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Abstract

Using a new composite climate-risk index, we show that population in high-risk
counties has grown disproportionately over the last few decades, even relative to the
corresponding commuting zone. We also find that the agglomeration is largely driven
by increases in the (white) working-age population. In addition, we show that high-
risk tracts have typically grown more than low-risk tracts within the same county,
suggesting the presence of highly localized amenities. We also document heterogeneous
population dynamics by degree of urbanization, region and type of natural hazard.
Specifically, population has been retreating from high-risk, low-urbanization locations,
but continues to grow in high-risk areas with high residential capital. Net migration
flows have contributed to the higher growth of high-risk counties in the South and
Northeast of the country, but the opposite has happened in the West and Midwest.
Last, we provide evidence of microretreat in the case of coastal flooding : tracts with
high levels of this risk have grown significantly less than other tracts in the same
county, suggesting that residents are willing to relocate within short distances to avoid
predictably risky locations.
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1 Introduction

Over the last decades, the frequency and intensity of natural hazards in the United States

(U.S.) has increased. According to the National Oceanic and Atmospheric Administration

(NOAA), the U.S. experienced more than twice the number of billion-dollar disasters during

2010-2020 than it did in the previous decade and, in fact, four of the five most costly

natural disasters have occurred since 2010.1 We illustrate this point in Figure 1 using

SHELDUS data (CEMHS (2022)). The chart identifies the most damaging event in each

year between 1960 and 2020 on the basis of inflation-adjusted cost, separately for each of the

main types of natural hazards. During the 1960s, the most damaging events were relatively

benign (with costs mostly in the first two quintiles of the distribution). However, over

the following decades, the most damaging events have become much more costly, with an

increasing presence in the fourth and fifth cost quintiles.

In addition to the increased frequency of extreme natural disasters, the increase in damage

over the last few decades appears to be intimately related to the increasing agglomeration

of people and economic activity in high-risk areas.2 Despite a few notable exceptions where

hurricanes led to a persistent reduction in local population (Deryugina et al. (2018)), there

seems to be a general trend toward population agglomeration in hurricane-prone areas.3

Previous studies have shown that, for several decades, coastal counties in the U.S. have grown

disproportionately, including many counties that have been hit by large hurricanes over this

period of time (Wilson and Fischetti (2010) and Lin et al. (2021)).4 Similar findings have been

found regarding the pace of new construction in places with a high risk of wildfires (Radeloff

et al., 2018) and heatwaves (Partridge et al., 2017). However, to the best of our knowledge,

no study has done a comprehensive analysis of population dynamics that considers all major

natural hazards, which also includes droughts, riverine flooding, tornados, hail, and so on.5

Our goal is to investigate population dynamics in areas that currently exhibit high climate

risk, with a focus on examining whether population retreat is taking place or, rather, local

1Hurricanes Sandy (2012), Harvey (2017), Irma (2017), and Maria (2017).
2Across the world, infrastructure investment in flood-prone coastal areas continues to rise, often ignoring

sea-level rise projections (Balboni (2021)). Similarly, public expenditures on wildfire protection subsidize
development in places with fire hazards (Baylis and Boomhower (2023)).

3Deryugina et al. (2018) analyzed the effects of hurricane Katrina on the population of New Orleans,
along with the effects on their employment and income. They find a persistent reduction in population but
only small and highly short-lived effects on labor market outcomes. Specifically, eight years after the storm,
over a third of the displaced population had not returned to New Orleans.

4Over one third of the U.S. population lives in coastal counties. According to Wilson and Fischetti (2010),
between 1960 and 2008, the share of population living in coastal counties along the Gulf of Mexico soared
by 150%, more than double the national average.

5Jia et al. (2023) provide a recent review of the economic determinants of internal migration, including
the role played by climate risk.
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population dynamics continue evolving along long-term trends. To do this, we introduce a

novel composite measure of current climate risk (based on the historical frequency of climactic

events) and merge it with population data at the county and sub-county levels over the last

century. A one-dimensional measure of climate risk that incorporates all climate hazards is a

useful construct. It provides a simple measure of the average climate risk associated with the

distribution of population (or economic activity) at the desired level of geography, which may

also be useful for the calibration of structural models featuring a large number of geographic

units (e.g. Pang and Sun (2022)). It is also worth highlighting that our construction of an

aggregate climate risk measure can be easily adapted to build analogous measures at lower

levels of aggregation.6

Since climate risk discussions gained saliency during the 1990s, we are primarily inter-

ested in population dynamics during the period 1990-2020 .7 However, we have assembled

county-level population counts going back to 1900 in order to characterize long-term local

population dynamics long before climate risk became a potentially relevant factor shaping

mobility decisions. Equipped with our composite measure of climate risk, we estimate sim-

ple econometric models for the change in log population over time, which differences out all

time-invariant local characteristics. These models allow us to estimate the gap in population

growth between counties with currently high (or medium) climate risk and counties with

low risk over a long period of time. We also examine whether within-county population dy-

namics mitigate or exacerbate cross-county population shifts. We use these estimates to test

whether population is retreating from counties or census tracts with relatively high climate

risk.

Our analysis delivers several findings. First, we find that in the last three decades, high-

risk counties have grown about 2.9 log points more, per decade, than low-risk counties. Even

after netting out the average growth in the commuting zone (which is typically considered

a good approximation to the geographical scope of local economies), high-risk counties have

grown disproportionately more than low-risk ones over the last few decades (with an excess of

0.5 log points per decade). These results suggest the presence of amenities in high climate-risk

areas that operate at the county or sub-county levels (as opposed to county-level attributes

or the gravitational pull of local economies). Additionally, we show that high-risk tracts

typically grow more than low-risk tracts within the same county, which exacerbates the

increase in climate exposure implied by the county-level analysis.

Our results also highlight that the effects of climate risk on population growth vary

6For instance, one may want to create climate risk measures that aggregate all flooding-related hazards
(coastal flooding, riverine flooding and hurricanes) or all heat-related hazards (heat waves and droughts).

7The United Nations officially recognized climate change as a serious global problem in 1992, with the
Rio Earth Summit.
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across several dimensions. We have found stark differences in the geographic sorting of dif-

ferent socio-demographic groups. More specifically, the increasing population agglomeration

in high climate-risk counties appears to be largely driven by white, working-age individu-

als. Retirement-age and (less affluent) non-white populations appear to be retreating from

counties with high climate risk.

We also documented differential local trends on the basis of the degree of urbanization.

Specifically, we find population retreat from high-risk, low-urbanization locations, but in-

creasing population agglomeration in high-risk, high-urbanization locations. We also find

that in the South and Northeast of the country, the gap in population growth has been

fueled by net migration into high-risk counties. In contrast, in the Midwest and West, over

the last 3 decades, net migration flows are responsible for lowering the population growth in

high-risk counties below the rate of growth for low-risk counties in the same region.

Lastly, we uncover evidence of micro-retreat in response to risk of coastal flooding.

Namely, we show that tracts with high risk of coastal flooding grew less than other tracts in

the same county. However, we do not find this pattern for other natural hazards. We argue

that this is because coastal flooding is an easily predictable, highly localized risk, which

allows residents to “insure” themselves by relocating to low-risk tracts while remaining in

the same county.

All in all, our findings show increasing agglomeration in high climate-risk areas in the

South and Northeast of the United States, likely driven by robust local economies. However,

the rate of excess growth in high-risk areas at the national level seems to be decreasing since

1990. This reversal is due to changing demographic trends in the West and Midwest, where

net migration flows have recently lowered the rate of population growth in high climate-risk

counties below the rate of growth in low climate-risk counties in the same region.

The paper is organized as follows. Section 2 reviews the relevant literature and Section 3

describes our data sources. Section 4 introduces some definitions and presents nationwide

trends. Section 5 contains our analysis of population retreat on the basis of the composite

climate risk index. The remaining sections analyze heterogeneity according to the degree

of urbanization (Section 6), region (Section 7), demographic group (Section 8), and type of

natural hazard (Section 9). Section 10 concludes.

2 Literature

The literature on climate risk and population dynamics is growing rapidly. Many studies

have focused on the effect of extreme weather events and natural hazards on migration.

Boustan et al. (2020) analyze the effect of a wide range of natural disasters on net-migration
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over the period 1920-2010 and find that severe disasters such as wildfires and hurricanes

tend to trigger county-level out-migration. However, they find that flooding episodes tend

to attract migrants.

The demographic effects of climatic events are also a function of population density and

pre-existing demographic trends. For example, Fussell et al. (2017) document that hurricanes

and tropical storms lower population growth only for the small subset of U.S. counties with

high-density and growing populations, which only represent 2% of all US counties. This

finding leads them to conclude that long-term local population trends overshadow the effects

of episodic weather events. Other studies have also suggested that the effects of flooding on

migration are heterogeneous in household and regional characteristics (as in the review by

Hauer et al. (2020)).

Interestingly, other papers have studied the information content of natural hazards and

whether residents in those affected areas do indeed update beliefs. For example, Petkov

(2022) studies whether unexpected hurricanes lead to belief updating by locals and lead

to larger population loss relative to more predictable hurricanes. His analysis shows that

population growth declines more in counties that had not suffered hurricanes in the past,

suggesting belief updating by residents exposed to large-scale climatic events for the first

time.8 Additional evidence in support of residents’ belief updating in response to first-time

experience of severe flooding is provided in Petkov and Ortega (2023). These authors analyze

flood insurance take-up in the aftermath of a large hurricane in New York and show persistent

increases in take-up among homeowners (located just outside the 100-year flood zone) that

were likely exposed to severe flooding for the first time.

Our work is more closely related to studies examining local population dynamics on the

basis of climate risk, rather than the effects of episodic climate events. Lin et al. (2021)

document that, between 1990 and 2010, new residential construction in the Gulf of Mexico

and Northeast regions of the U.S. was concentrated in high-density areas (Census blocks)

with high projected risk of coastal flooding. The authors argue that urban agglomeration

economies still overpower the risk associated with sea-level rise. Compared to their paper,

our analysis includes both earlier data (going back to 1920) and more recent data (for 2020).

We also go beyond the analysis of coastal flooding risk and consider a wide range of climate

hazards.

In the context of wildfire risk, Fussell et al. (2017) study the number of housing units built

in the wildland-urban interface, an area prone to wildfires. The authors find that between

1990 and 2015, construction in the wildland-urban interface was the fastest-growing land

8Petkov (2022) also reports that unexpected hurricanes increase housing prices, but other studies find the
opposite effect on housing values (e.g. Ortega and Tas.pınar (2018) and Indaco et al. (2021)).
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use type in the United States. Similar trends have been found in regions at risk of droughts

and heat waves. For instance, Partridge et al. (2017) document that, in the second half of

the 20th century, Americans moved to locations that are predicted to experience severe heat

waves and long-term droughts.

Social scientists have also used observed migration patterns and current climate projec-

tions to simulate future climate migration scenarios. These models make predictions of the

demographic effects of climate change. Some studies emphasize that economically vulnerable

populations may not be able to afford retreating to low-risk locations and may be trapped in

high-risk locations (Black et al. (2011), Hauer et al. (2020), Hauer et al. (2022)). On their

part, Black et al. (2011) point out that migration is already an important coping strategy in

several countries, as is the case in Bangladesh in response to large-scale flooding episodes.

They also predict that environmental factors will play an increasingly larger role in shaping

international migration in many other areas of the world.

Other authors have focused on the impact on the geographical distribution of economic

activity. Using a dynamic model of the world economy, Desmet et al. (2021) simulate the

effects of sea-level rise on firms’ location decisions, taking into account the effects of local

agglomeration economies. Based on conservative sea-level rise projections, they estimate

that by 2050 about 0.2% of the world’s population (and firms) will have been displaced

(reaching 1.5% in year 2100).9 Interestingly, welfare losses are estimated to be larger than

real GDP losses because the population endogenously retreats toward (non-coastal) areas

with worse amenities. Importantly, their analysis implies highly heterogeneous geographical

effects. For instance, while the U.S. as a whole is predicted to experience only a negligible

reduction in real GDP (peaking at 0.01%), coastal areas in South Florida and Texas (and to

a lesser extent in the Northeast) are predicted to suffer much larger output and population

losses, which are offset by gains in neighboring inland locations.

3 Data sources

3.1 Population by county

We use the Surveillance, Epidemiology, and End Results Program (SEER) dataset compiled

by the National Cancer Institute. This dataset spans 1969-2020 and breaks down county

population by 19 age groups, race (3 groups) and gender. We impose a few data restrictions:

we drop Alaska and Hawaii due to the difficulty of linking counties over time for these states,

9Their estimates only consider the costs associated with locations that will become permanently flooded
and do not take into account the increased frequency of flooding episodes in other coastal areas.
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and a few groupings of counties that were only used in the 1970 Census (FIPS 36910, New

York City). As explained in detail in Appendix A, we used linear interpolation to impute

population values for a handful of counties for years 1970 and 1980.

We extend the SEER dataset in two ways. First, we extend it backward by merging

historical Census estimates for county population (overall) for the period 1900-1970. These

data allow us to trace the evolution of population for the vast majority of counties for over

a century (1900 to 2020). For years prior to 1970 we use the county-level data as is. In

addition, we also make use of the county-level dataset in Egan-Robertson et al. (2023),

which provides county-level estimates for net migration for every decade from the 1960s to

the 2010s. This data allow us to separate out natural population growth from growth driven

by net migration into the county.

As shown in Table 1, population counts obtained aggregating our county dataset are

fairly accurate.10 As seen in Figure 2, between 1920 and 2020 the country’s population

increased by about 220 million, corresponding to an average decadal growth of 11.3 log

points (Table 1, column 3). Population growth has slowed down since 1970, averaging 10.4

log points per decade. Interestingly, the elderly and non-white populations have grown at

much higher rates than the rest of the population over the period 1970-2020. Over this

50-year period, the population age 65 and above and the non-white population grew by an

average of 21.3 and 23.3 log points per decade, respectively, more than twice the rate for

the overall population. The higher growth rate among the elderly population in the last

50 years reflects both the aging of baby-boomers and the steady increase in longevity. The

higher growth rates for non-whites might reflect the increase in immigration (from abroad)

since the 1965 changes to US immigration policy (Immigration and Nationality Act), which

opened the door to several decades of high immigration.

The top half of Table 2 presents summary statistics for the county data. The first set of

variables reports the average decadal population growth (change in log population divided

by the number of decades). Over the two last decades, population in the average county has

grown by an average of 2.5 log points per decade (and solely 0.6 log points in the 2010s) but,

obviously, there’s a great deal of variation (ranging from a 31 log point reduction to a 51 log

point increase). The table also shows that population growth has slowed down considerably.

Between 1920 and 2020 the average population growth in the average county was 5.2 log

points per decade, more than twice the value for the 2000-2020 period.

10According to the BLS, the U.S. population in 2020 was 331.4 (April 1 estimate). The SEER data report
327.3 million people. The 4-million disparity is due to the exclusion of Alaska, Hawaii and Puerto Rico.

6



3.2 Population by Census tract

The Longitudinal Tract Data Base Census Dataset (LTBD) provides Census-tract population

data for the period 1970-2020. It combines data from the decennial Census and the ACS

and, crucially, the tract boundaries have been harmonized to 2010 Census tract boundaries

as described in Logan et al. (2014). We use the full-count (standard) dataset.11

The bottom half of Table 2 presents summary statistics for the population data at the

Census tract level. The first set of variables reports the average decadal population growth

(change in log population divided by the number of decades). Over the last two decades,

population in the average tract has grown by an average of 6.7 log points per decade. As

expected, the variation in population growth across tracts is large, with population falling

by 285 log points in some tracts and increasing by 804 log points in others. As shown before,

population growth at the tract level has slowed down considerably. Between 1970 and 2020

the average population growth was 16.4 log points per decade, more than two times larger

than the value for the period 2000-2020.

3.3 Our composite climate risk index

We use natural hazard risk metrics provided by FEMA (November 2021 version).12 Our

starting point is the most comprehensive metric, which includes data for a large number of

natural hazards and is a function of both the expected annual losses from each of the 18

hazards in each geographic area, and the area’s social vulnerability and community resilience.

This index combines information on 18 natural hazards, and takes values that range from 0

to 100.13

It is important to note that expected annual losses are a combination of the expected

annual frequency of the climate events and the degree of exposure, which is a function of

the area’s population and its housing stock. Therefore there will be a mechanical correlation

between this risk metric and population, both in levels and growth rates.

Given our interest in examining how climate risk impacts population growth, it is more

appropriate to measure climate risk solely on the basis of annual frequency. Annualized

frequency for each hazard is calculated as the number of historical occurrences (in counts

of events or event-days) over the length of the time period, using a variety of primary

11The data is freely available at https://s4.ad.brown.edu/Projects/Diversity/Researcher/Bridging.htm.
See Appendix B for more details.

12The data can be freely downloaded at https://hazards.fema.gov/nri.
13The natural hazards are: Avalanche, Coastal Flooding, Cold Wave, Drought, Earthquake, Hail, Heat

Wave, Hurricane, Ice Storm, Landslide, Lightning, Riverine Flooding, Strong Wind, Tornado, Tsunami,
Volcanic Activity, Wildfire and Winter Weather. We ignore volcanic activity and earthquakes, which are not
directly related to climate.
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sources that vary across each of the 18 specific hazards. The methodology to produce these

estimates differ somewhat for each hazard, depending on the nature of the hazard. In most

cases, the frequency of hazards is recorded at the Census block level. Once the total number

of recorded hazards is obtained, the annualized frequency is simply calculated as the number

of recorded hazard occurrences within the recording period divided by the corresponding

number of years. Once these measures are obtained at the Census block level, area-weighted

aggregates are computed in order to obtain frequencies at the Census tract and county

levels. Appendix C includes detailed information on the definition of occurrences and the

calculation of annualized frequencies for each of the main hazard types.

Our frequency-based composite risk measure is built as follows. First, we standardize the

annual frequency for each hazard (using the corresponding mean and standard deviation).

Next, we average the standardized annual frequencies using hazard-specific weights, and de-

note the weighted composite index by ZW. The weights are meant to capture the disparity

in the economic consequences of each hazard. Specifically, we compute each natural haz-

ard’s share in the expected annual loss due to property (buildings) damage and crop losses

nationwide.14 Because the main natural hazards in our composite risk index are geographi-

cally widespread across many counties and Census tracts, using their national dollar losses

is unlikely to contaminate our county-level composite risk index. We will also examine the

robustness of our results to the use of the weights in the calculation of our composite in two

ways: by estimating our main models using the unweighted version of our composite index

(which assigns equal weights to all hazards) and by repeating the analysis for each natural

hazard separately (i.e. without combining them into a scalar index).

Last, we compute the 25th and 75th percentiles of the composite (weighted) index and

classify a county as low risk if the composite annual frequency measure is below the 25th

percentile, medium risk if it falls between the 25th and 75th percentiles, and high risk if it

is above the 75th percentile.15

3.4 Housing values and residential capital data

In Section 6, we will analyze local population growth (for the period 1990-2020) on the basis of

county-level climate risk and economic density. The latter will be based on residential capital

14For droughts the expected annual losses for building damages are not part of the dataset. We replaced
them with expected annual agricultural losses. Ten out of the 16 hazards considered account for the vast
majority of the nationwide economic damage caused by climate events and, in fact, the main 7 hazards
account for 94% of all economic damage. We list them next in decreasing order, along with the corresponding
shares: hurricanes (0.21), droughts (0.21), riverine flooding (0.18), tornados (0.13), wildfires (0.10), hail
(0.06), coastal flooding (0.05), strong winds (0.04), ice storms (0.01) and winter weather (0.01).

15It is worth noting that the annual frequency distributions differ in the county and Census tract datasets,
which delivers different threshold values for the risk categories.
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values obtained from the 2000 Census.16 Specifically, we will partition all U.S. counties on

the basis of below or above median values for each of the following three measures: (i) overall

value of residential capital in the county, (ii) median value of homes in the county, and (iii)

value of residential capital over the county’s surface area.

4 Definitions and nationwide trends

This section defines our measures of population growth and examines both nationwide trends

and the geographic distribution of climate risk. These exercises both provide an overview of

the data and help assess their quality.

4.1 Population growth

We begin by pooling all counties together and examining the evolution of population over

time for the US as a whole. Figure 2 plots the evolution of population in levels (top-left)

and in logs (top-right).17 The top figures plot the evolution of the US population in levels

and logs. The bottom left figure plots the decadal population growth rates for the 10-years

beginning in year t. Namely,

gt = lnPopt+10 − lnPopt, for t = 1900, 1910, ..., 2010. (1)

As illustrated in Figure 2 (bottom-left figure), there is a downward trend in decadal

growth rates, but there is also substantial variability, partly reflecting economic conditions.

Specifically, decadal population growth was the lowest in the 1930s and 2010s, with 6.9 and

6.3 log points, respectively.

To smooth out fluctuations, it is helpful to define the average decadal growth rate over

periods of time ranging from initial year t and final year 2020, or

gt =
lnPop2020 − lnPopt
0.1× (2020− t)

, for t = 1900, 1910, ..., 2010, (2)

where the denominator simply counts the number of decades between initial year t and year

2020. A little algebra easily shows that gt is simply the average of the decadal population

16Given that our period of interest is 1990-2020, using pre-determined 1990 (or earlier) residential capital
values would have been clearly better. Unfortunately, we were not able to obtain such data with the required
geographic coverage. Nonetheless, the high persistence of housing stocks, and their value, over a 10-year
period suggests that the results will probably not be affected much. We conduct some auxiliary analysis in
Section 6 that shows this is a plausible assumption.

17The figures also plot the evolution of two demographic groups: the population age 65 and over and the
non-white population. Both groups have grown rapidly, relative to the overall population, since 1970.

9



growth rates (gt) for the corresponding decades (beginning with years τ = t, ..., 2010). Note

also that g2010 = g2010.

The bottom-right figure in Figure 2 clearly shows the downward trend in the growth rate

for the overall population. Between the years 1900 and 2020, the average population growth

rate has been around 12% per decade. In comparison, the corresponding rate fell to 10% for

the 1970-2020 period and fell further to roughly 6% for the 2010-2020 decade.18 To a large

extent this trend reflects the reduction in fertility rates accompanying the secular increase

in per-capita income. Despite large improvements in life expectancy and periods of high

immigration, population growth has trended downward between 1900 and 2020.

4.2 Population growth and climate risk

It is helpful to consider our county-level population datasets and partition all counties into

3 groups on the basis of our composite climate risk index (ZW). Specifically, we consider

the three climate risk levels (indexed by r) defined in : low (r = 0), medium (r = 1) and

high risk (r = 2). We then classify all counties by their composite risk category and pool all

counties with the same risk category. Last, we compare the evolution of population across

the three risk categories. In particular, we are interested in assessing whether population

growth has been lower in high-risk areas, which would indicate population retreat.

We examine the trends in terms of the average decadal (10-year) growth rates {grt − g0t},
for r = 1, 2. As can be seen in Figure 3 (bottom right), up until the 1970s, the average growth

differential between high-risk and low-risk areas was high and relatively stable, roughly 6

percentage points per decade. Since then, the gap in growth rates appears to have fallen

gradually: over the last 20 years the average growth rate has been about 4 percentage-points

higher in high-risk areas than in low-risk ones. In comparison, medium-risk areas have grown

at similar rates as low-risk areas, except for the 1970-2000, period when medium-risk areas

grew at somewhat higher rates than low-risk areas.

In conclusion, the data indicate that population growth remains much higher in high-risk

areas than in low-risk areas, even though the gap appears to have been closing slowly in

the last few decades. In other words, nationwide population is not retreating from high-risk

counties. Rather, these counties continue to grow disproportionately, albeit at a decreasing

rate.

18The figures also plot the data for the population age 65 and over and the non-white population. Since
1970 these groups have increased at much higher rates, on average, than the overall population.
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4.3 The geographic distribution of climate risk

To understand the geographical variation of our composite risk measure, we map it at the

county level. As shown in Figure 4, there is substantial geographical heterogeneity in climate

risk measure (ZW). The higher values of the composite risk measure are found in the Southern

half of the country, particularly in the South east and South west. This pattern is also found

in a recent study by Amornsiripanitch and Wylie (2023) who document the highest climate

risk exposure in the Gulf of Mexico and South Atlantic coast. More specifically, our climate

risk index shows that high climate risk in the Northeast and in the South is more prevalent

among coastal counties. It is also worth noting that many counties in northern Texas and

Oklahoma also exhibit moderate levels of climate risk. In the West the highest climate risk

area falls in counties on both sides of the California-Arizona border. Last, the Midwest is

generally a region with low climate risk and only some counties in Nebraska and Kansas

exhibit moderately high climate risk.

Naturally, there is regional variation in the specific climate hazards concerning the pop-

ulation. Obviously, landlocked counties are not exposed to coastal flooding and tornadoes

are much more frequent along the Tornado Alley (which includes parts of Texas, Louisiana,

Oklahoma, Kansas, South Dakota, Iowa and Nebraska). Figure 5 plots county-level risk

levels (based on estimated annual frequency) for the 10 natural hazards with positive weight

in our composite measure (see subsection 4.2).19

Droughts are a serious concern in many counties in the western half of the United States.

In contrast, the eastern and southern coastal counties face moderate to high risk of hur-

ricanes. We also note that wildfire risk correlates with risk of droughts, whereas coastal

flooding risk largely coincides with risk of hurricanes (particularly in southern counties in

Texas, Louisiana and Florida).20

In later sections we will also examine whether different natural hazards affect population

growth differently, possibly due to differences in the availability of mitigation technologies

or other factors.

19The figures are sorted (top to bottom) in decreasing weight in our composite index. The hazards with
the highest weights are droughts (0.21), hurricanes (0.21), riverine flooding (0.18) and tornadoes (0.13).

20Note though that several counties in the northwest are at high risk of coastal flooding but are not exposed
to hurricanes.

11



5 Is there population retreat from high climate risk

locations?

5.1 County-level analysis

The findings in the previous section show that population is not retreating from high climate-

risk areas. At best, we observe a recent reduction in the gap between growth rates in regions

with high and low climate risk. This section will offer a more formal test of the retreat

hypothesis exploiting cross-county variation.

Naturally, if population is growing faster in high-risk areas it must be because the pull

factors in those areas outweigh the expected losses associated to climate risk. The pull factors

may differ in terms of geographic scope.21 Some may spread across whole states (e.g., low

taxation), other pull factors may better coincide with commuting zones (e.g., strong labor

markets), yet others may operate at the county or sub-county level (e.g., nice views or

proximity to nature).

We hypothesize that, if we were able to condition on all relevant pull factors, we would be

able to observe population retreat from high-risk areas. In other words, individuals currently

living in an area with high climate risk would be willing to relocate to lower climate-risk

areas with the same attributes. We refer to this as the conditional retreat hypothesis and we

will also test it below.

We analyze these questions exploiting cross-county variation to estimate differences in

population growth on the basis of climate risk, where growth will sometimes be defined

relative to the neighboring counties to net out the effects of region-specific factors. Our

primary interest is on the period 1990-2020, when climate risk has become increasingly

salient, but we provide estimates for a longer time period in order to examine if there has

been a departure from long-term population trends.22.

We consider a series of cross-sectional models that differ in their dependent variable. To

fix ideas, denote the average (decadal) change in log population in county c between years

1990 and 2020 by gc. We posit that

gc = α + β1RiskMedc + β2RiskHighc + uc, (3)

21For example, Rappaport and Sachs (2003) show that US economic activity is overwhelmingly concen-
trated in coastal counties and argue that this is a result of the opportunities that stem from proximity to
the ocean in terms of productivity and quality of life. Glaeser et al. (2001) argue that the inherent economic
success of a city hinges on its consumption value, which is closely related to the amenities it offers.

22Beeson et al. (2001) show that migration decisions in the late 1800’s were largely driven by natural
characteristics of the counties, such as access to water transportation and mineral resources.
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whereRiskMedc andRiskHighc are dummy variables taking a value of one for medium or

high-risk counties, respectively. The omitted category are counties with low (or non-existing)

risk. Coefficients β1 and β2 estimate the excess mean population growth in medium-risk and

high-risk counties relative to low-risk counties nationwide. We cluster standard errors at the

level of commuting zones. This clustering allows for arbitrary spatial correlation patterns

across counties (or tracts) within commuting zones.

It is also interesting to ask if counties with higher climate risk grow more (or less) than

neighboring counties located in the same commuting zone. Appropriately demeaning the

dependent variable allows us to address this question. In this case, we estimate the model

gc − gz = α + β̃1RiskMedc + β̃2RiskHighc + uc, (4)

where the dependent variable is the average population growth in county c net of the

average population growth among all counties in the same commuting zone z. To the extent

that commuting zones characterized by higher climate risk grow systematically more (less)

than commuting zones with low risk, the estimates for β̃1 and β̃2 will be lower (higher) than

the analogous estimates obtained in Equation 3.23 Note also that Equation 4 neutralizes the

effect of factors that make a commuting zone more (or less) attractive, on average, than other

commuting zones. Examples of such factors are cross-state (or cross-city) differences in tax-

ation, weather, or the robustness of their local economies during the period of consideration.

Hence, this model provides a test of the conditional retreat hypothesis.24

5.1.1 Main results

We now turn to the estimation of Equation 3. Table 3 reports the results. Before turning to

our composite climate risk index, we employ FEMA’s National Risk Index (NRI). As seen

in column 1, there is a strong positive association between high-risk counties (on the basis

of the NRI) and population growth. However, this index is constructed on the basis of the

23Note that β2 = E(gc|HighRisk)−E(gc|LowRisk), whereas in Equation 4, β̃2 = β2−(E(gz|HighRisk)−
E(gz|LowRisk)).

24An alternative approach to netting out factors that affect all counties in a commuting zone equally would
be to include commuting-zone fixed-effects in the estimation of Equation 3. However, in that case, the inter-
pretation of the coefficients of interest is less straightforward. When we include fixed-effects, identification
is based on the correlation between the transformed (demeaned) population growth and the transformed
risk dummy. Note that the transformed risk dummy becomes a continuous variable, so it is no longer the
difference in the mean for high-risk versus low-risk counties. The demeaned dummy variable then becomes
a measure of relative risk (vis-a-vis the corresponding commuting zone) whose variation is entirely driven by
the fraction of high-risk counties in the commuting zone. In our opinion, this ‘local’ measure of county risk
(which depends on the mean risk among the counties in the commuting zone) is less helpful than using a
‘global’ measure of county risk. At any rate, we shall also report estimates obtained by including fixed-effects.

13



frequency of natural disasters and a measure of exposure, which includes building values

that are obviously correlated with population. As a result, there is a nearly mechanical

relationship between high values of the NRI and a county’s population growth. Primarily

for this reason, we built a composite index that is purely based on the average annual

frequency of natural hazards in each county. Instead, columns 2-6 employ our climate risk

index (ZW). As expected, the association between population growth and climate risk at

the county level is considerably weaker in column 2 than in column 1. Nonetheless, we still

find evidence of higher population growth (over the last 3 decades) in high-risk counties.

We estimate the growth gap between low and high-risk counties to be 2.9 log points (i.e.,

about 3%) per decade. In contrast, medium-risk counties have grown, on average, at the

same rate as low-risk counties over the last 30 years. Thus, we reject the retreat hypothesis,

confirming the findings in Figure 3. In other words, high-risk counties continue to gain

population, presumably because the pull factors in these locations offset the expected losses

associated with climate risk.

Columns 3 and 4 examine whether higher-risk counties have grown disproportionately

relative to their neighbors. Respectively, the dependent variables in these columns net out

the average population growth in the state and commuting zone where each county is located.

The point estimates fall in value, indicating that high-risk counties tend to be located in

high-risk areas (states or commuting zones). However, the estimates show that high-risk

counties have grown at a higher rate than the commuting zone (or state) where they are

located. Based on column 4, we estimate the high-low net gap in population growth to be

0.5 log points per decade.

Column 5 restricts the sample to commuting zones with an above average proportion of

medium-risk or high-risk counties, which increases the net population growth gap between

high-risk and low-risk counties. Last, column 6 reports estimates from a model that includes

commuting-zone fixed-effects (where the dependent variable is the average change in log

population). Intuitively, this model correlates deviations in population growth relative to

each county’s commuting zone with a measure of relative risk. The estimates entail a larger

gap in population growth between high-risk and low-risk counties.

In sum, our estimates show that high-risk counties have grown substantially more than

low-risk counties over the last 3 decades, even when the comparison is restricted to counties

in the same commuting zone, which is commonly considered as a fair approximation of the

geographical scope of local economies. This result points to the presence of important pull

factors at the county or sub-county levels and imply a rejection of both the unconditional

and conditional retreat hypotheses.
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5.1.2 Flexible relationship

Let us now examine a more flexible model than Equation 3 using local linear regression. This

analysis will be informative regarding the functional form for the relationship between our

composite index (as a continuous variable) and the average population growth. The results

are depicted in Figure 6. The top figure plots average decadal population growth and our

frequency-based composite risk index at the county level. The figure shows a positive asso-

ciation between climate risk and population growth across the whole range of the composite

index, with the exception of the first bin. The bottom figure is the conditional counterpart of

the previous figure, where each county’s average population growth rate has been demeaned

using the corresponding commuting-zone value. In this case, the relationship is both closer

to a linear function and exhibits a smaller slope.25

5.1.3 Evolution over time

It is also interesting to examine the evolution of the growth differentials between high (and

medium) risk counties and low risk counties over time.26 The results are collected in Figure 7.

The top figure is based on models where the dependent variable is the average population

growth in the county, whereas in the bottom figure the dependent variable has been demeaned

using the average population growth in the corresponding commuting zone.

Both figures indicate a secular reduction of the excess growth of high risk-counties relative

to low-risk counties, but they diverge in regard to the recent trends. Over the last 30 years,

the excess growth of high-risk counties (relative to low-risk counties) has trended down when

we do not net out the growth rate of the corresponding commuting zone (top figure), but this

is not the case when we consider county growth relative to each county’s commuting zone

(bottom figure). Tentatively, this finding suggests that in recent times commuting zones

exposed to high climate risk may be losing gravitational pull.

It is also interesting to examine the robustness of these findings to the weights used in the

construction of our composite risk index. Accordingly, Figure D.2 plots the estimated excess

population gaps based on the unweighted composite index (Z), which assigns equal weights to

all hazards. The patterns we obtain are qualitatively similar: throughout the whole period,

high-risk counties exhibit excess population growth relative to low-risk counties, regardless

of whether we net out population growth in the corresponding commuting zone. However,

25Conservatively, our regression models do not assign extra weight to more populated counties, which tend
to have the largest values for the composite climate risk index.

26An important caveat is that county boundaries have only been harmonized for years 1980-2020 so as
to be stable over time. As we move back in time, there will be an increasing number of boundary changes,
which reduces the reliability of the estimates.
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the estimated excess growth is much lower when we use the unweighted composite index.

Specifically, between 1990 and 2020, the excess growth of high-risk counties is estimated to

be around 1 log point per decade when we rely on the unweighted composite index. This

is substantially lower than the 2.9 log point excess obtained using the weighted composite

index. Interestingly, the estimated excess growth in relation to the corresponding commuting

zone is very similar whether we use the weighted or unweighted versions of the composite

index. As we shall see later (in Section 9), the quantitative discrepancies between the two

versions of the composite risk index reflect the diverging population-risk dynamics for some

individual natural hazards.

5.1.4 Summing up

Our county-level analysis offers two main conclusions. First, we find no evidence of popula-

tion retreat from areas with high climate risk. In other words, we reject the unconditional

retreat hypothesis. Over the last three decades, on average, high-risk counties have grown

more than low-risk counties (by 2.9 log points per decade). In addition, the same qualitative

pattern is found when considering each county’s population growth relative to the growth of

the corresponding commuting zone, which neutralizes the effect of state and commuting-zone

characteristics (such as differences in taxation or strong local labor markets). Thus, we also

reject the conditional retreat hypothesis, suggesting that the factors that attract people to

high climate-risk areas operate at the county or sub-county levels.

5.2 Micro retreat: tract-level analysis

There is an important caveat to the conclusion of no retreat from high climate risk locations,

even after controlling for state and commuting-zone pull factors. It might be the case that

retreat takes place at the sub-county level. In other words, while population in high-risk

counties has been growing disproportionately, it is conceivable that the growth is concen-

trated in low-risk towns or neighborhoods within those counties. If this were the case, the

outlook would be much more optimistic. We refer to the disproportionate growth of low-risk

sub-county locations as the micro retreat hypothesis.

In order to assess whether micro-retreat is taking place, we switch to tract-level data.

There are about 70,000 Census tracts in the United States. The main implementation

challenge is the changing tract boundaries between each decennial Census. We use the

LTBD dataset (Logan et al., 2014), which contains harmonized tract boundaries for the

1970 through 2010 Censuses. When we merge these data with the FEMA NRI dataset, we
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obtain 59,030 tracts for years 1990, 2000, 2010 and 2020.27

Our empirical specifications are analogous to those used in our county-level analysis; the

only changes are that observations are now defined at the tract level (indexed by r) and that

we use county-level averages to compute relative tract-level growth. Namely, the models we

consider are:

gr = α + β1RiskMedr + β2RiskHighr + ur (5)

gr − gc = α + β1RiskMedr + β2RiskHighr + ur (6)

The bottom panel in Table 2 describes the main variables in the tract-level dataset.

Roughly, our merged dataset (which excludes Hawaii and Alaska) contains 58,500 tracts.

Over the last 5 decades, the average tract has grown by 16.4 log points per decade, which

is much higher than the corresponding value in the counties dataset (6.2 log points).28 The

growth rate for the average county has also declined over time. In the last decade this value

was 4.8 log points (compared to 0.6 log points in the county-level data).

The estimates of the relationship between current climate risk and population growth

over the last 3 decades are collected in Table 4. The first column estimates Equation 5.

The estimates show that high climate-risk tracts have grown at a much higher rate than

low-risk tracts nationwide (by a differential of 9 log points per decade). In columns 2-4 we

demean the dependent variable using the average growth rate in the corresponding state,

commuting zone and county. As expected, the high-low relative gap decreases in size, but

remains almost unchanged across the three columns. Namely, high-risk tracts have grown

about 1.5 log points more than low-risk tracts in the same state/CZ/county. Furthermore,

column 5 shows that the excess growth in high-risk tracts is even larger in counties with high

climate risk (defined as counties with above average proportion of medium-risk or high-risk

tracts). Last, column 6 shows that the results are qualitatively similar when employing a

model that includes tract-level fixed-effects (though the estimated high-low excess growth is

much larger than in our preferred specification).

In sum, our estimates entail a clear rejection of the micro retreat hypothesis stated above.

In fact, not only high-risk counties are growing more than low-risk ones (within the same

commuting zones). Our results here show that that high-risk tracts are also growing more

than low-risk (and medium-risk) tracts within the same county. Thus, the sub-county pop-

27For years 1970 and 1980 the number of tracts is significantly lower (around 49,000 tracts on average)
so we exclude these years from the main estimation sample. Census tracts in the LTBD data we use are
harmonized to 2010 boundaries.

28It is worth noting that population growth at the tract level is censored. When a tract reaches a certain
threshold (around 4,000 individuals), the tract is split into two separate tracts. However, this is not the case
in our harmonized dataset, which keeps boundaries stable at their 2010 values.
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ulation dynamics imply that the degree of exposure to climate risk is underestimated in the

county-level analysis. Furthermore, our estimates suggest that the pull factors that make

high-risk tracts attractive are highly localized in scope (at the sub-county level).

6 Heterogeneous effects by residential capital

Our estimates based on the national sample have failed to provide evidence of population

retreat from high-risk locations, even after neutralizing the effects of state-level, commuting-

zone and county-level pull factors. This suggests the presence of powerful localized pull

factors that still outweigh the costs associated to exposure to climate risk.

However, these findings could vary on the basis of local characteristics, such as the de-

gree of urbanization. In particular, counties with robust local economies and highly concen-

trated physical assets may invest more in resiliency measures to protect from climate shocks,

whereas capital-poor regions may not be able to afford such investments. As a result, pop-

ulation dynamics may differ substantially across high climate-risk locations on the basis of

the value of their residential capital stock. In fact, in the context of coastal flooding risk,

Lin et al. (2021) show that residential construction in the United States is increasingly con-

centrated in high-risk and high-density coastal areas, but it is not known if these dynamics

apply more generally to other climate hazards.29

To analyze these questions, we partition counties on the basis of (i) overall value of their

residential capital, (ii) median value of homes, and (iii) economic density (defined as overall

value per unit of surface). We measure housing values using the 2000 Census (100% sample,

Census Table) and extend our previous empirical model to allow for heterogeneous effects

of climate risk on population growth for counties above and below the median value of the

corresponding discriminating variable.30 The overall housing stock in the median U.S. county

in year 2000 had a value of $0.9 billion; the median home value in the median county was

$75,600 (and the median homeownership rate was 80.1%). We use these cutoff values to

partition counties according to whether their year-2000 values for these variables are above

or below the corresponding mean.31

29Relatedly, Balboni (2021) estimates large costs from coastal favoritism in deciding the location of public
infrastructure works.

30So far we have not located comprehensive data on housing values for all U.S. counties for year 1990 so we
use year-2000 values. We do have the 1990 data for Census tracts based on the 5% Census sample. However,
aggregation of the median tract housing values to the county level results in 1,877 counties, well short of
the approximately 3,100 plus counties in the United States. As we show below, the stock of residential
capital is very persistent at the county level over a 10-year period, resulting in the partition of counties being
practically the same. Hence, relying on year-2000 values to analyze population growth over the 1990-2020
period is a fairly safe choice.

31Our results also relate to Fussell et al. (2017) who analyze the effects of hurricanes (and tropical storms)
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Our dependent variable is the 1990-2020 average change in log population. As before,

we present both estimates of models where the dependent variable is the gross population

growth rate of counties and models where we net out the mean value for neighboring counties.

Table 5 collects the results. Column 1 estimates the model for the average change in

population growth. This specification includes interactions terms that allow for heteroge-

neous coefficients for counties with low (versus high) overall residential capital stock, where

the cutoff is given by the median value of residential capital across all counties (in year

2000). The estimates in column 1 show that in counties with low residential capital stock,

climate risk is not related to population growth. Instead, the picture is very different in

counties with high residential capital stock. First, population growth in these counties is

uniformly higher in these counties (by 5.9 log points per decade) regardless of climate risk.

But, additionally, high-capital, high-risk counties have grown more than low-risk counties

that also have a large residential capital stock. The estimates in column 2 show that the

excess growth in high-risk, high-capital counties is also observed after netting out the growth

of the corresponding commuting zone. However, as before, this population agglomeration

in high-risk counties is not happening in counties with lower residential capital. Column 3

focuses on population growth between years 2000 and 2020, which is better aligned with the

year in which we measure housing values. The results are practically identical to those in

column 2, confirming that the correlation for county housing values for years 2000 and 1990

is very high.

Columns 4-5 repeat the analysis but, this time, counties are partitioned on the basis of

median housing values (among homeowners). The estimates confirm the agglomeration of

population in high-risk counties with high median housing values. In regard to low-value

counties, we now find higher population growth in high-risk counties (column 4), but this

is largely due to the relatively high population growth in the corresponding commuting

zones. In fact, high-risk counties with low median housing values have grown less than their

neighboring counties (in the same commuting zone).

Columns 6 and 7 partition counties by economic density, defined as the value of the stock

of residential capital divided by the area of the county. The results are also in line with what

we found in the previous columns of the table.

In conclusion, our analysis in this section clearly indicates that the agglomeration of

population in high-risk areas is a phenomenon taking place in economically dense, urban

areas, with large stocks of residential capital and high median values. This finding echoes

the conclusions in Lin et al. (2021). In contrast, population is not booming in high-risk

counties in less urbanized areas. If anything, these counties are growing disproportionately

on population growth and also find heterogeneous effects (on the basis of prior population trends).
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less than otherwise similar low-risk counties. All in all, these findings suggest that to live in

high-risk areas, local residents require a compensating differential, possibly associated with

high residential capital or robust local economies.

7 Regional heterogeneity and net migration

This section investigates if the finding of higher population growth in areas with higher

climate risk found in the national samples is also present in regional subsamples (defined as

Census divisions). In addition, we will assess whether the findings are driven by disparities

between high-risk and low-risk areas in natural population growth or in net migration.

7.1 Regional heterogeneity

Table 7 estimates gaps in average decadal population growth at the county level for the

period 1990-2020 on the basis of climate risk. Column 1 simply reproduces our earlier finding:

nationwide high-risk counties have grown more than low-risk counties (by 2.9 percent per

decade). Columns 2 through 5 provide estimates for each census division separately. We

find substantial regional heterogeneity in the growth gap between high-risk and low-risk

counties. As seen in columns 2 and 4, between 1990 and 2020, in the Northeast and South,

population has increased much more rapidly in high-risk counties than in low-risk counties

(by approximately 3.7 percent and 4.9 percent, respectively).

Interestingly, the pattern is markedly different in the Midwest and West (columns 3 and

5). In these regions, high-risk counties have grown less than low-risk counties between 1990

and 2020. In fact, in the Midwest, the average high-risk county actually experienced a

population decline (by 1.1 log point per decade) whereas low-risk counties actually gained

population. In the West, the average county experienced robust population growth between

1990 and 2020 regardless of climate risk, but high-risk (and medium-risk) counties grew 1

to 2 log points less per decade than high-risk counties.

7.2 The role of net migration

Next, we examine whether the the heterogeneous regional patterns in the differential growth

of counties with high climate risk is driven by diverging patterns of net migration. Specif-

ically, the estimates in Table 7 suggest that high-risk counties in the Northeast and South

have been net recipients of migrants whereas high-risk counties in the Midwest and the West

have experienced negative net migration.
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To address this question, we rely on a recent dataset by Egan-Robertson et al. (2023).

This dataset contains decadal county level net migration from 1950 to 2020. Net migration

for each decade is estimated as a residual, computed as the overall population change minus

the counterfactual population growth driven purely by natural growth. In turn, the latter

is estimated by aging forward the population at the beginning of the decade, subtracting

deaths, and adding births. Importantly, we computed the counterfactual population change

in the absence of net migration over, say, the period 1990-2020 as the 2020 population

resulting purely from natural growth over the 3 decades minus the overall population in

1990.

Figure 8 reports the results. Let us consider first the nationwide estimates. As we did

earlier (Figure 7), the solid (blue) line reports the gap in the average decadal change in

the log population of high-risk versus low-risk counties, between each initial year and 2020.

As was the case in Figure 7 (top panel), the average total population growth gap (between

high-risk and low-risk counties) in the net migration dataset (Egan-Robertson et al. (2023))

is estimated to be around 4 percentage points per decade higher in the high-risk counties

for the time windows starting in 1960 through 1980, but narrowing substantially for time

windows starting from 1990 onward. In fact, Figure 8 implies that the population growth gap

during the 2010s has fallen almost to zero. This decline was also displayed in Figure 7 (top

panel), but quantitatively less drastic. The discrepancy between the two datasets is largely

due to the exclusion of the population age 75 and over in the dataset by Egan-Robertson et

al. (2023), as explained in Appendix A.

The dashed (red) line in the top subfigure in Figure 8 plots the gap in the counterfactual

population growth absent net migration (throughout the full period of interest) between high-

risk and low-risk counties for the national sample.32 The data show that high-risk counties

would have grown about 2 percent more per decade than low-risk counties uniformly between

1960 and 2020. Hence, since 1980, the gap between total and counterfactual population

growth has been narrowing, turning negative in the 2010s. In other words, since 1980 net

migration into high-risk counties has been falling in relative terms and, since 2010, net

migration in high-risk counties has fallen below net migration in low-risk counties.

Let us now turn to examine the estimated growth gaps by census division. Consider

first counties in the South of the country. Absent net migration, the population in high-risk

counties would have steadily grown by about 3 percent per decade more than in low-risk

counties. But net migration increased the excess growth in high-risk counties to around 5-6

percent per decade. The pattern is similar in the Northeast, with net migration contributing

32Importantly, the dashed (red) line in Figure 7 plotted the overall population growth gap betweenmedium-
risk and low-risk counties.
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to the higher overall population growth of high-risk counties.

In contrast, in the Midwest and the West, net migration has had the opposite effect, as

indicated by the uniformly lower solid line in the figures as compared to the dashed line.

Specifically, since 1960 in the Midwest, population growth would have been very similar in

high-risk and low-risk counties in the absence of net migration, but net migration resulted in

a substantially lower overall population growth in high-risk counties (by about 3 percent per

decade). In the West, in the absence of net migration, high-risk counties would have grown

more (by about 2 percent per decade) than low-risk counties. But, similarly to what took

place in the Midwest, net migration flows reversed the sign of the gap in overall population

growth, which turned negative (i.e. in favor of low-risk counties) since 1990.

It is likely that several factors explain these regional disparities in the sign of net migration

into high-risk counties. One such factor is probably the prevalence of economically vibrant

local economies on flood-prone coastal areas in the South and Northeastern coast. Differences

in the specific hazard mix affecting each region may also play a role.33 Seeking further clues,

next we compare counties that experienced population growth (over the period 1990-2020)

to those that suffered a decline in terms of their climate risk exposure. The top panel in

Table 6 reports this information for the U.S. as a whole.34 Among counties with negative

population growth, the composite risk index takes a value of negative 0.04. In contrast, the

mean value for growing counties is 0.02. The difference between the two values is small but

already indicates that growing counties tend to have (slightly) higher exposure to climate

risk.

Let us now turn our attention to the Northeast region (in the second panel). The first

row of the panel already indicates that the Northeast is heavily exposed to hurricanes (0.43),

riverine flooding (0.68) and coastal flooding (0.88). Moreover, growing counties have a very

high exposure to these hazards, even relative to the rest of the region (with values of 0.73,

0.79 and 1.43, respectively). In contrast, counties with falling population have substantially

lower exposure to these hazards. Rather similarly, hurricanes are the most prominent natural

hazard in the South (0.47 for all counties in the region), and growing Southern counties

are characterized by high risk of hurricanes (0.58 for growing counties). In contrast, the

main natural hazard in the Midwest is hail (0.47) and growing counties have relatively low

exposure to this particular hazard (0.36). In turn, the main exposure in the West is to

33As illustrated in Figure 5, the West is mainly exposed to droughts, wildfires and, to a lesser extent,
coastal flooding. Coastal areas in the South and the Northeast are at high risk of coastal flooding and
hurricanes. In contrast, the Midwest has a relatively low exposure to all climate hazards. We explore this
dimension in the next section.

34The average value across all counties for all risk measures in the table is zero because we standardized the
annual frequencies of each hazard (and the composite ) to have a zero mean and a unit standard deviation.
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drought (0.96) and wildfires (0.94). Interestingly, shrinking counties exhibit a very high risk

of drought (1.37), consistent with our retreat hypothesis. However, wildfire risk is higher in

growing counties (1.01) than in those losing population (0.60). All in all, these observations

underscore the presence of regional differences in exposure to each type of natural hazard.

The following sections will try to shed some light on the nature of this distinction.

8 Heterogeneity by demographic group

This section examines if the population trends described above differ along two demographic

dimensions: age and race. For ease of comparison, the top panel in Table 8 simply reproduces

results from the previous section (Table 7).

The middle panel of the table focuses the analysis on the growth of the population age 65

and above. The estimated intercepts in columns 1-5 show that this demographic group has

grown substantially more than the whole population over the 1990-2020 period (15.6 versus

3.8 log points per decade), fueled by the aging of the baby boom. However, the excess growth

of the 65-and-older population in high climate-risk counties has been smaller than the excess

growth for the overall population. In other words, the attraction power of high climate-risk

locations appears to be linked to considerations that are less important to older individuals,

suggesting that job opportunities may be the driving factor behind the increasing population

agglomeration in high climate-risk areas. It is also worth noting that the South stands out

from the other regions because the excess growth of the 65-and-older population in high-risk

areas is almost as large as the excess growth for the population as a whole. Namely, the

factors attracting the older and younger populations to high-risk locations are much more

aligned in the South than elsewhere in the United States.

The bottom panel of the table examines the association between climate risk and the local

growth in the non-white population. Once again, the growth of this demographic group over

the 1990-2020 period has been much larger than that of the overall population (41.9 log

points per decade, as shown in column 1). But, as was the case for the population age 65

and above, the excess growth for this group in the high climate-risk counties has been much

smaller than for the overall population. In fact, our estimates suggest that, except for the

Midwest, the non-white population has grown less in high-risk counties than in low-risk ones.

This pattern suggests that the non-white population may have been priced out of rapidly

growing high-risk areas.

Before concluding the section, it is worth turning to column 6, where the dependent

variable has been demeaned using the average population growth rate in the commuting

zone. This transformation is meant to remove the attraction power of the commuting zone,
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helping isolate the role of county-level pull factors. As discussed earlier, the estimate in the

top panel suggests that high-risk counties have more attraction power than other counties

in the same commuting zone. The analogous estimate in the middle panel shows that this

is also the case for the population age 65 and older, who also seem willing to accept the

higher risk of some counties in order to enjoy the local attributes, such as proximity to the

coast or to wooded areas. In contrast, the falling non-white population in high-risk relative

to low-risk counties reveals that the attributes found in high climate-risk counties are not

strong enough to attract this population, or that the average individual in this group cannot

afford to live in those counties.

To sum up, our analysis in this section highlights stark differences in the geographic

sorting of different socio-demographic groups. More specifically, the increasing population

agglomeration in high climate-risk counties appears to be largely driven by white, working-

age individuals. Retirement-age and (less affluent) non-white populations appear to be

retreating from counties with high climate risk.

This finding is in some sense contrary to that in Amornsiripanitch and Wylie (2023), who

find that residents in high-risk areas have lower household incomes than those in low-risk

areas. Nonetheless, their study is a reflection of the stock of residents in these areas while our

finding refers to the change in that stock. Thus, the presumption that low-income families

are trapped in high-risk areas may need some qualification.

9 Heterogeneity by climate hazard

This section starts by constructing hazard-specific risk categories, also based on average

annual frequencies, but using different thresholds than the composite index that account

for the low frequency for some natural hazards. Next, we will examine the conditional and

unconditional retreat hypotheses separately for each natural hazard.

There are reasons to suspect that local population dynamics will vary across different

natural hazards. For instance, the geographic scope of a natural hazard may be an important

aspect shaping residents’ adaptation (or the feasibility of resiliency investments). Namely,

while some natural hazards impact a whole county with similar intensity (e.g., hurricanes),

others are much more localized and affect only a small subset of the county (e.g., coastal

flooding). We will refer to the latter as micro-hazards and identify them in the data on the

basis of within-area variability. Importantly, individuals can easily adapt to micro-hazards

by simply relocating to nearby towns or neighborhoods with relatively lower climate risk,

while still enjoy certain elements that operate at higher geographic levels (such as a strong

labor market).
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9.1 Hazard-specific risk categories

Some climate hazards are very infrequent: for 6 of the hazards in our data, the 25th percentile

of annual frequency is zero.35 Thus, the definitions for our categories of low, medium and

high risk need to account for this feature of the data. Accordingly, in our definition the

Low risk category includes locations (counties or Census tracts) with zero or below the 10th

percentile of annual frequency. The medium (Mid) risk category includes locations with an

annual frequency higher than the 10th percentile (hence, strictly positive) but lower than

the 50th percentile conditional on positive annual frequency. Naturally, the High category

contains the locations with an annual frequency above the conditional 50th percentile.

Table 9 reports the resulting classification (for counties).36 As can be seen in column 2,

avalanches, coastal flooding, and to a lesser extent, cold waves, hurricanes and heat waves are

infrequent hazards. The low frequency partly reflects that some locations have zero exposure

to that particular hazard, such as counties in the interior with zero risk of coastal flooding.

Our hazard-specific partition of counties into low, medium and high-risk categories can be

seen in columns 3-5. Infrequent hazards, such as coastal flooding, entail a high concentration

of counties in the low-risk category (88% of counties). In contrast, widespread events, such

as lightning, entail a higher concentration of counties in the medium and high-risk categories.

9.2 Unconditional retreat

We now turn to the estimation of (average decadal) population growth gaps on the basis of

climate risk based on Equation 3, but this time we consider each natural hazard separately.

The results are collected in the top panel of Table 10. Column 1 reproduces the estimates

using the composite index, which show substantially higher population growth in high-risk

counties than in low-risk ones over the period 1990-2020 (by about 2.9 log points per decade).

The following columns consider all major climate hazards separately (defined as those with

the highest weights in the composite index). Clearly, population growth is significantly

higher in high-risk counties (relative to low-risk ones) for droughts, hurricanes, wildfires,

coastal flooding and, to a lesser extent, riverine flooding. The only exceptions to this pattern

are counties with high risk of tornadoes and counties with high risk of hail. In sum, we reject

the unconditional retreat hypothesis for 5 out of the 7 main natural hazards.

35In fact for 3 hazards (avalanches, coastal flooding and tsunamis) even the 75th percentile is zero.
36As reported in column 6, just 7 hazards account for 94% of the economic cost of natural hazards in the

U.S., which determines the weights in our composite risk index (defined as the importance-weighted annual
frequency for each hazard). In decreasing order of importance (and weights in parentheses): drought (0.21),
hurricane (0.21), riverine flooding (0.18), tornados (0.13), wildfires (0.10), hail (0.06) and coastal flooding
(0.05).
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These estimates also shed light on why the estimated excess population growth exhibited

by high-risk counties is substantially lower when we rely on the (unweighted) composite risk

index that assigns equal weights to all natural hazards (subsubsection 5.1.3). Among the 7

natural hazards with the highest weight in our composite index (which account for 94% of

all economic damage nationwide), for only 2 hazards with relatively low weights (tornados

and hail) do we estimate negative excess growth for high-risk counties. These two hazards

play an outsized role in the unweighted composite index, relative to the version that weighs

each hazard on the basis of its nationwide economic damage.

9.3 Growth relative to the commuting zone

We now turn to the estimation of models for county population growth net of the average for

the commuting zone. By construction, this comparison neutralizes the effect of pull factors

that operate at the level of commuting zones (or a higher geographical level).

The estimates are reported in the middle panel of Table 10. Two main observations

stand out. First, we do not estimate any excess population growth in counties at high risk

of drought, hurricane and hail. Furthermore, the sign for the coefficient for coastal flooding

turns negative and the point estimate implies a (marginally statistically significant) 0.4 log

point lower decadal population growth in high-risk counties relative to low-risk counties

within the same commuting zone.

The vanishing of the excess population growth in counties with high risk of droughts,

hurricanes and coastal flooding when using the corresponding commuting zones as benchmark

indicates that the pull factors that drive population growth operate at the geographic level of

commuting-zones (or higher), or that the scope of these natural hazards encompasses entire

commuting zones. This could plausibly be the case for droughts and hurricanes, but does

not explain the reversal of the sign for coastal flooding, which is much more geographically

localized.

9.4 Tract-level data and growth relative to the county

We now turn to our tract-level dataset to examine sub-county population dynamics by natu-

ral hazard, which will allow us to investigate if micro-retreat is taking place. In other words,

it will reveal whether sub-county population shifts exacerbate or mitigate the increasing

exposure of high-risk counties.

The bottom panel in Table 10 presents the estimates for population growth net of the

county average. Two results stand out. First, we find a negative (and statistically significant

at a 10% level) coefficient for the high-risk dummy variable for coastal flooding risk. Namely,
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over the last 3 decades, these tracts have grown less than other tracts within the same

county (by about 0.8 log points per decade). Secondly, this is not the case for any of the

other natural hazards: on the basis of within-county comparisons, tracts at high risk of

droughts or hurricanes grew at the same rate as low-risk tracts, and tracts with high-risk of

riverine flooding, tornadoes, wildfires or hail grew more than tracts with low risk levels for

those specific hazards.37

In sum, for most natural hazards, high-risk counties have grown disproportionately more

than low-risk counties (with the exceptions of counties with high risk of tornados or hail).

When we turn to within-county, cross-tract comparisons, we find that these agglomeration

dynamics are reinforced in counties with high risk of riverine flooding, tornadoes, wildfires

and hail. In contrast, we do not find within-county variation in population growth on the

basis of risk of drought or hurricanes. In the case of coastal flooding risk, our estimates

suggest that high-risk tracts have grown less than low-risk tracts within the county.

9.5 The micro-retreat hypothesis

What explains the differential sub-county population dynamics in areas exposed to coastal

flooding relative to other types of climate risk? We hypothesize that residents of areas with

high risk of coastal flooding can reduce their risk exposure by relocating within the same

county, which allows them to continue enjoying many of the same attributes. In contrast,

this type of micro-retreat may not be feasible for residents exposed to other natural hazards.

The first step toward investigating the micro-retreat hypothesis is to determine which

natural hazards entail high variation in exposure across tracts within a given county. Ad-

ditionally, this variation should be easily predictable; otherwise, county residents cannot

determine which low-risk tracts can provide “insurance” against that specific climate risk.

To measure the degree of cross-tract, within-county variability of each natural hazard,

we follow the following 3 steps. For each county c, we first compute the mean and standard

deviation (across tracts) of the average annual frequency of the climactic event, which we

denote by (mc, sc). We then compute the coefficient of variation specific to each county c as

CoVc = sc/mc. Last, we average CoVc across all counties (with mc > 0). For instance, we

expect high variability in exposure to coastal flooding within coastal commuting zones or

counties, but much lower variability in exposure to hurricanes, which tend to impact whole

counties to a similar degree (and even commuting zones).

The resulting cross-tract variability measures are reported in Table 11, which considers

the natural hazards used in the construction of our composite climate risk index. Column 1

37Estimates for additional model using the tract-level dataset are reported in Table D.2.
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reports the share of commuting zones where all tracts have zero risk (for the corresponding

natural hazard). We observe that 87% of the commuting zones have zero exposure to coastal

flooding (followed by 35% with zero risk of hurricanes), reflecting that only coastal areas

are exposed to coastal flooding. In contrast, all commuting zones are exposed to tornados,

wildfires, hail and strong winds. Similarly, column 2 reports on the share of counties that

have no exposure to the corresponding natural hazard, meaning that all tracts in the county

have zero risk. Both qualitatively and quantitatively, the results resemble column 1: 88%

of counties are not exposed to coastal flooding, and 27% have no exposure to hurricanes.

Clearly, only coastal counties (mostly in the Northeast and South of the country) are exposed

to coastal flooding, and while hurricanes have a much larger geographical scope, large areas

in the interior and north of the country have zero exposure. We turn next to column

3, which reports the coefficient of within-county variation for each of the natural hazards,

which averages only the counties with positive exposure to the corresponding natural hazard.

Two natural hazards stand out in terms of their within-county variability: coastal flooding

(CoV = 111) and tornados (CoV = 103).

It is worth noting that there is a fundamental difference in the nature of the within-county

variability for coastal flooding and for tornados. For coastal flooding, the high variability

reflects the large disparity in risk for tracts on the coast and tracts in the interior of the same

county. Thus, it is fairly obvious to any county resident which tracts provide “insurance”

against the risk of coastal flooding. In contrast, the within-county variability of tornados

has to do with the randomness of their path, which implies that no tracts in the county

can be considered entirely risk-free. As a result, micro-retreat is only an effective way to

mitigate climate risk, without losing access to county-level attributes, in the case of risk of

coastal flooding. More colloquially, residents of counties with high risk of coastal flooding

can ‘have it both ways’, that is, they can reside in low-risk tracts within attractive counties.

It is worth noting that this finding is consistent with the results in Lin et al. (2021). Their

analysis of residential construction in U.S. coastal areas shows that building density peaks

at 2.5 km from the coast (and declines asymmetrically, falling more rapidly as we approach

the waterfront).

In sum, the feasibility of micro-retreat is a plausible explanation for the pattern of esti-

mates in the bottom panel of Table 10, which entails that county-level estimates of climate

risk over-estimate the actual risk in areas at high risk of coastal flooding, but under-estimate

risk in locations highly exposed to some of the other natural hazards (such as riverine flood-

ing, tornados or wildfire).
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10 Conclusions

Our paper introduces a new composite climate-risk index designed to analyze the relationship

between current climate risk and local population dynamics. The composite index has both

high geographic granularity and includes all major natural hazards. While it is closely

related to FEMA’s National Risk Index (or NRI), cross-county (or cross-tract) variation in

our composite index stems exclusively from differences in the average annual frequency of

each hazard and is not mechanically related to local population levels.

On the basis of our climate risk index, we find that population is not retreating from the

average county with high climate risk. In fact, since 1990, we find that high-risk counties

have grown more than low-risk ones (by about 2.9 log points per decade), although there

are signs pointing to a recent decline in the excess population growth of high-risk counties.

Importantly, the disproportionate growth of high-risk counties remains even after netting

out the average growth in the commuting zone: over the past three decades, high-risk counties

grew about 0.5 percent more, per decade, than low-risk counties within the same commuting

zone. This finding also implies that the factors that attract people to high climate-risk areas

operate at more narrow (i.e., county or sub-county) geographical levels. Further, we show

that the increasing population agglomeration in high climate-risk counties appears to be

largely driven by white, working-age individuals. We also analyzed population dynamics

at a more granular geographical level and found that high-risk Census tracts have typically

grown more than low-risk tracts within the same county. This finding indicates that the

county-level analysis underestimates the degree of population agglomeration in high-risk

areas.

We also conducted heterogeneity analysis along various dimensions. First, we investi-

gated the role of urbanization in mediating the relationship between climate risk and local

population growth. We did not find increasing agglomeration in high-risk areas with low res-

idential capital (in terms of scale, median value and density). In contrast, we clearly rejected

the retreat hypothesis in more urbanized areas. Our finding of increasing agglomeration in

high-risk, high-urbanization areas implies that the conclusions in Lin et al. (2021) extend to

natural hazards other than coastal flooding. Our analysis is too descriptive in nature to fully

identify the factors responsible for shifting population toward high-risk, high-urbanization

local areas. However, our findings suggest that these areas may be highly productive and

offer high wages. As a result, people gravitate toward those areas despite the high exposure

to disruptive climate shocks. In a way, suffering damaging climate shocks once in a while is

viewed as “the cost of doing business” in those locations. In a recent study, Pang and Sun

(2022) provide a dynamic model with endogenous migration across multiple locations (across
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the Texas coastline) that differ by flood risk and productivity. The previous interpretation

of our findings is consistent with the equilibrium dynamics in his setup.38

Our analysis has also uncovered important regional heterogeneity. In the South and

Northeast of the country, high-risk countries have consistently grown more than low-risk

counties due to net migration into high-risk counties. In contrast, in the Midwest and West,

over the last 3 decades, net migration flows are responsible for lowering the population

growth in high-risk counties below the rate of growth of low-risk counties.

Last, we analyzed whether our results vary by hazard type. For most individual hazards,

we find that population growth is higher in counties with high climate risk than in counties

with low risk (except for tornados and hail). Thus, the unconditional retreat hypothesis is

rejected for most natural hazards. On the other hand, within commuting-zone comparisons

reveal that excess population growth in high-risk counties disappears for droughts, hurri-

canes, hail, and coastal flooding. This implies that commuting-zone pull factors, such as

strong labor markets, may explain the vigorous population growth in areas with high expo-

sure to these types of climate risk.39 We also find evidence of micro-retreat, namely lower

population growth in high-risk Census tracts (relative to the corresponding county), in the

case of coastal flooding risk, but not for the other natural hazards. We argue that this might

be because counties with high-coastal risk are characterized by predictable, highly localized

risk. As a result, residents can ‘have it all’, that is, they can reside in low-risk tracts within

attractive counties.

All in all, our findings show increasing agglomeration in high climate-risk areas in the

South and Northeast of the United States, likely driven by robust local economies and

possibly reinforced by inertia in public investments in densely population risky locations

(Balboni (2021)). However, our analysis also tentatively suggests that the excess population

growth in high-risk counties may be shrinking in the 2010s (Figure 8), largely driven by

intense out-migration from high-risk counties in the West. Perhaps the recent increase in

insurance costs (and the exit of some of the major insurance providers in California) may

have begun reshaping the mobility decisions of residents in some parts of the country.

38Our findings are also in line with the implications of the modeling framework in Rafols (2023), which
evaluates the implications of projected warming temperatures and flood risk in the Philippines. In her model,
individuals tend to migrate to locations with high consumption amenities and high productivity.

39Desmet et al. (2021) analyze the costs of sea-level rise using a model where individuals and firms make
location decisions taking into account both agglomeration economies and mobility costs. In their setting,
firm-level spillovers slow down retreat from high-risk locations.
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Figures and Tables

Figure 1: The costliest climate events between 1960 and 2020
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Notes: The figure plots the costliest climate event, by type of hazard, in each year. Specifically,
each year we identify the most damaging event for each of the 6 natural hazards considered. We
then color-code it on the basis of its inflation-adjusted monetary cost. Green and yellow squares
correspond to quintiles 1 and 2, respectively, of the all-time distribution of (inflation-adjusted)
damage costs for each natural hazard. Orange and red squares correspond to quintiles 4 and 5 of
the same distribution. The data source is SHELDUS (CEMHS (2022)).
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Figure 2: Nationwide trends. All regions pooled
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Notes: Population trends in United States. Top-left figure is in millions of individuals, top-right
figure in logs, bottom-left figure is the decade-over-decade change in log population and the bottom-
right figure is the average decadal growth between the year indicated in the horizontal axis and
year 2020.
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Figure 3: National trends. By climate risk (weighted composite)
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the horizontal axis and 10 years later, and the bottom-right figure is the average decadal growth
between the year indicated in the horizontal axis and year 2020.
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Figure 4: Composite risk index (ZW) at county level

Notes: Map plots composite risk measure for each county. Map separates counties by Census
region (Northeast, Midwest, South and West). Heat-map shows counties with more risk in red and
counties with lower risk in purple.
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Figure 5: Risk for individual hazards at county level
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Notes: Risk score for each hazard at the county level, based on the standardized average annual
frequency of each hazard in each couty. We only include hazards who have a positive weight in
our composite measure. Order of hazards in this figure is determined by the hazard’s weight in our
composite measure. Heat-map shows counties with more risk in red and counties with lower risk
in purple. 38



Figure 6: Population growth and composite climate risk. Flexible functional form
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Notes: Each point is a county and the horizontal axis correspond to our main composite climate
risk index (weighted average of annual frequency of each natural hazard). The top figure plots the
average decadal population growth in the period 1990-2020 for each county. The bottom figure
is analogous but the data for each county have been demeaned using the average value in the
corresponding the commuting zone. Each red square is the local linear regression estimate for the
corresponding bin. The shaded band depicts the 95% confidence interval.
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Figure 7: Evolution population growth differential. County population growth (top); de-
meaned by CZ average growth (bottom)
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Figure 8: Population growth gaps, inclusive and exclusive of net migration.
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Notes: County-level population estimates (overall or absent net migration) are from Egan-
Robertson et al. (2023) and exclude population age 75 or older. The solid (blue) line reports
point estimates of the gap in average decadal change in the log of total population in high-risk
counties relative to low-risk counties between the corresponding initial year and final year 2020.
The dashed (red) line reports analogous estimates but for the change in log population absent net
migration into the county from the initial year onward.
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Table 1: Nationwide Trends

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Med-Low High-Low High-Low High-Low

Demographic All All All Age65plus Nonwhites All All Age65plus Nonwhites
year Pop(Mn) 100*Dln 100*AvDln 100*AvDln 100*AvDln 100*AvDln 100*AvDln 100*AvDln 100*AvDln

1900 75.3 19.7 12.2 1.7 6.3
1910 91.7 13.9 11.6 2.2 6.2
1920 105.4 14.9 11.3 2.4 6.3
1930 122.3 6.9 10.9 2.3 5.7
1940 131.1 13.3 11.4 2.5 6.1
1950 149.7 16.7 11.2 2.6 5.7
1960 176.9 9.6 10.3 2.6 4.9
1970 194.7 15.0 10.4 21.3 23.3 2.7 5.9 4.2 6.3
1980 226.2 9.2 9.2 19.2 21.2 3.1 5.0 2.3 3.2
1990 248.0 12.3 9.3 19.2 20.7 2.8 3.7 2.4 1.5
2000 280.3 9.2 7.8 23.0 18.5 2.7 3.8 3.1 1.8
2010 307.2 6.3 6.3 31.8 16.0 3.3 4.7 4.8 2.5
2020 327.3
Average
1900-2020 187.4 12.2
1970-2020 264.0 10.4

Notes: Column 1 is the population in millions, obtained by aggregating the county data. Column 2 reports the decadal change in log
population (times 100), where each value corresponds to the following 10 years. Columns 3-10 report the average decadal growth (times
100) between the corresponding initial year and year 2020. Columns 6-9 net out the average growth rate for the low-risk category.
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Table 2: Descriptive Statistics (counties and tracts)

Variable Obs Mean Std. Dev. Min Max
Counties
(Dln 2020-2010) / 1 3,107 0.006 0.089 -0.401 0.866
(Dln 2020-2000) / 2 3,106 0.025 0.094 -0.308 0.512
(Dln 2020-1990) / 3 3,106 0.048 0.100 -0.242 0.589
(Dln 2020-1980) / 4 3,104 0.043 0.105 -0.270 0.661
(Dln 2020-1970) / 5 3,091 0.062 0.110 -0.219 0.747
(Dln 2020-1960) / 6 3,088 0.058 0.112 -0.240 0.719
(Dln 2020-1950) / 7 3,084 0.055 0.113 -0.252 0.662
(Dln 2020-1940) / 8 3,080 0.051 0.112 -0.241 0.619
(Dln 2020-1930) / 9 3,080 0.051 0.107 -0.215 0.623
(Dln 2020-1920) / 10 3,049 0.052 0.104 -0.189 0.617
FEMA NRI Risk Score 3,104 10.628 6.759 0.000 100.000
Z Risk Composite 3,114 0.000 0.257 -0.844 1.757
ZW Risk Composite 3,114 0.000 0.404 -0.917 2.031
Low ZW Risk 3,114 0.250 0.433 0.000 1.000
Med ZW Risk 3,114 0.500 0.500 0.000 1.000
High ZW Risk 3,114 0.250 0.433 0.000 1.000

Tracts
(Dln 2020-2010) / 1 58,458 0.048 0.178 -3.924 4.369
(Dln 2020-2000) / 2 58,440 0.067 0.250 -2.853 8.041
(Dln 2020-1990) / 3 58,438 0.099 0.244 -2.111 6.363
(Dln 2020-1980) / 4 46,188 0.141 0.320 -1.637 4.939
(Dln 2020-1970) / 5 40,767 0.164 0.330 -1.336 4.564
FEMA NRI Risk Score 58,488 16.177 6.935 0.000 87.087
Z Risk Composite 58,488 0.000 0.232 -0.696 6.077
ZW Risk Composite 58,488 0.000 0.418 -0.764 4.766
Low ZW Risk 58,488 0.250 0.433 0.000 1.000
Med ZW Risk 58,488 0.500 0.500 0.000 1.000
High ZW Risk 58,488 0.250 0.433 0.000 1.000

Notes: Unweighted summary statistics. Z risk score is based on FEMA’s annual frequency of
climate events. We standardize the frequency of each event and compute a simple average (Z) and
a weighted average (ZW ). We define the 3 categories of composite climate risk (low, medium and
high) as follows: below the 25th percentile, between 25th and 75th percentiles, or above the 75th
percentile, respectively.
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Table 3: Estimates average population growth by composite climate risk

Period 1990-2020 (1) (2) (3) (4) (5) (6)
Climate index NRI ZW ZW ZW ZW ZW
Sample cty All All All All HM CZ All
AvDlnPop net State net CZ net CZ FE CZ

HighRisk 0.071*** 0.029*** 0.010 0.005** 0.007* 0.023***
[0.008] [0.008] [0.007] [0.002] [0.004] [0.007]

MedRisk 0.023*** 0.006 0.002 -0.001 0.001 0.003
[0.005] [0.006] [0.005] [0.002] [0.004] [0.005]

Constant 0.041*** 0.038*** -0.004 -0.001 -0.002 0.041***
[0.002] [0.005] [0.004] [0.001] [0.003] [0.004]

Observations 3,103 3,106 3,106 3,106 2,584 3,103
R-squared 0.027 0.013 0.002 0.002 0.002 0.006
Mean Dep. Var. 0.048 0.048 0 0 0 0.048

Notes: The dependent variable is the change in the log of population between 2020 and 1990,
divided by 3 (decades). In column 1 the measure of climate risk is FEMA’s NRI. In columns 2-6,
climate risk is measured using our index based on the (weighted) aggregation of the standardized
annual frequencies of all hazards, where the weights are based on the monetary value of the nation-
wide damage due to each hazard. The dependent variable in columns 3 and 4 nets out the average
population growth in the State and Commuting zone, respectively. Column 5 restricts the sample
to counties in commuting zones with above average proportion of medium or high climate-risk
counties. In column 6, the dependent variable is the (gross) change in the log of population but
the model includes (722) commuting-zone fixed effects. In all models the omitted category is low
risk. Standard errors are clustered at the level of commuting zones. P-values: *** p < 0.01, **
p < 0.05, * p < 0.1.
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Table 4: Estimates population growth by composite climate risk. Tracts Analysis

1990-2020 (1) (2) (3) (4) (5) (6)
Tracts All All All All HM Cty FE Cty
AvDlnPop net State net CZ net County net County

HighRisk 0.090*** 0.016 0.017*** 0.015*** 0.031*** 0.071***
[0.023] [0.011] [0.005] [0.003] [0.006] [0.005]

MedRisk 0.028 0.015* 0.011* 0.008** 0.023*** 0.039***
[0.018] [0.009] [0.006] [0.004] [0.007] [0.004]

Constant 0.062*** -0.011* -0.010** -0.008*** -0.023*** 0.061***
[0.019] [0.006] [0.004] [0.002] [0.006] [0.003]

Observations 57,931 57,931 57,931 57,931 47,291 58,438
R-squared 0.018 0.001 0.001 0.001 0.001 0.003
Number FE 2,821
Mean Dep.Var. 0.099 0 0 0 0 0.099

Notes: Dependent variable is the average decadal change in the log of population between 1990
and 2020. In all columns the climate risk categories are defined on the basis of the weighted
composite index. Column 5 restricts the estimation to counties with an above-average proportion
of medium-risk or high-risk tracts. In all models the omitted category is low risk. Standard errors
clustered by commuting zone in all columns, except column 6 where clustering is at the county
level. P-values: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 5: Heterogeneity by residential capital stock

(1) (2) (3) (4) (5) (6) (7)
Het by ValueH ValueH ValueH MedValH MedValH ValH/Area ValH/Area
Net AvGPop net CZ net CZ net CZ net CZ
Since 1990 1990 2000 1990 1990 1990 1990

Constant 0.006 -0.010*** -0.011*** -0.018*** -0.010*** 0.009 -0.008***
[0.005] [0.002] [0.002] [0.004] [0.002] [0.006] [0.002]

Hval 0.059*** 0.017*** 0.019*** 0.095*** 0.016*** 0.051*** 0.013***
[0.008] [0.003] [0.003] [0.008] [0.003] [0.008] [0.003]

HighRisk -0.003 -0.004 -0.004 0.027*** -0.003 0.009 -0.002
[0.008] [0.003] [0.003] [0.007] [0.003] [0.009] [0.003]

MedRisk -0.000 -0.004 -0.005* 0.011** -0.006** -0.004 -0.006**
[0.006] [0.003] [0.003] [0.005] [0.003] [0.007] [0.003]

Hval × HighRisk 0.058*** 0.017*** 0.018*** 0.030** 0.021*** 0.052*** 0.018***
[0.012] [0.006] [0.006] [0.012] [0.006] [0.013] [0.006]

Hval × MedRisk 0.024** 0.010** 0.012*** 0.014 0.015*** 0.029*** 0.013***
[0.010] [0.004] [0.004] [0.010] [0.004] [0.010] [0.005]

Observations 3,106 3,106 3,106 3,106 3,106 3,106 3,106

R-squared 0.203 0.054 0.069 0.314 0.064 0.176 0.045
Mean DepVar 0.048 0.048 0.025 0.048 0.048 0.048 0.048

Notes: The header of each column defines the variable used to partition counties as being above
or below the median value for that variable (value of housing stock, median value of residential
properties, or value of the housing stock over area of the county). The data for housing values is
from the 2000 Census (summary tables). Dependent variable is the change in the log of population
between 2020 and 1990 (except for column 3 where the change is relative to year 2000) divided by
the number of decades between the beginning and endpoint of the time interval. In all columns
the climate risk categories are defined on the basis of the weighted composite index defined at
the county level. In all models the omitted category is low risk. Standard errors clustered by
commuting zone. P-values: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 6: Regional heterogeneity in climate risk and population change (1990-2020)

US/Region ∆Pop 1990-2020 Composite risk Drought Hurricane Riverine flooding Tornado Wildfire Hail Coastal flooding
USA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Negative -0.04 0.00 -0.22 -0.10 0.21 -0.07 0.24 -0.21
Positive 0.02 0.00 0.11 0.05 -0.10 0.04 -0.11 0.10

Northeast -0.14 -0.86 0.43 0.68 -0.69 -0.46 -0.68 0.88
Negative -0.29 -0.90 -0.05 0.51 -0.61 -0.48 -0.69 -0.03
Positive 0.02 -0.84 0.73 0.79 -0.74 -0.45 -0.68 1.43

South 0.15 0.17 0.47 -0.08 0.08 0.07 0.09 0.13
Negative 0.10 0.26 0.17 -0.23 0.2 0.28 0.16 -0.05
Positive 0.17 0.14 0.58 -0.02 0.04 0 0.07 0.19

Midwest -0.16 -0.42 -0.49 0.07 0.20 -0.37 0.47 -0.34
Negative -0.11 -0.22 -0.51 -0.05 0.39 -0.36 0.59 -0.34
Positive -0.2 -0.61 -0.48 0.18 0.03 -0.38 0.36 -0.34

West -0.04 0.96 -0.58 -0.25 -0.39 0.94 -1.12 -0.02
Negative -0.01 1.37 -0.58 -0.58 -0.12 0.60 -0.87 -0.34
Positive -0.04 0.89 -0.58 -0.19 -0.43 1.01 -1.17 0.04

Notes: For each region in the table (USA as a whole, Northeast, Midwest, South and West), we report average climate risk (using the
composite or hard-specific measures) for the whole region (first row of each panel), the counties in the region with negative net migration
(second row) and the counties in the region with positive net migration (third row). Counties with negative (positive) net migration lost
(gained) population between 1990 and 2020. We focus on the six individual hazards with the highest weights in our composite index.
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Table 7: Regional heterogeneity. Avg. decadal county population growth 1990-2020

(1) (2) (3) (4) (5)
Since 1990
Region All NE MW South West

avGPop

HighRisk 0.029*** 0.037*** -0.030** 0.049*** -0.014
[0.008] [0.008] [0.012] [0.014] [0.017]

MedRisk 0.006 0.015* -0.011 0.027** -0.022*
[0.006] [0.008] [0.008] [0.012] [0.013]

Constant 0.038*** 0.006 0.019*** 0.034*** 0.113***
[0.005] [0.007] [0.006] [0.011] [0.011]

Observations 3,106 217 1,054 1,421 411

Notes: The dependent variable in the top panel is the average decadal change in the log of
population between 2020 and 1990. Column 1 pools all counties. Columns 2-5 restrict samples to
the corresponding Census region. In all models the omitted category is low risk. Standard errors
are clustered at the level of commuting zones. P-values: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 8: Demographic heterogeneity. Avg. decadal population growth 1990-2020. County
analysis

(1) (2) (3) (4) (5) (6)
Region All NE MW South West All
Demean CZ

Pop

HighRisk 0.029*** 0.037*** -0.030** 0.049*** -0.014 0.005**
[0.008] [0.008] [0.012] [0.014] [0.017] [0.002]

MedRisk 0.006 0.015* -0.011 0.027** -0.022* -0.001
[0.006] [0.008] [0.008] [0.012] [0.013] [0.002]

Constant 0.038*** 0.006 0.019*** 0.034*** 0.113*** -0.001
[0.005] [0.007] [0.006] [0.011] [0.011] [0.001]

Observations 3,106 217 1,054 1,421 411 3,106
R-squared 0.013 0.079 0.014 0.021 0.008 0.002

Age≥ 65

HighRisk 0.011 -0.014 -0.066*** 0.040** -0.029 0.005*
[0.011] [0.012] [0.016] [0.017] [0.026] [0.003]

MedRisk -0.005 0.006 -0.047*** 0.033** -0.006 -0.000
[0.009] [0.014] [0.012] [0.016] [0.021] [0.003]

Constant 0.156*** 0.149*** 0.124*** 0.145*** 0.266*** -0.001
[0.007] [0.012] [0.010] [0.013] [0.018] [0.002]

Non-whites

HighRisk -0.101*** -0.131*** 0.049 -0.031 -0.018 -0.030***
[0.022] [0.048] [0.040] [0.040] [0.044] [0.006]

MedRisk -0.075*** -0.030 0.031 -0.075* -0.023 -0.025***
[0.019] [0.043] [0.027] [0.038] [0.029] [0.007]

Constant 0.419*** 0.385*** 0.474*** 0.282*** 0.462*** 0.020***
[0.016] [0.039] [0.022] [0.036] [0.025] [0.005]

Notes: The dependent variable in the top panel is the average decadal change in the log of pop-
ulation between 2020 and 1990, except in the last column where the variable has been demeaned
using the commuting-zone average. Analogously, the middle and bottom panels refer to the av-
erage decadal change in the log of the population age 65 or older and the non-white population,
respectively. Columns 1 and 6 pool all counties in the United States. Columns 2-5 restrict samples
to the counties within the corresponding Census region. In all models the omitted category is low
risk. Standard errors are clustered at the level of commuting zones. P-values: *** p < 0.01, **
p < 0.05, * p < 0.1.
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Table 9: Risk categories individual hazards (counties)

Hazard Counties Freq. Zero Freq. Low Freq. Med. Freq. High Weights
Composite NRI 3,106 0.79 0.17 0.05
Z Composite 3,116 0.25 0.50 0.25
ZW Composite 3,116 0.25 0.50 0.25
Drought 3,116 0.10 0.10 0.45 0.45 0.21
Hurricane 3,116 0.29 0.29 0.36 0.36 0.21
Riverine flooding 3,116 0.01 0.11 0.40 0.49 0.18
Tornados 3,116 0.00 0.10 0.40 0.50 0.13
Wildfires 3,116 0.00 0.10 0.40 0.50 0.10
Hail 3,116 0.00 0.10 0.40 0.50 0.06
Coastal flooding 3,116 0.88 0.88 0.06 0.06 0.05
Strong winds 3,116 0.00 0.10 0.40 0.50 0.04
Ice storm 3,116 0.04 0.12 0.40 0.48 0.01
Winter weather 3,116 0.03 0.10 0.43 0.47 0.01
Avalanche 3,116 0.93 0.93 0.04 0.03 0.00
Cold wave 3,116 0.37 0.37 0.32 0.31 0.00
Heat wave 3,116 0.26 0.26 0.38 0.35 0.00
Landslide 3,116 0.00 0.81 0.10 0.10 0.00
Lightning 3,116 0.00 0.10 0.40 0.50 0.00
Tsunamis 3,116 0.99 0.99 0.01 0.01 0.00

Notes: Specifically, we define the Low risk category to include locations (counties or Census tracts)
with zero or below the 10th percentile of annual frequency. The medium (Mid) risk category
includes locations with annual frequency higher than the 10th percentile (hence, strictly positive)
but lower than the 50th percentile conditional on positive annual frequency. Naturally, the High
category contains the locations with annual frequency above the conditional 50th percentile. The
last column reports the weights given to each hazard in our composite risk index, computed on the
basis of each hazard’s share in the expected annual loss at the national level (adding the monetary
value of buildings and people). Adding the weights in the last column results in a number lower
than one due to rounding.
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Table 10: Heterogeneity by climate hazard

AvGpop (1) (2) (3) (4) (5) (6) (7) (8)
30 year ZW Dght Hrcn RFld Tornds Wildfir Hail CFld

Counties
AvGPop

HighRisk 0.029*** 0.043*** 0.024*** 0.012 -0.028*** 0.050*** -0.074*** 0.031***
[0.008] [0.008] [0.008] [0.009] [0.009] [0.008] [0.009] [0.010]

MedRisk 0.006 0.016** 0.004 0.002 0.006 0.023*** -0.068*** 0.063***
[0.006] [0.007] [0.008] [0.008] [0.009] [0.008] [0.009] [0.011]

Constant 0.038*** 0.022*** 0.038*** 0.042*** 0.060*** 0.014** 0.113*** 0.043***
[0.005] [0.006] [0.006] [0.008] [0.009] [0.007] [0.007] [0.004]

Obs. 3,106 3,106 3,106 3,106 3,106 3,106 3,106 3,106

Counties
net CZ

HighRisk 0.005** 0.000 -0.001 0.013*** 0.008** 0.006*** 0.001 -0.004*
[0.002] [0.002] [0.001] [0.003] [0.003] [0.002] [0.001] [0.002]

MedRisk -0.001 -0.001 0.001 0.006* 0.009** 0.005* -0.001 -0.002
[0.002] [0.002] [0.001] [0.003] [0.004] [0.003] [0.001] [0.003]

Obs. 3,106 3,106 3,106 3,106 3,106 3,106 3,106 3,106

Tracts
net County

HighRisk 0.015*** 0.000 0.000 0.030*** 0.030*** 0.062*** 0.003* -0.008*
[0.003] [0.001] [0.000] [0.006] [0.005] [0.013] [0.001] [0.005]

MedRisk 0.008** -0.000 -0.000 0.025*** -0.013*** 0.026** -0.001 0.008**
[0.004] [0.001] [0.000] [0.005] [0.005] [0.012] [0.002] [0.003]

Obs. 57,931 57,931 57,931 57,931 57,931 57,931 57,931 57,931

Notes: The header of each column labels the natural hazard considered. The dependent variable
is the average decadal change in the log of population between 1990 and 2020. The top and middle
panels use the county-level dataset and the bottom panel uses the tract-level dataset. In all models
the omitted category is low risk. Standard errors clustered by commuting zone. P-values: ***
p < 0.01, ** p < 0.05, * p < 0.1.
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Table 11: Within tract and county variability by natural hazard

Commuting zones Counties
(1) (2) (3)

Share of CZ where Share of counties where CoV
all tracts have 0 risk all tracts have 0 risk (counties with mean> 0)

Composite NRI 0.00 0.00 16.5
Composite (unweighted) 0.00 0.00 620.6
Composite 0.00 0.00 497.8

Drought 0.07 0.11 26.1
Hurricane 0.35 0.27 9.5
Riverine flooding 0.06 0.01 14.4
Tornados 0.00 0.00 103.2
Wildfires 0.00 0.00 66.4
Hail 0.00 0.00 6.1
Coastal flooding 0.87 0.88 111.2
Strong winds 0.00 0.00 7.1
Ice storm 0.03 0.03 14.0
Winter weather 0.02 0.02 6.5

Notes: These calculations are based on the tract-level dataset. The first (second) column computes
the share of commuting zones (counties) for which all tracts have zero risk for the corresponding
natural hazard. The third column reports the within-county dispersion of each hazard’s risk.
Specifically, we compute the coefficient of variation (CoV ) for each county, based on the county-
specific standard deviation and mean of the average annual frequency, and then average across
all counties with positive mean average annual frequency. The table only includes hazards with
positive weight in our composite index.
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Appendix

A Adjustments to county population dataset

Our main dataset is the Surveillance, Epidemiology, and End Results Program (SEER)
provided by the National Cancer Institute. To address county boundary changes, we make
the following adjustments:

1. Alaska and Hawaii are dropped from the dataset due to difficulties in linking county-
level data over time.

2. We drop two groupings of counties (with a FIPS code) that were only used in the 1970
Census: 36910 - New York City and 51918 - Arling/Alexan/Fairfax/Falls Church.

3. We impute some county population values for a few counties using linear interpolation.
In particular, we use the 1960 and 1990 values to impute values for 1970 and 1980 for
counties with FIPS 35061, 51095, 51153, 51830. And we use the 1960 and 1980 value
to impute the missing 1970 value for counties with FIPS 51165, 51177, 51179, 51199,
51510, 51580, 51610, 51630, 51660, 51690.

4. For a few counties in Virginia (FIPS 51683, 51685, 51735 and 51830), the 1982 data is
available, but the 1980 is not. We use the 1982 value for 1980.

5. Last, we note that there are missing values for a few counties in Virginia that cannot be
interpolated because we lack values after 1970, but we keep them in the data. In any
case, they have small populations and they will not appear in the estimation sample.

6. More details on the construction of the SEER data can be found at:
https://seer.cancer.gov/seerstat/variables/countyattribs/ruralurban.html.

We obtained the county-level net migration data and the counterfactual population counts
in the absence of net migration from Egan-Robertson et al. (2023). The data contain es-
timates of net migration for the 1950s through the 2010s, and can be disaggregating by
gender and (5-year) age groups. The data are freely available and detailed documentation
is available online at https://netmigration.wisc.edu.

Net migration is estimated as a residual, by subtracting the observed population (in the
Census) at the end of the decade from the counterfactual (“expected”) population in the
absence of migration. In turn, the latter is estimated as follows: the actual population at
the beginning of the decade is aged forward, subtracting out deaths and adding in births,
to generate an ”expected population” at the end of the decade. The deaths and births are
obtained from vital statistics records. Next, we highlight a few important points regarding
this dataset:

1. At the time we downloaded the dataset (December 2023), the most updated version
of the net migration dataset is based on a preliminary version of the 2020 population
Census. As explained in Egan-Robertson et al. (2023), the authors of the net migration
dataset felt that the estimates for the 2010-2020 change in the population age 75 and
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older at the county level were unreliable and decided to eliminate this age group, which
introduces a discontinuity with the data for the previous decades. To address this issue
and maintain comparability, we removed this age group from all previous decades in
our analysis of the role of net migration.

2. We verified that the population counts in the SEER and Net Migration datasets were
consistent with each other. We were able to match exactly the values in 1970. For
other years, the values were fairly close, though not exactly the same. More details
can be provided upon request.

3. The county-to-county merge between the SEER and net migration datasets was suc-
cessful for over 99 percent of the counties. Practically all counties that did not merge
belonged to Hawaii, Alaska or Virginia, because we had dropped them already from
the SEER dataset (as explained earlier in this section).

B Adjustments to tract population data

Our Census-tract population data is the Longitudinal Tract Data Base Census Dataset
(LTBD) available at https://s4.ad.brown.edu/Projects/Diversity/Researcher/Bridging.htm.
It combines data from the decennial Census and the ACS, harmonized to 2010 Census tract
boundaries as described in Logan et al. (2014). The data covers the period 1950-2020.

We use the full-count (standard) dataset. The specific sources for the population counts
(and age and race variables) in our analysis are as follows: Total population for the 1970-
2020 period is obtained from 1970 Census (Count 2, 100% Data, T1), 1980 (STF1, 100%
Data, T1), 1990 (STF1, 100% Data, P1), 2000 (SF1, 100% Data, P1), 2010 (SF1, 100%
Data, P1), 2020 (PL94, 100% Data). While the geographic coverage of the LTDB is very
comprehensive, some tracts are missing for the following reasons:

1. In 1970, some areas did not belong to any Census tracts. They were only included in
block numbering areas. These areas were not included in the LTDB crosswalk.

2. Some tracts had zero population in one (or more) of the following years: 1970, 1980,
1990, 2000. These tracts were not omitted from the LTDB crosswalk to year-2010
tracts.

3. Some tracts were populated entirely by crews of vessels in one (or more) of the following
years: 1970, 1980, 1990. These tracts were not omitted from the LTDB crosswalk to
year-2010 tracts.

C FEMA data on Hazard Occurrence and Annual Fre-

quency

As part of their efforts to construct a National Risk Index, FEMA calculates the annual
probability with which a given natural hazard will occur for each Census block in the country.
This is done separately for each of the 18 natural hazards in order to adapt the methodology
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to the nature of each hazard. In most cases, the annualized block-level frequency is based on
the count of hazard occurrences in polygons that intersect the corresponding block. However,
for widespread hazards, like strong winds, hurricanes and ice storms, a 49km2 fishnet grid is
cast to count the number of hazard occurrences in each cell. Each Census block contained
in a cell gets assigned the same total number of occurrences for these widespread hazards.

What is considered a hazard occurrence differs across types of hazard. For some hazards,
the hazard occurrence count is based on the number of distinct events, whereas for other
hazard types, the hazard occurrence is based on the count of days a hazard has lasted.
Table D.3 collects the information for each hazard type and further below we discuss the
detailed calculation of occurrences and annual frequencies for the main natural hazards in
our composite index.

Once the tally of the total number of occurrences has been calculated for each hazard in
each Census block, it is straightforward to calculate the annualized frequency (AF):

AF =
Number of Recorded Hazard Occurrences

Recording Period Years
(C.1)

To produce annual frequencies at the Census tract or county levels, FEMA aggregates
the Census block values using area weights:

Census Tract AF =

∑
(Census Block AF× Area of Census Block)

Area of Census Tract
(C.2)

County AF =

∑
(Census Block AF× Area of Census Block)

Area of County
(C.3)

In what follows, we go into more detail in terms of the process for calculating the an-
nualized frequency for the hazards with the most significant weight in our Composite Risk
Index measure. The following five natural hazards make up 83% of the weighted Composite
risk index.

Hurricanes. The total aggregate number of Hurricane occurrences is taken from the
HURDAT2 dataset. This dataset registers all storms between 1851-2020 for counties along
the Atlantic ocean and between 1949-2020 for those along the Pacific ocean. Based on its
associated wind speeds, each registered Hurricane is assigned a category.40 Using tracking
data, a multi-segment line is created for each storm that tracks its geographical spatial
location as well as the storm category in each segment. These hurricane event paths are
then intersected with Census block polygons to help determine the number of hurricanes
suffered by each Census block.

The aggregate count of hurricanes is then divided by the total number of years for the
period over which the hurricanes occurred in order to calculate the annualized frequency for
each Census block. These values are then used to construct the area-weighted annualized
frequencies for both Census tracts and counties using Equations (C.2) and (C.3), respectively.

40These range from Topical Storms, which are the least violent, to Category 5 hurricanes which have wind
speeds above 157 mph.
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Droughts. The University of Nebraska-Lincoln National Mitigation Center (NDMC)
U.S. Drought Monitor provides historical data on the areas that have experienced droughts
on a weekly basis since year 2000. Each drought event is then categorized by the severity
of the event, with an indicator that goes from abnormally dry (D0) to exceptional drought
(D4). The sum of the annualized recorded Drought occurrences in a given Census tract,
in event-days, over the number of years in the recording period constitutes the annualized
frequency for a particular Census tract. These Census tract measures are then used to con-
struct the area-weighted annualized frequency values at the County level using Equation
refeq:AFcounty.

Riverine Flooding. FEMA relies on the NCEI Storm Events Database to record each
riverine flooding event for the period 1996-2019. The number of days in which riverine
flooding events occurred for counties (and Census tracts) that intersect a 1% annual chance
riverine floodplain (as determined by FEMA’s National Flood Insurance Program) are then
tallied. The annualized frequency for each county is the calculated as the number of riverine
flooding occurrences, in event-days, over the period of record. Census tracts simply inherit
the annualized frequency occurrence from the county they belong to.

Wildfires. FEMA use a series of raster datasets created by the US Forest Service Mis-
soula Fire Sciences Laboratory that assess both the burn probability (BP) and the conditional
fire intensity level (FIL) at different locations throughout the US. These raster files work in
parallel; each of them at a 270-meter grid spatial resolution. On one hand, the BP raster
dataset assesses the probability that a particular area is exposed to a large fire, defined as a
fire that ”escapes initial fire suppression and spreads”. On the other hand, the FIL dataset
contains six independent raster files, each of which determines the portion of simulated fires
in a particular area that reach a specified intensity. FEMA developed a a custom raster-
vector intersect tool to determine the intersections of the raster cells with Census blocks.
The annualized frequency is then calculated as the area-weighted BP for every Census block
at a given year. These Census block estimates are then aggregated to the Census tract and
County levels using area-weighted Equations (C.2) and (C.3), respectively.

D Figures and Tables
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Figure D.1: National trends (pooling tracts) by climate risk
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Notes: Census tract dataset. Composite risk with hazard weights. Population trends in United
States by climate risk, net of the corresponding value for the low-risk category. Top-left figure
is in millions of individuals, top-right figure in logs, bottom-left figure is the 10-year log change
between the year indicated in the horizontal axis and 10 years later, and the bottom-right figure is
the average decadal growth between the year indicated in the horizontal axis and year 2020.
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Figure D.2: Evolution population growth differential. Unweighted composite risk index.
County population growth (top); demeaned by CZ average growth (bottom)
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Notes: Risk categories based on unweighted composite risk index (Z). Each point estimate refers to
the average decadal change in the log of population between the corresponding initial year and final
year 2020. Point estimates obtained from models for the average decadal population growth (top)
and for the same variable but demeaned using average growth in the corresponding commuting
zone (bottom). In all cases the omitted category are counties with low risk.
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Table D.1: Risk categories individual hazards (tracts)

Climate hazard Tracts Zeros Low Mid High Weights
Composite NRI 58,488 0.69 0.20 0.11
Composite (unweighted) 58,488 0.25 0.50 0.25
Composite 58,488 0.25 0.50 0.25
Drought 58,488 0.20 0.20 0.40 0.40 0.21
Hurricane 58,488 0.14 0.14 0.44 0.42 0.21
Riverine flooding 58,488 0.20 0.20 0.40 0.40 0.18
Tornados 58,488 0.00 0.12 0.38 0.50 0.13
Wildfires 58,488 0.15 0.15 0.42 0.42 0.10
Hail 58,488 0.00 0.10 0.41 0.49 0.06
Coastal flooding 58,488 0.75 0.75 0.12 0.12 0.05
Strong winds 58,488 0.00 0.10 0.40 0.50 0.04
Ice storm 58,488 0.07 0.12 0.42 0.46 0.01
Winter weather 58,488 0.08 0.11 0.44 0.45 0.01
Avalanche 58,488 0.95 0.95 0.03 0.02 0.00
Cold wave 58,488 0.43 0.43 0.32 0.24 0.00
Heat wave 58,488 0.22 0.22 0.40 0.38 0.00
Landslide 58,488 0.00 0.98 0.00 0.02 0.00
Lightning 58,488 0.00 0.10 0.40 0.50 0.00
Tsunamis 58,488 1.00 1.00 0.00 0.00 0.00

Notes: Specifically, we define the Low risk category to include locations (counties or Census tracts)
with zero or below the 10th percentile of annual frequency. The medium (Mid) risk category
includes locations with annual frequency higher than the 10th percentile (hence, strictly positive)
but lower than the 50th percentile conditional on positive annual frequency. Naturally, the High
category contains the locations with annual frequency above the conditional 50th percentile. The
last column reports the weights given to each hazard in our composite risk index, computed on the
basis of each hazard’s share in the expected annual loss at the national level (adding the monetary
value of buildings and people).
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Table D.2: Heterogeneity by climate hazard. Tracts-analysis

(1) (2) (3) (4) (5) (6) (7) (8)
30 year ZW Dght Hrcn RFld Tornds Wildfir Hail CFld

AvGPop

HighRisk 0.090*** 0.122*** -0.052 0.049** -0.022 0.117*** -0.133*** 0.006
[0.023] [0.021] [0.036] [0.020] [0.046] [0.019] [0.050] [0.014]

MedRisk 0.028 0.037** -0.095*** 0.035 -0.089* 0.038** -0.146*** 0.015
[0.018] [0.014] [0.037] [0.023] [0.046] [0.017] [0.049] [0.017]

Constant 0.062*** 0.035*** 0.162*** 0.065*** 0.143*** 0.033* 0.224*** 0.096***
[0.019] [0.013] [0.034] [0.023] [0.046] [0.020] [0.048] [0.012]

Observations 57,931 57,931 57,931 57,931 57,931 57,931 57,931 57,931

net CZ

HighRisk 0.017*** 0.002 -0.000 0.049*** 0.037*** 0.087*** 0.004 -0.012*
[0.005] [0.001] [0.001] [0.009] [0.006] [0.017] [0.002] [0.006]

MedRisk 0.011* 0.000 0.000 0.041*** -0.026*** 0.043** -0.001 0.004
[0.006] [0.001] [0.001] [0.010] [0.006] [0.017] [0.003] [0.005]

net County

HighRisk 0.015*** 0.000 0.000 0.030*** 0.030*** 0.062*** 0.003* -0.008*
[0.003] [0.001] [0.000] [0.006] [0.005] [0.013] [0.001] [0.005]

MedRisk 0.008** -0.000 -0.000 0.025*** -0.013*** 0.026** -0.001 0.008**
[0.004] [0.001] [0.000] [0.005] [0.005] [0.012] [0.002] [0.003]

Notes: The header of each column labels the natural hazard considered. The dependent variable
is the average decadal change in the log of population between 1990 and 2020. All panels based on
the tract-level dataset. In all models the omitted category is low risk. Standard errors clustered
by commuting zone. P-values: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table D.3: Geographic Level and Count Determination of Hazard Occurrence

Hazard Type Hazard Occurrence Basis Geographic Level of Occurrence
Avalanche Distinct events County
Coastal Flooding No event count No event count
Cold Wave Event-days Census block
Drought Event-days Census tract
Hail Distinct events 49km2 fishnet
Heat wave Event-days Census block
Hurricane Distinct events 49km2 fishnet
Ice storm Event-days 49km2 fishnet
Landslide Distinct events Census tract
Lightning Distinct events 4km2 fishnet
Riverine Flooding Event-days County
Strong Wind Distinct events 49km2 fishnet
Tornado Distinct events 49km2 fishnet
Tsunami Distinct events Census tract
Wildfire No event count No event count
Winter Weather Event-days Census block

Notes: Our own elaboration based on FEMA (2020).
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