∫

H−R̃n,r

|ϕ0|

ϕ0
fdm+ (1 + l)

∫

R̃n,r

|ϕ0|

ϕ0
fdm.

for f ∈ A(H) and l > 0. Then we obtain

|λn(ψn)| ≥ −

∫

H−R̃n,r

|ψn|dm+ (1 + l)

∫

R̃n,r

|ψn|dm→ 1 + l,

as n→ ∞. Therefore, ‖λn‖ → 1 + l as n→ ∞.

Note that λn descends to a functional on A(Sn). Thus there exists a unique ξn ∈ A(Sn) on which λn
achieves its norm. Lift a positive multiple of ξn to a transversely locally constant holomorphic quadratic
differential ξ̃n on H such that ‖ξ̃n‖L1 = 1. Then we have λn(ξ̃n) = ‖λn‖ ≥ 1 + l − ǫ for all n large enough
depending of ǫ.

13



We claim that
∫

H−R̃n,r
|ξ̃n|dm → 0 as n→ ∞. Assume on the contrary that there exists δ > 0 such that

lim supk→∞
∫

H−R̃k
|ξ̃k|dm = δ. Then we get

lim sup
n→∞

λn(ξ̃n) ≤ δ + (1 + l)(1 − δ) = 1 + l − lδ < 1 + l.

But this is in contradiction with ‖λn‖ → 1 + l as n→ ∞. Therefore
∫

H−R̃n,r
|ξ̃n|dm→ 0 as n→ ∞.

By the Cantor diagonal argument, there exists a sequence rn → 0 such that
∫

H−R̃n,rn
|ξ̃n|dm → 0 and

nrn → ∞ as n→ ∞. The condition rn → 0 implies that α(R̃n,rn
) → 0 as n→ ∞. For simplicity of notation,

we write R̃n = R̃n,rn
.

This implies

1 = ‖ξ̃n‖L1 =

∫

H−R̃n

|ξ̃n|dm+

∫

R̃n

|ξ̃n|dm ≤

∫

H−R̃n

|ξ̃n|dm+ ‖ξ̃n‖Bersα(R̃n) → 0

as n→ ∞. This is a contradiction.
✷

Remark. The results of this paper immediately generalize to the punctured solenoid introduced in [11].
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[1] V. Božin, N. Lakic, V. Marković and M. Mateljević, Unique extremality, J. Analyse. Math. 75 (1998), 299-338.

[2] C. Bishop, BiLipschitz approximations of quasiconformal maps, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 1, 97–108.

[3] A. Candel, Uniformization of surface laminations, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 4, pp 489-516.
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