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This paper analyzes the effects of hurricane Sandy on the New York City housing market using a large parcel-level 

dataset that contains all housing sales for 2003–2017. The dataset also contains geo-coded FEMA data on which 

building structures were damaged by the hurricane and to what degree. Our estimates provide robust evidence 

of a persistent negative impact on flood zone housing values. We show the gradual emergence of a price penalty 

among flood zone properties that were not damaged by Sandy, reaching 8% in year 2017 and showing no signs of 

recovery. In contrast, damaged properties suffered a large immediate drop in value following the storm (17–22%), 

followed by a partial recovery and convergence toward a similar penalty as non-damaged properties. The partial 

recovery in the prices of damaged properties likely reflects their gradual restoration. However, the persistent price 

reduction affecting all flood-zone properties is more consistent with a learning mechanism. Hurricane Sandy may 

have increased the perceived risk of large-scale flooding episodes in that area. 
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. Introduction 

Currently, sea levels are rising about 3 cm per decade ( Stocker et al.,

013 ) and this rate is likely to accelerate in the coming decades. Al-

ost unanimously, the scientific community predicts that this will lead

o a higher prevalence of extreme weather events and large flooding

pisodes. The cumulative rise in sea levels will pose important economic

hallenges in many regions around the world. Arguably, dense urban
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reas on the shore will face the largest economic threats because of in-

rastructure and housing stock that cannot be easily relocated. 1 

Fortunately, the factors behind rising sea levels are well understood

warming oceans, loss of ice in glaciers and the thinning of the ice

heets) and scientists have produced detailed projections of the resulting

ncreases in the risk of large-scale flooding. This information provides

n opportunity to adopt measures to mitigate the costs of future flooding

pisodes but it is also likely to affect real estate markets in coastal areas

acing increased flood risk ( Kahn, 2010 ). Nonetheless, there are plenty

f impediments to a gradual response, ranging from psychological bi-

ses to coordination problems, misguided policies, and the expectation

f financial assistance by the government in case of disaster. 2 In this con-

ext, large-scale flooding events may play an important role in nudging

gents to update their beliefs and act accordingly. 3 
1 According to Climate Central, nearly 5 million people in the United States 

urrently live at locations that are likely to be flooded by the end of the century. 

he challenges are even more severe for China, with several fast-growing coastal 

rban areas, such as Shanghai, Tianjin or Shantou. Other examples of large cities 

n coastal areas are Mumbai, Miami, and Osaka ( Hanson et al., 2011 ). 
2 From a global perspective, adjustments to the rise in sea levels over the long 

un may also be constrained by restrictions to international migration. As argued 

y Desmet et al. (2018) , the geographic world distribution of productivity and 

ncome in the future will be largely shaped by the evolution of international 

igration restrictions. 
3 In the words of Sean Becketti, the chief economist for Freddie Mac, “It is only 

 matter of time before sea level rise and storm surges become so unbearable along 

he coast that people will leave, ditching their mortgages and potentially triggering 

une 2018 
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This paper analyzes the impact of hurricane Sandy on housing prices

n New York City. Hurricane Sandy hit New York on October 29, 2012,

nd was the largest Atlantic hurricane on record and the second costli-

st in U.S. history (behind hurricane Katrina), with damages amounting

o over $19 billion. 4 To do so we assemble a large parcel-level dataset

ith rich geographic data. The data contain all property sales in New

ork City for the period 2003–2017, along with FEMA data on which

uilding structures were damaged by hurricane Sandy and to what de-

ree. Methodologically, we present difference-in-difference estimates of

he effect of Sandy on housing prices, along with some more flexible

pecifications. In essence, identification of these effects is based on the

hange in housing values in (narrowly defined) neighborhoods affected

y hurricane Sandy relative to unaffected neighborhoods. Importantly,

e distinguish between the direct effects of the storm in terms of flood-

ng and related damage, and the indirect effects on the prices of proper-

ies that were not damaged but are located on flood-prone areas. We also

ay close attention to the evolution of the effects of the storm over time,

hich provides important information to assess the merit of competing

xplanations. 

Our main finding is that hurricane Sandy has persistently reduced

ousing prices by about 9% in the city’s flood zone, relative to sim-

lar properties in the rest of the city. Our analysis also shows larger

rice drops immediately after the storm for properties that suffered dam-

ge, ranging from 17% to 22%. However, by 2017, the price discount

n those properties has converged toward the same level as for non-

amaged properties located in the areas affected by Sandy, about 8%.

mportantly, we also show that the price wedge between properties af-

ected by Sandy and similar units elsewhere in the city did not exist

rior to Sandy. 

Possibly, our most intriguing finding is the gradual emergence of a

rice penalty associated with properties located in affected areas that

ere not damaged by hurricane Sandy. We examine a variety of mech-

nisms that could account for this finding, such as neighborhood deteri-

ration (of houses and infrastructures) and expectations of increases in

ood insurance costs. While we find evidence that some of these mech-

nisms played a role, we argue that the hypothesis that better aligns

ith our findings is that hurricane Sandy led to a persistent increase in

he perceived risk of extreme events in flood-prone areas, which can be

ormalized with the belief updating process in Kozlowski et al. (2015) .

learly, repairing the housing stock and public infrastructures after a

atastrophic event takes considerable time. However, this type of iner-

ia should generate a shrinking price penalty in tune with the pace of

ecovery. In contrast, we find that non-damaged properties located on

he flood zone have experienced a gradually increasing price penalty that

eems to have stabilized at around 8% and, five years after the storm,

hows no signs of recovery. 

It is natural to view flood-related damage in coastal areas as draws

rom a probability distribution. Under rational expectations, property

rices should naturally be a function of the moments of this distri-

ution but should not be affected by individual draws. 5 In contrast

o this view, many studies have documented large negative price ef-

ects following hurricanes and other catastrophic events ( Hallstrom and

mith, 2005; Atreya et al., 2013; Bin and Landry, 2013; Zhang, 2016 ) as

ell as spikes in flood insurance take-up rates ( Gallagher, 2014 ). How-

ver, these effects tend to be short-lived (very often completely van-

shed within 5 years) and are typically interpreted as temporary behav-

oral responses. While it is too early to be sure, our estimates suggest a

ore persistent negative effect on housing values, suggesting that other

echanisms may be at play. Compared to these studies, our analysis is
nother housing meltdown – except this time, it would be unlikely that these housing 

rices would ever recover. ” (The New York Times, 11/24/2016). 
4 Hurricane Sandy flooded 17% of the city and nearly 90,000 buildings. 
5 For theoretical frameworks designed to study the effects of flood risk on 

ousing prices, see Frame (1998) and Bakkensen and Barrage (2017) . 
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82 
ased on a much larger and richer dataset, with detailed information

n which properties suffered damage, and to which degree. In this re-

pect, our analysis is closely related to a recent study by McCoy and

hao (2018) who use data on building permits to analyze the effects of

urricane Sandy on house improvements in New York city. As we argue

ater, their findings are strongly complementary with ours. 

The low persistence of the effects of flooding episodes on housing

rices documented in the previous literature is in stark contrast to the

ndings of two recent papers that document extremely persistent ef-

ects of large shocks using datasets that are similar to ours in nature.

mbrus et al. (2016) analyze a cholera outbreak in a neighborhood in

ondon in the 19th century. These authors also build a panel for hous-

ng prices at the parcel level over a long period of time, and match it to

ousing maps and to the the number of deaths in each house. They find

hat housing prices fell significantly in the affected area, with a large,

ermanent reduction in values. They argue that the cholera episode

riggered selective out-migration, which permanently lowered socio-

conomic status and housing values in the neighborhood. Hornbeck and

eniston (2017) study the aftermath of the 1872 Great Boston Fire using

 longitudinal dataset of (assessed) housing values linked to the exact

urned area. They document large increases in property values following

he fire and argue that this was due to the (well-employed) opportunity

o redevelop the zone, breaking away from inefficient inertia. 

Our work is also related to the vast literature documenting that hous-

ng values reflect local amenities ( Oates, 1969; Black, 1999; Fack and

renet, 2010; Schwartz et al., 2014; Schwartz et al., 2003; Thaler, 1978;

anelici, 2017; Saiz and Wachter, 2011; Billings and Schnepel, 2017 ,

mong many others). In this light, it is natural to expect that changes to

he perceived flood risk associated with a particular location will capi-

alize into lower housing values. Our paper is also related to studies on

he general economic effects of climate change. McIntosh (2008) exam-

ned the effects of Katrina-related migration of evacuees on the Houston

etropolitan area labor market. Deryugina et al. (2018) use data on

ndividual tax returns to analyze the long-term economic effects of Kat-

ina on the population of New Orleans. They find evidence of persistent

eographical displacement, but only transitory effects on income and

mployment. Deryugina (2017) studies the role of government trans-

er programs, such as unemployment insurance, and shows that the re-

ief they provide is at least as large as that coming from emergency

id. Groen et al. (2015) estimate the effects of hurricanes Katrina and

ita on employment and earnings. Using individual panel data these

uthors also find evidence of a temporary reduction in income, fol-

owed by prolonged increase in earnings due to the increased labor de-

and in sectors related to rebuilding. There have also been important

heoretical contributions to this literature, such as Desmet and Rossi-

ansberg (2015) who develop a dynamic spatial theoretical model of

rade, innovation and growth to analyze the global effects of climate

hange. Desmet et al. (2018) go on to extend the previous framework

y endogenizing migration, and use the model to simulate the effects

f a rise in sea level. A number of studies analyze weather shocks in

n international context. Gröger and Zylberberg (2016) analyze cop-

ng mechanisms through internal remittances and migration after catas-

rophic natural disasters. More closely related to our study, Kocornik-

ina et al. (2015) examine a large dataset of massive flooding events

cross the world and find that economic activity (measured by night

ights) typically returns to pre-flooding levels after one year. 

The rest of the paper is organized as follows. Section 2 describes the

ain data sources and presents descriptive statistics. Section 3 presents

ur main estimates and a detailed discussion of potential selection is-

ues. Section 4 discusses the potential mechanisms behind our findings,

nd Section 5 concludes. 

. Data and descriptive statistics 

Essentially, our analysis relies on a dataset that combines the uni-

erse of housing sales for New York City and FEMA data on the exact
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Fig. 1. Transactions (sales counts). 

Notes: Transactions-based data from the NYC Department of Finance, 2003–2017. For each housing type we report data by borough: Bronx (BX), Brooklyn (BK), 

Queens (QN), Staten Island (SI) and Manhattan (MN). 
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7 In the raw data we had around 1.2 million observations. These two sam- 
tructures that were damaged by hurricane Sandy. We merged these two

atasets relying on the PLUTO dataset provided by the New York City

epartment of Planning, which contains shape files for the footprints

f all building structures in the city as well as the associated tax lot

umbers. 

.1. Data sources and definitions 

.1.1. Housing prices 

Our main outcome variable is the sale price of a housing unit. Our

ata on housing prices is based on the universe of transactions (sales)

or residential properties that took place in New York City between

ears 2003 and 2017 (NYC Department of Finance). Transactions-based

atasets are very sparse because most housing units only appear only

nce in the data. 6 Besides sale price, the dataset also contains informa-
6 In fact, the majority of units do not appear in any given year because they 

ere not sold in that year. 

p

e

c

t

83 
ion on the parcel (tax lot) number of the property, the building class

e.g. single family home, condo, and so on), and the exact date the sale

ook place. 

We merge the data for all years (and boroughs) and do some mini-

al trimming. Specifically, we eliminate units with a sale price below

10,000 or above $15,000,000. 7 Fig. 1 reports the count of annual trans-

ctions by building class and borough, which reveals a very different

eographical distribution for apartments and houses across the city bor-

ughs. The first row summarizes the counts of sales for single-family and

wo-family homes, which prevail in Queens and Brooklyn. In both cases

he trends clearly match the housing cycle with a dramatic slow down
le restrictions reduce the sample size to roughly 0.87 million observations by 

liminating title changes not linked to sales, or sales of garages and other small 

onstructions inside a lot. We also drop housing units that are sold 10 or more 

imes during the 14-year period covered by our dataset. 
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Fig. 2. Median Sale Prices by Housing Type and Borough (in thousands of $). 

Notes: Transactions-based data from the NYC Department of Finance, 2003–2017. For each housing type we report data by borough: Bronx (BX), Brooklyn (BK), 

Queens (QN), Staten Island (SI) and Manhattan (MN). 

i  

t  

h  

p  

f  

c  

p  

o  

t  

2  

t

2

 

i  

d  

t  

e  

t  

o  

d

 

l  

d  

8 The Modeling Task Force is a group of experts specialized in impact assess- 

ments for earthquakes, hurricanes, and other natural disasters. This task force 

plays an important role in developing best estimates of the impacts before, dur- 

ing and after the events. Specifically, during hurricane Sandy the Modeling Task 

Force coordinated with the U.S. Geological Survey to deploy surge sensors and 

field teams to obtain surge assessments. 
9 Where available, the aerial imagery overrules the inundation-based dam- 

age assessment. In particular, “destroyed ” determinations were only based on 

imagery. 
n sales after 2006 that only started recovering after 2010. In contrast

he sales of apartments (particularly in coop buildings) are uniformly

igher in Manhattan. Turning now to sale prices, Fig. 2 reports median

rices by borough and building type. The right column presents the data

or Manhattan and the remaining four boroughs are collected in the left

olumn (with a different scale). The top and middle figures on the left

anel, corresponding to 1-family and 2-family homes in the outer bor-

ughs, clearly trace the housing cycle, with prices rising up until 2007,

hen falling for four years and beginning their recovery around year

012. In comparison, housing prices in Manhattan appear less sensitive

o the economic cycle. 

.1.2. FEMA data 

To measure the damage caused by hurricane Sandy we rely on build-

ng point-damage determination estimates provided by FEMA. These

ata, also recently used in McCoy and Zhao (2018) , combine inunda-

ion measurements with field-verified aerial imagery by FEMA’s Mod-
84 
ling Task Force. 8 This dataset contains damage estimates for each of

he almost 320,000 buildings in the Sandy inundation zone and includes

ver 15,000 points outside that zone for which aerial imagery damage

eterminations were made. 9 

In this dataset each building point is identified by its longitude and

atitude. Variable DMGCOMBO , which stands for combined measure of

amage, provides a categorical measure of the damage suffered by each
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Table 1 

Summary statistics by borough. Sales-FEMA dataset. 

Borough Obs. Sale price (median) % HEZ AB % Major damage % Major flooding 

1 Manhattan 113,766 655,707 6.07 0.00 0.24 

2 Bronx 61,215 380,814 1.91 0.01 0.01 

3 Brooklyn 173,897 518,836 19.46 0.86 0.66 

4 Queens 245,419 411,934 8.26 0.78 0.47 

5 Staten Island 68,854 404,107 16.30 0.00 3.06 

NYC 663,151 456,390 11.07 0.52 0.71 

Notes: Sales data for years 2003–2017. Pct. denotes percent. HEZAB is an indicator for being located 

in hurricane evacuation zones A or B. Column 4 reports percent of units that suffered major damage or 

were destroyed. Column 5 reports percent of units that suffered more than 5.5 ft of flooding. Condos 

are not included in this sample because they could not be matched. 
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Table 2 

Summary statistics. Sales-FEMA dataset. 

Variable Obs Mean Std. dev. Min Max 

Year 663,151 2009 4.579 2003 2017 

HEZ A 663,151 0.034 0.181 0 1 

HEZ AB 663,151 0.111 0.314 0 1 

HEZ ABC 663,151 0.265 0.441 0 1 

DMGCOMBO 663,151 0.091 0.409 0 4 

Dam0 663,151 0.061 0.239 0 1 

Dam1 663,151 0.045 0.207 0 1 

Dam2 663,151 0.005 0.071 0 1 

Depth 663,151 0.181 0.884 0 14.004 

Sur0 663,151 0.054 0.226 0 1 

Sur1 663,151 0.05 0.217 0 1 

Sur2 663,151 0.007 0.084 0 1 

Sale price 663,151 665,142 1,024,013 10,000 1.50e + 07 

Bclass 1-fam 663,151 0.292 0.455 0 1 

Bclass 2-fam 663,151 0.246 0.431 0 1 

Bclass 3-fam 663,151 0.064 0.245 0 1 

Bclass Coops 663,151 0.332 0.471 0 1 

Bclass Condos 663,151 0 0.003 0 1 

Bclass Rentals 663,151 0.064 0.244 0 1 

Gross sqf. 441,160 3475 19036.11 1 3,750,565 

Price sqf. 441,160 327 6254.745 0.013 1,350,000 

Year built 659,942 1941 28.045 1798 2015 

Year altered1 123,345 1992 12.208 1900 2014 

Year altered2 12,155 2003 10.041 1921 2014 

Notes: Data contains sales 2003–2017. HEZ corresponds to hurricane evac- 

uation zones. DMGCOMBO is the FEMA categorical value establishing the 

level of damage suffered by each property, and it is the basis for the defi- 

nition of the 𝐷𝑎𝑚 0 − 𝐷𝑎𝑚 2 indicator variables. Depth is the FEMA variable 

measuring the depth of the surge for each property, and it is the basis for 

the definition of the 𝑆𝑢𝑟 0 − 𝑆𝑢𝑟 2 indicator variables. Category Bclass 1- 

fam refers to building class 1-family houses. The other building classes we 

consider are 2-family homes, 3-family homes, apartments in Cooperative 

buildings, Condos and rental units. Condos are not included in our final 
roperty due to Sandy. According to FEMA, this is the best measure

f damage for inundation events, like Sandy, because it complements

erial imagery with observed inundation depths for each structure. Im-

ortantly, this dataset provides damage estimates for all structures in

he inundation area, rather than only those that applied for assistance,

hich would introduce serious issues of sample selection. The combined

amage variable takes four values: affected (1), minor damage (2), ma-

or damage (3) or destroyed (4). 10 Appendix Table C.2 shows that over

3% of all buildings in New York’s inundation zone suffered major dam-

ge, with Staten Island and Queens being the hardest hit boroughs. 

In addition, we also use FEMA data on hurricane Sandy’s storm

urge. 11 These data provide the geographic boundary of the area that

ot flooded during hurricane Sandy at very high geographic resolution.

n addition the data report the level of flooding at each point (coded in a

ariable named Depth ). As noted earlier, the surge data are also an input

nto the point-damage estimates, inducing high correlation between the

wo measures. One reason we are interested in the storm surge data set

ecause it allows us to build measures of the effects of Sandy that are

ot affected by idiosyncratic differences across properties in the level of

reparedness for the storm. 

.1.3. Flood zone definition 

We view all housing units located on New York’s flood zone as po-

entially affected by hurricane Sandy. Some of those properties were

ooded and suffered damage in ways that we can measure. However,

ther properties in the flood zone may have been affected in other ways,

ncluding disruptions in transportation, blackouts, or by a reduction in

ousing values at the neighborhood level, among other factors. 

A common way to define flood zones in New York City is based on

he hurricane evacuation zones (HEZ) defined by the city’s Emergency

anagement department. 12 Specifically, the city is subdivided in 3 evac-

ation zones with decreasing flooding risk, with zone A being the one
10 For example, a building is declared to have suffered major damage if 

erial imagery showed that more than 20% of the roof diaphragm was 

estroyed and some exterior walls collapsed. In terms of the inundation 

ssessment, a classification of major damage requires a field verified flood 

epth greater than 5 ft. Our understanding is that when either of these 

onditions is met the property is considered to have suffered major damage . 

n comparison, a property is considered destroyed only if aerial imagery 

evealed that the majority of the exterior walls collapsed. For further 

etails on the exact definition of the FEMA damage classification, visit 

ttp://www.arcgis.com/home/item.html?id = 307dd522499d4a44a33d7296a 

da5ea0 . 
11 According to NOAA (the National Oceanic and Atmospheric Administra- 

ion), storm surge is the abnormal rise in of water generated by a storm, over 

nd above the predicted astronomical tide. The raw storm surge data contain 

50,154 latitude-longitude observations in New York city. 
12 All city residents are familiar with the hurricane evacuation zones as they 

re used to communicate evacuation orders. Alternatively, one could use FEMA’s 

ood maps, which overlap heavily with the city’s HEZ map. FEMA’s 100-year 

oodplain overlaps heavily with hurricane evacuation zone A. 

dataset. Gross square footage and the price per square foot are conditional 

on a positive value for gross square footage. 
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85 
ith the highest risk (depicted in Appendix Fig. C.1. ). In our main analy-

is we define the city’s flood zone as the combination of evacuation zones

 and B, which we denote by HEZAB, but we will conduct sensitivity

nalysis regarding this choice. 13 As shown in Appendix Table C.1 , about

3% of the city’s parcels are located in HEZAB (and 4% in HEZA). 

.2. Descriptive statistics 

Next, we provide descriptive statistics on our estimation sample

 Table 2 ), which contains 663,151 property (tax lot-apartment) by year

bservations. Besides the sale price, we build indicators for being lo-

ated on the flood zone (defined on the basis of hurricane zones). Our
13 Analogously, we define HEZA as the set of properties in hurricane evacuation 

one A. 

http://www.arcgis.com/home/item.html?id=307dd522499d4a44a33d7296a5da5ea0


F. Ortega, S. Ta ṣ p ı nar Journal of Urban Economics 106 (2018) 81–100 

m  

h  

s  

t

 

T  

S  

w  

i  

a  

m  

g  

1  

o  

d  

a  

i  

u  

t  

5

 

w  

o  

1  

b  

a  

m  

d  

s  

l

3

3

 

a  

f  

s  

f  

b  

F  

o  

s  

o  

d  

a  

D

 

t  

t

r

t

r

w

i

d

w

i

c

b

v

s  

g  

o  

z  

o  

p  

i

 

a  

a  

i  

t  

c  

h  

c  

w  

u  

m  

e  

s

N  

i  

t  

a

 

d  

a  

s  

b

l

w  

i  

y  

a  

D  

a  

fl  

i  

t  

t

 

t t  

17 We exclude a very small number of sales pertaining to properties outside 

the flood zone that suffered damage during hurricane Sandy. In most cases the 

damage was due to strong winds rather than flooding. We also acknowledge 
ain definition of the flood zone is HEZAB , the indicator for being in

urricane evacuation zones A or B, which is the case for 11% of the ob-

ervations. We view set HEZAB as containing all units that are subject

o high risk of coastal flooding in the event of a hurricane. 

We define indicators for the level of damage suffered during Sandy.

hese indicators effectively partition the set of units located on HEZAB .

pecifically, we define Dam 0 as the indicator for units in HEZAB that

ere not damaged by hurricane Sandy according to FEMA. Dam 1 is an

ndicator function for units in HEZAB that suffered at most minor dam-

ge while Dam 2 is the indicator for the units in HEZAB that suffered

ajor damage or were destroyed. The relative frequency of these cate-

ories in our dataset is 6.1% , 4.4%, and 0.5%, respectively. Given that

1% of the observations belong to the flood zone ( HEZAB ), almost half

f the sales in the flood zone correspond to properties that suffered some

egree of damage. We also build alternative measures of damage that

re purely based on FEMA’s storm surge data. We again define three

ndicators that partition the flood zone. Sur 0 is an indicator for those

nits in HEZAB that were not flooded. In turn, Sur 1 and Sur 2 are indica-

ors for being in HEZAB and having registered flooding below or above

.5 ft, respectively. 14 

Table 2 also shows that the average sale price (in current dollars)

as slightly over $665,000. 15 The table also reports the distribution

f observations over building classes, where we distinguish between

-, 2-, and 3-family homes, Coop apartments, Condos, and apartment

uildings devoted to rental. By far the three most important categories

re 1-family homes (29%), 2-family homes (25%), and Coop apart-

ents (33%), which combined amount to 87% of all observations in our

ataset. The table ends with some important control variables: (gross)

quare footage, which is only meaningful for houses, year built, and the

ast two years when a property was altered, according to city records. 16 

. Main estimates 

.1. Specifications and identification 

In essence we want to compare the price trajectories of housing units

ffected by hurricane Sandy to similar housing units that were not af-

ected. One challenge we face is that the storm affected properties in

everal ways. While some properties suffered damage others were af-

ected in more subtle ways through externalities or changes in flood risk

eliefs, similar to the effects emphasized in Abadie and Dermisi (2008) .

or this reason we view all units in the flood zone (defined by HEZAB ) as

ur treatment group. Using the FEMA point-damage data we can con-

ider several types of ‘treatment’. Specifically, we partition the set of

bservations located on the flood zone ( HEZAB ) into three groups: non-

amaged properties, moderately damaged properties, and severely dam-

ged properties. Each of these groups is identified by indicator variables

am 0, Dam 1 and Dam 2, respectively. 

The second challenge in this type of analysis is the choice of the ‘con-

rol group’, which ideally would consist of observations pertaining to
14 This cutoff is the 90th percentile of the Depth variable, conditional on posi- 

ive values, and was chosen so that the distribution of the surge-based indicators 

oughly resembles that of the damage-based indicators. 
15 As we discuss in the Appendix, even though Staten Island was the borough 

hat suffered the most damage, it is not part of our sales-FEMA dataset. The 

eason is that none of the damaged properties in Staten Island have been sold 

ithin the period 2003–2017. Consequently, Staten Island will not play any role 

n the identification of the damage treatments. However, the Staten Island sales 

o play a role when we define treatment on the basis of storm surge, or when 

e use the data on assessed market values (described later). 
16 Gross square footage is the sum of the surface of all construction in a lot, 

ncluding basements, higher floors, and additional structures. In the analysis we 

ombine year built and year altered into a single variable that replaces the year 

uilt by the most recent year of alteration. We then build categories for this 

ariable and include them as dummy variables in our regression models. 
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imilar properties that were not affected by hurricane Sandy. In our re-

ression models, the control group consists of sales of properties located

utside the flood zone. 17 Clearly, properties inside and outside the flood

one differ in obvious ways: distance to the city center, elevation, type

f building and age, and so on. In order to make the two groups as com-

arable as possible, we take advantage of the richness of our dataset and

nclude fixed-effects for narrowly defined neighborhoods (city blocks). 

Naturally, including property fixed-effects in our estimation would

bsorb even more unobserved heterogeneity. However, this would entail

n enormous loss of information, given that the majority of properties

n our dataset were sold only once during our sample period, and in-

roduce serious concerns of selection bias. As argued below, in practice,

ity-block fixed-effects soak up a great deal of individual unobserved

eterogeneity. These fixed-effects are a highly effective method to ac-

ount for geographical heterogeneity, such as location and elevation, as

ell as differences in construction quality. The reason is that individ-

al properties within a block tend to be fairly homogeneous in terms of

aterials and construction code. Furthermore, we control for each prop-

rty’s year of construction (and last alteration) and base our preferred

et of estimates on the sub-sample of 1-family and 2-family homes. 18 

evertheless, it is still possible that Sandy might have induced selection

nto the sample of properties being sold, and we will explicitly address

hese concerns later on by providing property-fixed effects estimates and

nalyzing the effect of the storm on sales activity. 

Estimation of these effects lends itself nicely to a difference-in-

ifference estimator. Consider an observation ( i, z, t ), where i refers to

n individual house or apartment, z to the neighborhood, and t to the

ale period. Our empirical model for the log of the sale price is given

y 

n 𝑝 𝑖𝑧𝑡 = 𝛼𝑧 + 𝛼𝑡 + 𝛾0 𝐷𝑎𝑚 0 𝑖 + 𝛾1 𝐷𝑎𝑚 1 𝑖 + 𝛾2 𝐷𝑎𝑚 2 𝑖 
+ 𝑃 𝑜𝑠𝑡 𝑡 × ( 𝛽0 𝐷𝑎𝑚 0 𝑖 + 𝛽1 𝐷𝑎𝑚 1 𝑖 + 𝛽2 𝐷𝑎𝑚 2 𝑖 ) + 𝛾 ′𝑋 𝑖𝑧 + 𝜀 𝑖𝑧𝑡 , (1) 

here 𝛼z denotes neighborhood fixed-effects that will absorb all time-

nvariant differences in prices across neighborhoods, 𝛼t denotes quarter-

ear dummy variables, and X iz collects property-specific controls, such

s year built or last altered or square footage. 19 Indicator variables

am 0 i , Dam 1 i , and Dam 2 i denote the level of damage caused by Sandy,

s defined earlier, and the excluded category contains sales outside the

ood zone. Note also that the coefficients accompanying the damage

ndicators will capture pre-Sandy differences in housing prices between

he control and treatment groups. Ideally, these coefficients will be es-

imated to be close to zero. 

The most important coefficients for our purposes are the interaction

erms between the post-Sandy indicator ( Post ) and the damage indica-
hat it is not strictly correct to assume that housing units outside the flood zone 

ere not affected by the storm. After all, all housing units belong to New York’s 

ousing market. However, the flood zone is a relatively small part of the market, 

ccounting for about 11% of the sales, and thus the effects of hurricane Sandy 

utside the flood zone were greatly diluted. 
18 By excluding apartments, the sub-sample of homes provides a more homo- 

eneous sample and allows us to include additional controls, such as square 

ootage. In addition, while one can argue that Sandy damaged some houses in 

 neighborhood while leaving others intact, this is not the case for apartments. 

partment buildings affected by Sandy experienced flooded common areas and 

amaged the electrical systems powering elevators. While obviously disruptive, 

t is unclear how this may have affected the prices of individual housing units. 
19 The reason that the building’s age is relevant is that older buildings were typ- 

cally subject to less demanding construction codes. As a result, older 1-family 

ouses suffered the most severe structural damage. Specifically, these buildings 

ccounted for only 18% of the buildings in Sandy’s inundation zone. However, 

hey accounted for 73% of all damaged buildings. 
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Table 3 

Neighborhood fixed-effects models. Damage and surge indicators. 

Dep. var. ln p 1 2 3 4 5 6 7 

Estimation LSDV LSDV Within Within Within Within Within 

Dam0 0 0.01 0 − 0.01 − 0.01 − 0.03 0.01 

[0.03] [0.04] [0.05] [0.03] [0.03] [0.05] [0.03] 

Dam1 − 0.06 ∗ 0.04 − 0.03 − 0.02 − 0.01 − 0.02 0.04 

[0.03] [0.08] [0.06] [0.03] [0.03] [0.05] [0.04] 

Dam2 − 0.33 ∗ ∗ ∗ − 0.19 ∗ ∗ − 0.05 − 0.01 − 0.08 ∗ − 0.09 0.04 

[0.02] [0.09] [0.06] [0.04] [0.04] [0.06] [0.06] 

Post × Dam0 − 0.06 − 0.06 − 0.07 ∗ ∗ ∗ − 0.05 ∗ ∗ ∗ − 0.08 ∗ ∗ − 0.08 ∗ − 0.12 ∗ ∗ ∗ 

[0.04] [0.04] [0.01] [0.01] [0.03] [0.05] [0.01] 

Post × Dam1 − 0.07 − 0.08 ∗ ∗ − 0.09 ∗ ∗ ∗ − 0.10 ∗ ∗ ∗ − 0.14 ∗ ∗ ∗ − 0.15 ∗ ∗ ∗ − 0.10 ∗ ∗ ∗ 

[0.07] [0.04] [0.01] [0.01] [0.04] [0.05] [0.02] 

Post × Dam2 − 0.15 − 0.15 − 0.17 ∗ ∗ ∗ − 0.18 ∗ ∗ ∗ − 0.08 − 0.08 − 0.14 ∗ ∗ ∗ 

[0.13] [0.09] [0.04] [0.03] [0.08] [0.09] [0.05] 

Post × Sur0 − 0.02 − 0.02 − 0.03 ∗ − 0.03 ∗ ∗ ∗ − 0.07 ∗ ∗ − 0.09 ∗ − 0.08 ∗ ∗ ∗ 

[0.06] [0.04] [0.02] [0.01] [0.04] [0.05] [0.02] 

Post × Sur1 − 0.09 − 0.09 ∗ ∗ − 0.12 ∗ ∗ ∗ − 0.11 ∗ ∗ ∗ − 0.11 ∗ ∗ ∗ − 0.13 ∗ ∗ − 0.13 ∗ ∗ ∗ 

[0.05] [0.03] [0.01] [0.01] [0.04] [0.05] [0.01] 

Post × Sur2 − 0.21 ∗ ∗ ∗ − 0.22 ∗ ∗ ∗ − 0.20 ∗ ∗ ∗ − 0.17 ∗ ∗ ∗ − 0.06 − 0.07 − 0.16 ∗ ∗ ∗ 

[0.03] [0.06] [0.03] [0.03] [0.06] [0.07] [0.03] 

Observations 660,211 660,211 660,211 354,310 354,310 113,436 354310 

Nbh. FE borough zip code block block block block block 

N. clusters 5 183 24,236 22,062 22,062 6755 22,062 

Clustered s.e. borough zip code block block block block block 

Building types all all all fam12 fam12 fam12 fam12 

Sample all all all all all HEZ all 

Trends city city city city block × year block × year city 

Treated HEZAB HEZAB HEZAB HEZAB HEZAB HEZAB HEZA 

Notes: Models estimated on the Sales-FEMA dataset. Dependent variable is the log of the sale price. Included 

in all specifications, but not displayed in table: quarter-year dummies and year built or last altered cate- 

gories. In specifications 4–7 we also control for the log of gross square footage. Post is defined as a sale 

occurring in November 2012 or later. Dam 0 is a dummy variable for whether the unit is located in HEZAB 

but did not suffer any damage. Dam 1 indicates if a unit located in HEZAB was affected but suffered at 

most minor damage. Dam 2 indicates if a unit located in HEZAB suffered major damage or was considered 

destroyed. Sur 0 is a dummy variable that takes a value of one if a unit is located in HEZAB but was not 

flooded. Sur 1 is an indicator for whether a unit was located in HEZAB and experience storm surge depth 

between 0 and 5.5 feet. Sur 2 indicates if a unit located in HEZAB experienced storm surge above 5.5 feet 

(90th percentile conditional on positive storm surge). Columns 5-6 include block-times-year dummies (and 

are based on the estimator by Correia (2016) ). In column 7 the damage indicators (and their interactions 

with the post-Sandy dummy) partition HEZA, as opposed to HEZAB. The sample excludes the damaged 

properties outside of HEZAB, which reduces the sample by about 7,000 BBL-year observations. Standard 

errors clustered at the indicated neighborhood level. ∗ ∗ ∗ p < 0.01, ∗ ∗ p < 0.05, ∗ p < 0.1. 
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ors. 20 These coefficients are the difference-in-difference estimates for

ur three treatments. We expect these coefficients to be negative, re-

ecting a price reduction in the post-Sandy period, and to be ordered in

he following manner: 𝛽2 ≤ 𝛽1 ≤ 𝛽0 ≤ 0. Regarding the stochastic speci-

cation of the model, we assume that the error terms are uncorrelated

cross neighborhoods, but allow for correlation across properties within

 neighborhood and over time. Consequently, we will report standard

rrors clustered at the neighborhood level. 

In some specifications we will also include neighborhood-specific

rice trends, denoted by 𝛼zt . These trends will absorb any time-varying

eighborhood characteristics that may affect housing prices and may

e hard to measure, such as changes in amenities or socio-demographic

omposition. However, these trends may also soak up some effects of

urricane Sandy, as would be the case if the hurricane increased the

erceived risk of flooding or triggered business divestment in a neigh-

orhood. 

The key identifying assumption in difference-in-difference estima-

ion is that of parallel trends. In short, we require that prices for units

n the treatment group would have evolved similarly to the prices of

nits in the control group. Typically, the validity of this assumption is
20 Hurricane Sandy hit New York City on October 29, 2012. Hence, the first 

uarter that may display an effect is the first quarter of 2013. We define the 

ost t indicator as taking a value of one for sales in November 2012 or later. 
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ssessed by comparing price trends for the control and treatment groups

n the pre-Sandy period. Fig. 4 (top panel) plots the year-by-year differ-

nce in the average sale prices for properties in and out of the flood zone

 HEZAB ) for the 1-family and 2-family sample, after controlling for city-

lock fixed-effects, year dummies, the log of square footage, and year

uilt or last altered. Prior to 2013 the price gaps are small and fairly con-

tant over time, providing strong support for the parallel trends assump-

ion. The bottom panel allows us to assess this identifying assumption for

ur treatments that distinguish by damage levels. The treatment-control

rice gaps corresponding to treatments Dam 0 and Dam 1 are fairly con-

tant over the pre-Sandy period, once again providing strong evidence

n support of the parallel trends assumption for these treatments. The

vidence is much less clear for treatment Dam 2. In this case, the esti-

ated price gaps vary widely over the 2004–2012 period, reflecting the

mall size of the group of severely damaged properties, but we cannot

eject the hypothesis of a zero price gap in any of the years (as we discuss

ater). 

.2. Damage treatments 

Table 3 reports the estimates for the model in Eq. (1) . In all specifi-

ations the dependent variable is the log of the sale price and quarter-

ear dummies are included (but not displayed), along with categories

or year built or last altered. Columns 1–3 report estimates based on the

hole sample (660,211 observations), which includes both houses and
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partments. As we move from columns 1 to 3 we employ increasingly

arrower definitions of neighborhood, moving from borough (5), to zip

ode (183), and city block (over 24,000). Let us first focus on the point

stimates for the damage indicators. In column 1 the coefficients of vari-

bles Dam 1 and Dam 2 are negative and significantly different from zero,

ndicating that, prior to hurricane Sandy, the average sale price for these

ypes of properties was lower in the flood zone ( HEZAB ) than elsewhere

n the city. However, as we adopt narrower definitions of neighborhood,

he point estimates fall (in absolute value) and become statistically in-

ignificant. 

Next, we turn to our main coefficients of interest, the interaction

erms between the damage indicators and the post-Sandy dummy vari-

ble. Across all specifications we find negative point estimates. Specifi-

ally, in column 3, these point estimates are negative and significantly

ifferent from zero, indicating a reduction in the prices for housing units

n the flood zone in the aftermath of the storm. Note also that the price

eduction is increasing in the damage caused by Sandy, ranging between

 and 17 log points. In columns 4–7, we restrict to the subsample of 1-

amily and 2-family houses (354,410 sales) and include the log of gross

quare footage as a control. The difference-in-difference estimates of the

hree damage treatments in column 4 are practically the same as in the

revious column, with price penalties ranging from 5 to 18 log points. 21 

Let us now consider a number of robustness checks. Column 5 in-

roduces city-block-by-year neighborhood trends. 22 The point estimates

or the Dam 0 and Dam 1 treatments increase (in absolute value), relative

o column 4, as well as the associated standard errors. In contrast, the

stimated effect for treatment Dam 2 falls by half and becomes insignif-

cantly different from zero. Column 6 restricts the sample to housing

nits located within one of the three hurricane evacuation zones, which

ffectively changes the control group from housing units outside hur-

icane evacuation zones A and B to units in evacuation zone C, which

ay provide a more homogeneous control group. The estimates are al-

ost identical to those in column 5. Column 7 adopts a more restric-

ive definition of flood zone, defining it as hurricane evacuation zone A.

s before, we partition the sales in this zone by damage levels. 23 The

stimates reported in column 7 show a 12 log-point post-Sandy price

ecline for non-damaged properties relative to undamaged properties

utside HEZA. This is about twice as large (in absolute value) as the

stimate reported in column 4, suggesting that residents of evacuation

one A may have felt the effects of the hurricane much more vividly

han those located in the lower risk evacuation zone B. As for damaged

roperties, the estimated price reductions range between 10 and 14 log

oints. 

.3. Surge treatments and endogenous mitigation 

One potential concern behind our previous estimates is that the ac-

ual damage incurred by a house during hurricane Sandy may have been

 function of the idiosyncratic value of the property, possibly biasing our
21 Estimating the model on the sub-sample of apartment units does not produce 

ny significant estimates. As argued earlier, this is because there is not enough 

ariation in the effects of Sandy across apartments within the same building. 

n addition, the cooperative ownership structure ties together the values of the 

ndividual units in the same building. 
22 The estimation of the models with city-block trends was implemented using 

he estimator developed by Correia (2016) . 
23 Thus, Dam 0 is now an indicator for undamaged properties located on hurri- 

ane evacuation zone A. Likewise, Dam 1 and Dam 2 are moderately and severely 

amaged units, respectively, located on hurricane evacuation zone A. This 

hoice has two immediate implications. First, there will be a higher prevalence 

f heavily damaged units ( Dam 2) relative to moderately or non-damaged units, 

elatively speaking. Second, the control group, now includes most of the units 

n hurricane evacuation zone B, along with the units in evacuation zone C and 

n the rest of the city. Intuitively, these two changes act in opposite directions 

egarding the post-Sandy price changes in the flood zone (now defined by HEZ 

) so it is not clear how the main results will be affected. 
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88 
stimates because of endogenous mitigation efforts. One way to address

his concern is to define ‘treatments’ on the basis of the level of flood-

ng due to Sandy’s storm surge (also collected by FEMA). Accordingly,

e partition the flood zone ( HEZAB ) into three groups. The first group

dentifies sales pertaining to properties on the flood zone that did not

xperience flooding ( Sur 0). Indicator variables Sur 1 and Sur 2 identify

ales pertaining to properties that experienced a storm surge of less or

ore than 5.5 ft, respectively, during hurricane Sandy. 24 

Difference-in-difference estimates of the surge-based treatment ef-

ects are reported in the bottom panel of Table 3 . Our preferred estimates

efer to the sample of 1-family and 2-family homes and are collected in

olumn 4. These estimates suggest price penalties that are very simi-

ar to those based on measured damage, with 3, 11 and 17 log points,

espectively, pertaining to treatments Sur 0, Sur 1 and Sur 2. 25 

Our surge-based estimates are also informative regarding the nature

f the price reduction for non-damaged properties on the flood zone

 Dam 0). One plausible interpretation for this finding is that the storm

ffected these properties in ways that are not captured by our dam-

ge measures. For instance, some of the properties identified by indica-

or Dam 0 may have suffered water damage and developed mold, which

ould have reduced their value. However, this is less of a concern for the

ur 0 treatment group, which contains properties that were not flooded

nd thus much less likely to develop mold, for which we estimate a 3

og-point price reduction. Thus, while mold may partly explain the 5-

og point price reduction for Dam 0 properties, other factors were also

t play. It is also worth noting that the inclusion of city-block trends

in columns 5 and 6) raises the estimate for treatment Sur 0 to 7–9 log

oints, and in line with the estimated effect for Dam 0. 

.4. Selection 

The main limitation of the estimates in the previous section arises

rom the fact that we are not able to account for all potentially rel-

vant dimensions of property-level heterogeneity. As a result, we are

oncerned that properties sold before and after Sandy in the affected

eighborhoods may differ systematically. For example, it could be the

ase that only the relatively better properties were sold after Sandy, in-

ucing positive selection into sales and leading us to underestimate the

rice reductions caused by the storm. 

We address the selection concerns in two ways. First, we estimate

odels including property-fixed effects (on the subsample of repeat sales

nd on a new dataset that contains imputed market values for all prop-

rties) and, secondly, by analyzing whether Sandy affected the volume

f sales on the basis of measured damage. Our property fixed-effects

pecifications are the following: 

n 𝑝 𝑖𝑡 = 𝛼𝑖 + 𝛼𝑡 + 𝛽𝐻𝐸𝑍𝐴𝐵 𝑖 × 𝑃 𝑜𝑠𝑡 𝑡 + 𝜀 𝑖𝑡 (2) 

n 𝑝 𝑖𝑡 = 𝛼𝑖 + 𝛼𝑡 + 

(
𝛽0 𝐷𝑎𝑚 0 𝑖 + 𝛽1 𝐷𝑎𝑚 1 𝑖 + 𝛽2 𝐷𝑎𝑚 2 𝑖 

)
× 𝑃 𝑜𝑠𝑡 𝑡 + 𝜀 𝑖𝑡 , (3) 
24 These surge indicators are based on the Depth variable summarized in 

able 2 . As expected, the damage and surge indicators are strongly correlated. 

he pairwise correlation coefficients for ( Dam 0, Sur 0), ( Dam 1, Sur 1), and ( Dam 2, 

ur 2) are, respectively, 0.86, 0.83, and 0.47. 
25 We have also experimented with an instrumental-variables approach where 

e instrument the damage treatments using the storm surge indicators. More 

pecifically, we have restricted our estimation sample to the flood zone (de- 

ned as HEZAB ), defined a single damage treatment ( Dam ), identifying units 

hat suffered some degree of damage, and used a single measure of storm surge 

s an excluded instrument. The results are reported in column 7 of Table 7 . 

he difference-in-difference estimate of the effects of suffering damage during 

andy is highly significant and implies a 13 log-point price reduction, which is 

oughly twice as large as the estimate that assumes that damage is exogenous 

conditional on our control variables and block fixed-effects) reported in column 

. Thus the estimated effects of damage from Sandy presented earlier may be 

oo conservative. 
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Table 4 

Property fixed-effects. repeat sales (columns 1–5) and imputed market values (columns 6–8). 

Dep. var. ln p 1 2 3 4 5 6 7 8 

Post × HEZAB − 0.09 ∗ ∗ ∗ − 0.06 ∗ ∗ ∗ − 0.16 ∗ ∗ ∗ 

[0.01] [0.01] [0.001] 

Post × Dam0 − 0.04 ∗ ∗ ∗ − 0.02 − 0.12 ∗ ∗ ∗ 

[0.01] [0.01] [0.001] 

Post × Dam1 − 0.09 ∗ ∗ ∗ − 0.07 ∗ ∗ ∗ − 0.22 ∗ ∗ ∗ 

[0.02] [0.03] [0.001] 

Post × Dam2 − 0.15 ∗ ∗ ∗ − 0.14 ∗ ∗ ∗ − 0.23 ∗ ∗ ∗ 

[0.05] [0.05] [0.003] 

Post × Sur0 − 0.04 ∗ ∗ − 0.09 ∗ ∗ ∗ 

[0.02] [0.001] 

Post × Sur1 − 0.09 ∗ ∗ ∗ − 0.23 ∗ ∗ ∗ 

[0.02] [0.001] 

Post × Sur2 − 0.05 − 0.26 ∗ ∗ ∗ 

[0.03] [0.004] 

Obs. 310,335 158,502 158,502 158,502 158,502 11,389,285 11,389,285 11,389,285 

Properties 131,037 66,364 66,364 66,364 66,364 668,943 668,943 668,943 

R -squared 0.19 0.158 0.158 0.158 0.183 0.803 0.804 0.804 

FE BBL-Apt BBL BBL BBL BBL BBL BBL BBL 

Sample All Fam12 Fam12 Fam12 Fam12 Fam123 Fam123 Fam123 

Trends City City City City Zip code City City City 

Notes: All models contain property (BBL) fixed-effects. In model 1 properties are identified by BBL and apartment 

number. Models 1–5 are estimated on the Sales-FEMA final dataset, the dependent variable is the log of the sale price, 

and include (but not displayed in the table) quarter-year dummies. In addition, column 5 includes zip-code-specific 

linear time trends. Models 6–8 estimated on the dataset using assessed market values. The definitions for dummy 

variables HEZAB, Dam0-Dam2 and Sur0-Sur2 are the same as in the previous tables. The sample excludes the damaged 

properties outside of HEZAB. Standard errors clustered at the city block level. ∗ ∗ ∗ p < 0.01, ∗ ∗ p < 0.05, ∗ p < 0.1. 
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here 𝛼i are fixed-effects that remove time-invariant differences across

roperties, 𝛼t are quarter-year dummies, and we also include inter-

ction terms for post-Sandy sales ( Post t ) with damage indicators. The

roperty-level characteristics included in our dataset are time-invariant

nd, hence, would be redundant because of the property fixed-effects.

s before, we cluster standard errors at the city block level. 26 That is, we

ssume that price shocks across city blocks are uncorrelated, but allow

or arbitrary correlations across individual properties within the block

nd over time. 

.4.1. Repeat sales 

Let us now restrict to the sample of sales pertaining to properties that

ere sold more than once during period 2003–2017. Naturally, this re-

uces our sample size substantially but allows us to estimate the more

emanding fixed-effects specification. Close to 55% of the properties

defined by borough-block-lot-apartment) in our sample were sold just

nce and 29% were sold exactly twice. 27 Thus our repeat sales sample

ontains less than half of the sales included in our full sample. Further-

ore, some observations refer to properties that have been sold only

efore Sandy or only after. These properties do not contribute to the

dentification of the difference-in-difference estimates, further reducing

he set of observations that drive identification of the effects. 

Table 4 presents the estimates of the coefficients in Eqs. (2) and ( 3 ).

he first column considers the general treatment of being located in the

ood zone, estimated on the sample including all building types (apart-

ents and houses). The estimates reveal a 9 log-point price reduction

n the period after hurricane Sandy. Column 2 restricts the estimation

o the sample of 1-family and 2-family houses, which reduces the esti-

ated price reduction to 6 log points. Column 3 considers the various

amage treatments on the sample of houses. The estimates show price
26 While we can also cluster at the property level (Borough-Block-Lot), this 

ould require assuming that price shocks are uncorrelated across individual 

roperties within a neighborhood. In addition, clustering standard errors by 

lock turns out to be a more conservative choice that gives rise to larger standard 

rrors. 
27 Regarding 1-family and 2-family homes, the distribution is similar: 57% of 

he houses were sold only once and 27% were sold exactly two times. 
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eductions of 4, 9 and 15 log points for flood-zone properties that were

on-damaged, lightly damaged, or severely damaged, respectively. In-

erestingly, these coefficients are fairly similar to the ones reported in

he previous section (column 4 in Table 3 ), suggesting that those esti-

ates were not affected by selection bias. Last, column 4 presents es-

imates based on the storm surge treatments. The estimated effects for

reatments Sur 0 and Sur 1 are very similar to the analogous estimates in

olumn 3. However, the estimated effect for heavily flooded properties

s now much smaller and not statistically significant, which may reflect

he relatively small number of observations contributing to identify this

ffect in the repeat sales sample. 

All in all the results of the repeat sales analysis largely confirm the

ndings of the previous section, suggesting that selection on unobserv-

bles among the properties sold after Sandy has not been very pro-

ounced. 

.4.2. Imputed market values 

We now proceed to estimate models with property fixed-effects on a

ew dataset that addresses some of the shortcomings of the repeat sales

nalysis but faces other limitations. The city’s Department of Finance

DoF) produces market-value estimates on a yearly basis for all proper-

ies in the city – the property assessment roll database. Thus this dataset

s a balanced panel for all housing units in the city. The downside of

hese data is that they are heavily imputed because only a small fraction

f properties are exchanged in the market in any given year, which intro-

uces spatial correlation and complicates inference. The market value

f unsold properties is estimated (by DoF) on the basis of spatial models

hat match each property to recent nearby sales of comparable units. 

We focus on data for fiscal years 1999–2015 and restrict to 1-to-3

nit houses (tax class one), which we match with our FEMA storm surge

nd damage-point data. The final dataset is almost 20 times larger than

ur sales-based dataset, containing 11.4 million property-year observa-

ions that correspond to 658,000 properties, and the average market

alue across all years and properties is about $513,000. 28 
28 As a share of all properties, Queens accounts for 44%, Brooklyn for 29%, 

taten Island for 17%, the Bronx for 9%, and Manhattan only for 1%. The small 
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Fig. 3. Data. Fraction of properties sold. Tax class 1 (houses). 

Notes: Fraction of properties in each category sold in any given year. Tax class 1 (houses only). Transactions-based data from the NYC Department of Finance, 

2003–2016, merged with complete list of parcels from the PLUTO dataset. 
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Property fixed-effects estimates based on these data are reported in

olumns 6–8 in Table 4 . Column 6 estimates the price effect of the gen-

ral treatment of being located in the flood zone at 16 log points, which

s substantially higher than our earlier estimates. Column 6 considers

he various damage treatments, which imply reductions in value of 12,

2 and 23 log points, respectively, for flood zone properties that suf-

ered no damage, minor damage, and major damage. 29 These estimates

re qualitatively similar to those obtained with the sales data, but imply

uch larger price effects. While this could indicate positive selection

nto sales in the post-Sandy period, we cannot rule out that this finding

ay be an artifact of the imputation method used by the NYC Depart-

ent of Finance, and are hesitant to give too much weight to the specific

stimates obtained with these data. 

.4.3. Sales activity 

Given that our data are based on transactions (sales), it is impor-

ant to gauge whether Sandy impacted the composition of sales in the

ffected areas. To understand whether this is the case, it is helpful to

xamine the effects of Sandy on the volume of sales. For instance, evi-

ence of a chilling effect on sales activity would increase concerns about

ample selection. These concerns would be aggravated if, in addition, we

ound that the reduction in sales is more intense for properties that were

amaged by the hurricane. 

Specifically, we examine whether Sandy affected the probability that

 specific housing unit sells in a given year, and whether these changes

ary as a function of the degree of damage caused by Sandy. To conduct

he analysis, we built a balanced panel with yearly observations for all

1-to-3 unit) houses in the city. We then created an indicator variable

dentifying the years in which a specific house was sold, and taking a
eight of Manhattan is due to the fact that we are focusing on houses and leaving 

partments out of the sample, largely accounting for the lower housing values 

n the imputed dataset. 
29 The surge-based estimates in column 8 provide very similar estimates. We 

lso attempted to estimate specifications including linear zip-code trends, but it 

roved computationally infeasible. 
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alue of zero otherwise, and merged these data with the FEMA damage-

oint information. 

We begin by examining the fraction of properties sold in each year,

hich we refer to as sales activity. The solid line in the left panel of

ig. 3 reports citywide sales activity. We clearly observe the end of the

ousing boom and the subsequent bust. At the peak, 6% of all proper-

ies were sold in year 2004, compared to fewer than 2.5% in year 2011.

he dashed line reports the sales in the flood zone ( HEZAB ). Up un-

il 2011, the two lines are remarkably similar but, from 2012 onward,

heir behavior diverges, suggesting that hurricane Sandy had an effect

n sales activity in the flood zone. However, this effect appears to be

hort-lived. In 2012, Sandy’s year, and 2013, sales slowed down in the

ood zone. However, they recovered vigorously in 2014–2016. By 2017,

ales activity in the flood zone matches again the level in the rest of the

ity. Turning now to the right panel in Fig. 3 , we observe that in the

re-Sandy period sales activity was higher among Dam 2 properties, al-

hough the three treatment groups clearly trace the housing cycle and

onverge to a minimum of activity in 2012. In the post-Sandy period,

ales activity recovers for all groups but, once again, the share of sales

mong Dam 2 properties surpasses the levels of the other two treatment

roups. 

We explore this issue further using regression analysis, which will

llow us to control for time-invariant property-specific factors. Specif-

cally, we now estimate the following linear-probability-model specifi-

ations where the dependent variable takes a value of one if property i

as sold in year t : 

𝑜𝑙𝑑 𝑖𝑡 = 𝛼𝑖 + 𝛼𝑡 + 𝛽𝑃 𝑜𝑠𝑡 𝑡 ×𝐻𝐸𝑍𝐴𝐵 𝑖 + 𝜀 𝑖𝑡 (4) 

𝑜𝑙𝑑 𝑖𝑡 = 𝛼𝑖 + 𝛼𝑡 + 𝑃 𝑜𝑠𝑡 𝑡 ×
(
𝛽0 𝐷𝑎𝑚 0 𝑖 + 𝛽1 𝐷𝑎𝑚 1 𝑖 + 𝛽2 𝐷𝑎𝑚 2 𝑖 

)
+ 𝜀 𝑖𝑡 , (5) 

here 𝛼i denotes property fixed-effects. The results are presented in

able 5 . Columns 1 and 2 do not include the fixed-effects in order to

imic the data presented in the figure. The estimates in these columns

onfirm the post-Sandy increase in sales activity in the flood zone rela-

ive to the rest of the city. More importantly, we note that the increase
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Fig. 4. Event study flood zone (HEZAB) versus rest of the city. Only 1-family and 2-family homes. 

Notes: Top panel reports the estimated time-varying coefficients (annually) of the HEZAB indicator for the sample of 1-family and 2-family homes. Bottom panel 

reports the estimated coefficients of the time-varying Dam 0, Dam 1 and Dam 2 indicators. All models include year dummies, year built or last altered, and the log of 

square footage. 
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n sales is similar across the three treatment groups. 30 We note also that

he inclusion of property fixed-effects in columns 3 and 4 (and the clus-

ering of standard errors at the block level) render the estimates rather

ninformative. 

.4.4. Selection summary 

All in all, our analysis in this section suggests that our main estimates

f the effects of hurricane Sandy (based on neighborhood fixed-effects

odels estimated on the sales dataset) are not biased by changes in

he composition of sales due to the hurricane. The property fixed-effects

stimates based on the repeat sales sample were very similar to our main

stimates. In addition, our analysis of the effects of the storm on sales

ctivity suggests that the storm temporarily slowed down the recovery of

ales activity in the flood zone, relative to the rest of the city. However,

his effect was short-lived and did not appear to be driven by properties

ith systematically higher or lower levels of observed damage. 
30 A test of equal coefficients cannot be rejected at the usual significance levels. l

91 
.5. Persistence 

Our main finding so far is that hurricane Sandy reduced housing

rices in the flood zone. The reduction was more pronounced for prop-

rties that were more severely damaged by the storm, but also affected

on-damaged properties in the affected areas. The goal of this section

s to analyze the dynamic effects of each of the treatments, which will

rovide useful information regarding the merits of alternative interpre-

ations for our findings. We are particularly interested in determining

hether the effects of hurricane Sandy on housing prices appear to be

hort-lived or display persistence. 

We consider a flexible specification that allows for time-varying ef-

ects: 

n 𝑝 𝑖𝑧𝑡 = 𝛼𝑧 + 𝛼𝑡 + 𝛽𝑡 𝐻𝐸𝑍𝐴𝐵 𝑖 + 𝛾𝑋 𝑖𝑧 + 𝜀 𝑖𝑧𝑡 (6) 

n 𝑝 𝑖𝑧𝑡 = 𝛼𝑧 + 𝛼𝑡 + 𝛽𝑡 0 𝐷𝑎𝑚 0 𝑖 + 𝛽𝑡 1 𝐷𝑎𝑚 1 𝑖 + 𝛽𝑡 2 𝐷𝑎𝑚 2 𝑖 + 𝛾 ′𝑋 𝑖𝑧 + 𝜀 𝑖𝑧𝑡 , (7) 
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Table 5 

Sales activity. Linear probability model. 

Dep. var. sold 1 2 3 4 

Post × HEZAB 0.1478 ∗ ∗ ∗ 0.1009 ∗ 

[0.0369] [0.0592] 

Post × Dam0 0.1385 ∗ ∗ ∗ 0.0664 

[0.0478] [0.0827] 

Post × Dam1 0.1531 ∗ ∗ ∗ 0.1416 ∗ 

[0.0551] [0.0726] 

Post × Dam2 0.2272 0.1964 

[0.1909] [0.2868] 

Observations 9,856,991 9,856,991 9,856,991 9,856,991 

R -squared 0.004 0.004 0.004 0.004 

Fixed-effects No No Block Block 

Groups 1 1 23,364 23,364 

Clustered s.e. No No Block Block 

Sample fam12 fam12 fam12 fam12 

Notes: Balanced panel containing all houses in tax class one (1-to- 

3 family units) for years 2003–2017. The dependent variable is an 

indicator for whether the property was sold in that year (multiplied 

by 100). Most cooperatives and condominiums are excluded from tax 

class one. Year dummies included in all specifications. The number of 

tax lots (properties) in the dataset is around 0.7 million. ∗ ∗ ∗ p < 0.01, 
∗ ∗ p < 0.05, ∗ p < 0.1. 
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Table 6 

Time-varying coefficients by year. 

Model Model 1 Model 2 Model 2 Model 2 

Treatment HEZAB Dam0 Dam1 Dam2 

T × 2004 − 0.01 − 0.01 − 0.01 − 0.02 

[0.01] [0.01] [0.02] [0.06] 

T × 2005 − 0.01 − 0.03 ∗ 0.01 0.01 

[0.01] [0.01] [0.02] [0.05] 

T × 2006 − 0.03 ∗ ∗ − 0.03 ∗ − 0.04 ∗ 0.07 

[0.01] [0.02] [0.02] [0.06] 

T × 2007 − 0.02 − 0.03 ∗ − 0.01 0.09 

[0.01] [0.02] [0.02] [0.06] 

T × 2008 − 0.03 ∗ ∗ − 0.03 − 0.05 ∗ 0.02 

[0.02] [0.02] [0.03] [0.06] 

T × 2009 − 0.01 − 0.01 − 0.02 − 0.06 

[0.01] [0.02] [0.02] [0.06] 

T × 2010 0 0.02 − 0.03 − 0.13 

[0.01] [0.02] [0.02] [0.09] 

T × 2011 0 0.01 0.01 − 0.13 

[0.02] [0.02] [0.02] [0.09] 

T × 2012 − 0.01 0 − 0.01 − 0.12 

[0.02] [0.02] [0.02] [0.08] 

T × 2013 − 0.09 ∗ ∗ ∗ − 0.04 ∗ ∗ − 0.16 ∗ ∗ ∗ − 0.20 ∗ ∗ 

[0.02] [0.02] [0.03] [0.10] 

T × 2014 − 0.08 ∗ ∗ ∗ − 0.05 ∗ ∗ ∗ − 0.10 ∗ ∗ ∗ − 0.22 ∗ ∗ ∗ 

[0.01] [0.02] [0.02] [0.07] 

T × 2015 − 0.09 ∗ ∗ ∗ − 0.08 ∗ ∗ ∗ − 0.10 ∗ ∗ ∗ − 0.23 ∗ ∗ ∗ 

[0.01] [0.02] [0.02] [0.07] 

T × 2016 − 0.10 ∗ ∗ ∗ − 0.08 ∗ ∗ ∗ − 0.12 ∗ ∗ ∗ − 0.13 ∗ ∗ 

[0.01] [0.02] [0.02] [0.06] 

T × 2017 − 0.09 ∗ ∗ ∗ − 0.08 ∗ ∗ ∗ − 0.10 ∗ ∗ ∗ − 0.14 ∗ ∗ 

[0.01] [0.02] [0.02] [0.06] 

Observations 354,310 354,310 

R -squared 0.143 0.143 

Number of BB 22,062 22,062 

Fixed-effects Block Block 

Notes: T denotes dummy for the corresponding treatment, 

HEZAB or a Damage level indicator. Models 1 and 2 include 

block FE, year dummies, year built or last altered, and square 

footage. The sample includes only 1-family and 2-family houses. 

Standard errors clustered by block in both models. ∗ ∗ ∗ p < 0.01, 
∗ ∗ p < 0.05, ∗ p < 0.1. 
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here the dependent variable is the log of the price of housing unit i

n neighborhood z and period t . The right-hand-side contains neighbor-

ood fixed-effects, year fixed-effects, and unit-specific controls (square

ootage and year built or last altered). Eq. (6) includes an indicator

or being located in the HEZAB, with a coefficient 𝛽t that is allowed

o vary period by period. 31 Similarly, Eq. (7) allows for time-varying

oefficients for each of the treatment variables (indicators Dam 0, Dam 1

nd Dam 2). 

Table 6 presents the estimates for the sample of 1-family and 2-

amily houses. Column 1 provides estimates for the generic treatment

f being located in the flood zone (corresponding to Eq. (6) ). As we

lready discussed earlier, the estimates provide strong support for the

arallel trends assumption. We do not find evidence of systematically

ifferent pre-treatment price trends for properties in and out of the

ood zone ( HEZAB ). In fact, we are unable to reject the null hypothesis

f equal price levels for almost all pre-Sandy years. In sharp contrast,

he estimates corresponding to years 2013–2017 are large (in absolute

alue) and significant at the usual significance levels, converging to-

ard a fairly stable 9 log-point price reduction for properties located on

he flood zone that shows no signs of recovery, as clearly illustrated in

ig. 4 (top panel). 32 

To gain a deeper understanding, we turn to the estimation of the

arious damage treatments as per Eq. (7) . The estimates are reported

n columns 2 through 4 of Table 6 . Once again, the estimates clearly

how the absence of differential pre-treatment trends for all treatment

roups relative to the control group. In contrast, the estimates for all

ears 2013 and beyond are economically large and statistically signifi-

ant for the three damage treatments. Two other features of the evolu-

ion of these price effects are worth noting. First, the price penalty for

on-damaged properties in the flood zone ( Dam 0) increases gradually

fter Sandy, reaching 8 log points in year 2017. In contrast, large penal-

ies for damaged properties appear immediately after the hurricane –

6 and 20 log points for treatments Dam 1 and Dam 2, respectively – and

radually fall over time. In fact, Fig. 4 (bottom panel) suggests that the
31 Specifically, we include a series of interactions between year dummies and 

n indicator for HEZAB. 
32 We note that the pattern reported here is robust to defining the flood zone 

sing FEMA’s 100-year floodplain (also known as special flood hazard areas), 

s reported in Indaco et al. (2018) ( Fig. 4 ), and to the inclusion of linear price 

rends by neighborhood (defined by zip code). These figures are available from 

he authors upon request. 
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rice penalty for damaged properties may be converging to that of non-

amaged properties in the flood zone. As we discuss in greater detail

ater on, one possible interpretation for these price dynamics is that as

omeowners repaired damaged properties, their prices gradually recov-

red but converged to a new, lower level. 33 

. Mechanisms 

Our main findings can be summarized as follows. First, hurricane

andy has led to a persistent reduction in housing prices on the flood

one of about 9 log points (or 9.4%) and, 5 years after the storm, shows

o signs of vanishing. Secondly, the evolution over time of prices in the

ood zone differs substantially for properties that were damaged by the

torm and properties that were not, as illustrated by Fig. 4 . Damaged

roperties experienced a sharp reduction in prices right after the storm,

ollowed by a partial recovery, and eventually settling down at a roughly

 log-point price penalty. In contrast, non-damaged properties in the

ood zone have experienced a gradual reduction in price between 2013

nd 2017, eventually converging to a price penalty that is similar to that

f damaged properties. 

The goal of this section is to discuss three potential explanations that

ould account for these results. The first explanation is based on neigh-

orhood blight (affecting residential properties, businesses and infras-
33 About 22,000 homeowners applied for assistance through the federally 

unded Build Back program. According to the Wall Street Journal, around 75% 

f these projects were completed by the end of 2016. 
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Table 7 

Additional analysis: heterogeneous effects, damaged neighbors, and endogenous damage. 

Dep. var. ln p 1 2 3 4 5 6 7 

Post × Dam0 − 0.05 ∗ ∗ ∗ − 0.06 ∗ ∗ ∗ − 0.06 ∗ ∗ ∗ − 0.05 ∗ ∗ ∗ 

[0.01] [0.01] [0.01] [0.01] 

Post × Dam1 − 0.10 ∗ ∗ ∗ − 0.10 ∗ ∗ ∗ − 0.11 ∗ ∗ ∗ − 0.09 ∗ ∗ ∗ 

[0.01] [0.01] [0.02] [0.01] 

Post × Dam2 − 0.18 ∗ ∗ ∗ − 0.23 ∗ ∗ ∗ − 0.16 ∗ ∗ ∗ − 0.07 

[0.03] [0.05] [0.04] [0.05] 

Post × Dam − 0.06 ∗ ∗ ∗ − 0.13 ∗ ∗ ∗ 

[0.01] [0.01] 

Post × Damblock − 0.80 ∗ ∗ 

[0.33] 

Observations 354,310 333,083 322,926 314,728 354,310 48,766 48,766 

Number of BB 22,062 21,023 19,973 19,831 22,062 3098 3098 

R -squared 0.148 0.15 0.148 0.147 0.148 0.153 –

Excludes No HEZAB HEZAB HEZAB No Outside Outside 

blocks Any dam. No dam/all dam All dam. HEZ AB HEZ AB 

Notes: Regression models include (but not reported) quarter-year dummies, year built or last altered, log of square footage, indicators of damage (Dam0, 

Dam1 and Dam2), as well as indicators for severe damage among neighbors in the block (column 5). Column 1 reproduces one of our main findings and 

provides a benchmark. Column 2 excludes observations pertaining to blocks in HEZAB with any damaged units. Column 3 excludes observations from 

blocks in HEZAB with all units either non-damaged or damaged by hurricane Sandy. Column 4 excludes observations pertaining to blocks in HEZAB with 

all units damaged. Variable Damblock in column 5 is the (distance-weighted) average of severely damaged properties in the block (excluding own damage). 

In columns 6 and 7 we combine properties that experienced some degree of damage into a single category ( 𝐷𝑎𝑚 = 𝐷𝑎𝑚 1 + 𝐷𝑎𝑚 2 ). Column 6 reports OLS 

estimates. Column 7 reports 2SLS estimates where the vector of instruments is ( Sur, Post × Sur ), where 𝑆𝑢𝑟 = 𝑆𝑢𝑟 1 + 𝑆𝑢𝑟 2 is an indicator for whether the 

property suffered flooding. The sample includes only 1-family and 2-family houses. Standard errors are clustered by block. ∗ ∗ ∗ p < 0.01, ∗ ∗ p < 0.05, ∗ p < 0.1. 
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ructures), coupled with time lags in repairing the damage. The second

xplanation has to do with the response to news of higher flood insur-

nce premia that were announced around the time of Sandy. Last, we

onsider the implications of a belief updating model where economic

gents learn about flood risk from experience. 

.1. Neighborhood blight 

Hurricane Sandy caused widespread damage in the affected areas,

oth to residential properties and to businesses and infrastructures. Nat-

rally, this is likely to negatively affect the prices of all properties in the

ffected areas, including non-damaged properties. Because it takes time

o rebuild, these price effects can persist over time. We begin by pars-

ng out the different dimensions of neighborhood blight and trying to

rovide evidence for them. 

.1.1. Damaged neighbors 

It has been shown in a number of studies that the perceived qual-

ty of neighboring properties acts as an externality with an effect on

ousing prices. Thus it is plausible to expect that housing prices may be

egatively affected by the presence of damaged properties in the neigh-

orhood, which may also provide an explanation for the price penalty

or non-damaged properties ( Sturm and Redding, 2016 ). Additionally,

he effects of Sandy on individual property levels may be heterogeneous

nd differ by the extent of neighborhood blight. 

To address these questions we computed the fraction of damaged

roperties in each city block in the flood zone ( HEZAB ). 34 According to

ur calculations, within the flood zone, the average number of damaged

roperties in a city block was 17%, or 41% of the properties in the block.

t is worth noting that some blocks in the flood zone had zero damaged

roperties, while in others all properties were damaged in some degree.

n fact, the data indicate a large degree of polarization: almost 2 in 3

locks on the flood zone were either completely undamaged or com-

letely damaged. More specifically, 44% of the blocks in HEZAB had no
34 Specifically, for each property in the flood zone, we computed the number of 

moderately or severely) damaged properties in the same city block (excluding 

wn damage) as a fraction of the overall number of homes ( Damblock i ). We built 

his variable on the basis of all lots in the block, not just those that were sold 

ver our sample period, restricting the analysis to 1-family and 2-family homes. 
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amaged properties, whereas all properties were damaged in 20% of the

locks. 

To analyze whether or not the effects of Sandy on individual property

evels differed by the extent of neighborhood blight, we re-estimated

ur models on three sub-samples and report the findings in Table 7 .

n each of these sub-samples, the control group was the same – non-

amaged properties outside of the flood zone – but each one differed

n the treatment groups. In the first sub-sample the treatment group

ontains only observations pertaining to completely undamaged blocks

ithin the flood zone (column 2). Obviously, in this case we are only

ble to identify the effect of the Dam 0 treatment. The estimated effect

s practically identical to our baseline results (reported in column 1).

he treatment group in the second sub-sample contains observations

ertaining to city blocks within the flood zone with some, but not all,

nits damaged (column 3). The estimated effects of the three treatments

re almost identical to those obtained using the whole sample. Last,

he treatment group in the third sub-sample contains only observations

ertaining to flood zone blocks where all properties experienced some

egree of damage. Once again, the estimated effects of the ( Dam 1 and

am 2) treatments coincide almost exactly with the estimates based on

he whole sample (column 1). In sum, our findings indicate that the

reatment effects estimated on the whole sample do not seem to vary by

he extent of damage in the neighborhood. 

Let us now turn to whether the presence of damaged neighboring

roperties had an effect on a property’s sale price (after Sandy) that is

eparate from the own-damage effect. To do so we consider the follow-

ng specification: 

n 𝑝 𝑖𝑧𝑡 = 𝛼𝑧 + 𝛼𝑡 + 𝛾0 𝐷𝑎𝑚 0 𝑖 + 𝛾1 𝐷𝑎𝑚 1 𝑖 + 𝛾2 𝐷𝑎𝑚 2 𝑖 + 𝛾3 𝐷𝑎𝑚𝑏𝑙𝑜𝑐𝑘 𝑖 (8) 

+ 𝑃 𝑜𝑠𝑡 𝑡 ×
(
𝛽0 𝐷𝑎𝑚 0 𝑖 + 𝛽1 𝐷𝑎𝑚 1 𝑖 + 𝛽2 𝐷𝑎𝑚 2 𝑖 + 𝛽3 𝐷𝑎𝑚𝑏𝑙𝑜𝑐𝑘 𝑖 

)

+ 𝛾 ′𝑋 𝑖𝑧 + 𝜀 𝑖𝑧𝑡 , 

here Damblock i measures the average damage in property i ’s city block.

hus the externality effect is captured by coefficient 𝛽3 . 

Column 5 in Table 7 presents the results. The estimated effects for

reatments Dam 0 and Dam 1 are practically the same as in the baseline

odel (reproduced in column 1). In contrast, the estimate for the se-

ere damage treatment Dam 2 falls substantially (to −0 . 07 ), reflecting the

trong correlation (0.54) between severe own damage ( Dam 2) and the

revalence of damage among neighbors in the same block ( Damblock ).

mportantly, the estimated externality effect is highly significant, imply-



F. Ortega, S. Ta ṣ p ı nar Journal of Urban Economics 106 (2018) 81–100 

i  

h

 

e  

d  

n  

t  

c  

a  

z  

b

O  

fl  

(  

d  

a  

S  

i  

b

4

 

a  

p  

s  

m  

p  

a  

e  

s  

T  

i  

a  

t  

s  

n  

t  

o  

e  

s

4

 

h  

t  

o  

h  

d  

i  

m  

r  

a  

u

 

d  

I

b

p

a

m

n

r

a  

d  

m  

n  

t  

q  

o  

e  

u  

c

4

 

f  

I  

s  

p  

b  

a  

f  

a  

t  

o  

a  

a  

r

 

a  

c  

Y  

i  

r  

s  

r  

fi

𝑦  

w  

s  

t  

p  

y  

p  

z  

t  

w  

e  

w

 

t  

(  

d  

t  

o  

o

ng that the presence of damaged properties in one’s neighborhood does

ave a significant negative effect on housing values. 

To the extent that rebuilding damaged properties takes time, the

xternal effect from damaged neighbors will generate a persistent re-

uction in the prices of non-damaged properties in blocks with a sig-

ificant prevalence of damaged neighbors. The persistence induced by

his mechanism will depend on the time lags due to rebuilding. A re-

ent study by McCoy and Zhao (2018) finds that hurricane Sandy led to

n immediate surge in building permit applications in New York’s flood

one (defined by FEMA’s special flood hazard areas). Their data can also

e used to gauge the time needed to rebuild the damage properties. 35 

n the basis of their estimates, the volume of building permits in the

ood zone returned to its pre-Sandy levels approximately 14 quarters

i.e. 3.5 years) after the hurricane. This suggests that the majority of

amaged properties had been repaired by the end of 2016 or shortly

fter. Our estimates (plotted in Fig. 4 ) show that the price effects of

andy have already outlasted this period, and present no signs of van-

shing, suggesting that factors other than reconstruction time lags may

e at play. 

.1.2. Damaged infrastructures 

This is another dimension of neighborhood blight. Hurricane Sandy

lso caused extensive disruption to transportation, utilities, and fuel sup-

ly. Virtually all subways, commuting trains, buses and tunnels were

hut down due to the hurricane. However, in a matter of a few weeks

ost of the city’s transit network was functioning at or near normal ca-

acity (with only a few exceptions), and all schools re-opened one week

fter the storm. 36 In terms of utilities, the largest problem was loss of

lectricity. Close to 2 million people lost power at some point during the

torm, with service being restored to most houses in less than a month.

he supply of liquid fuels was also severely disrupted and regular service

n the affected areas remained limited for several weeks. These factors

re difficult to quantify. 37 However, we have shown that our main es-

imates are robust to the inclusion of neighborhood time trends, which

hould capture many of these factors. Thus, it seems unlikely that the

egative effects arising from service interruptions and damaged infras-

ructures can account for reductions in housing prices that extend for

ver 5 years. Nonetheless, this experience may have caused a lasting

ffect on individuals who suffered or witnessed the consequences, re-

ulting in a reduced willingness to live in these areas. 

.1.3. Reduced amenities and unmeasured damage 

Hurricane Sandy may have also deteriorated houses and neighbor-

oods in ways that are more difficult to measure. For example, in the af-

ermath of the storm, some businesses may have relocated to other parts

f the city. This reduction in amenities and local economic activity may

ave negatively affected housing prices. Unfortunately, our current data

o not allow us to measure these effects. However, we can take them

nto account by including neighborhood-level trends in our regression

odels, as we did in columns 5 and 6 in Table 3 . As discussed earlier, the

esults were qualitatively unchanged, suggesting that reduced amenities

re probably not the reason for the persistent reduction in housing val-

es in the flood zone. 

Yet another explanation for the emergence of a price penalty for non-

amaged properties in the flood zone is that hurricane Sandy may have
35 See Fig. 6 in McCoy and Zhao (2018) . 
36 See the report “A Stronger, More Resilient New York, ” by the NYC Special 

nitiative for Rebuilding and Resiliency, p. 94. 
37 Kousky and Shabman (2013) analyze the use of the relief funds approved 

y Congress. They note that “a large share of the Sandy supplemental is funding 

rojects designed to reduce damages from the next storm, not for emergency response 

nd rebuilding. ” Some of these investments are ambitious multi-year projects that 

ay, potentially, reduce the price penalty that we have uncovered. But we have 

ot found any evidence of city infrastructures that were damaged by Sandy and 

emained out of service until the end of 2017. 
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ffected those properties in ways that are not captured by FEMA’s point-

amage estimates. For instance, properties in treatment group Dam 0

ay have been affected by mold, which is costly to remove and could

egatively affect their value. However, it is important to keep in mind

hat companies that offer mold removal are widely available. Conse-

uently, we would expect the number of mold-affected houses to fall

ver time, as more and more homeowners restore their properties. How-

ver, this pattern is at odds with the gradual decrease in the prices of

ndamaged properties documented in Fig. 4 . Thus unmeasured damage

aused by Sandy, such as mold, is unlikely to account for this pattern. 

.1.4. Out-migration 

One way to measure neighborhood deterioration is to examine if

amilies have fled from the flood zone toward other parts of the city.

n fact selective out-migration has the potential to generate very per-

istent changes to the character of a neighborhood and to its housing

rices, as illustrated in the study of the 1854 London cholera outbreak

y Ambrus et al. (2016) . Using plot-level data similar to ours, these

uthors show that the average property within the affected area suf-

ered a persistent reduction in housing values, regardless of whether

ny cholera deaths occurred in that particular building. They argue that

he persistence of these effects lasted for decades, and provide evidence

f selective out-migration that resulted in permanent reduction in the

verage household income of the residents. Rosenthal (2008) provides

lso accounts of neighborhood dynamics, with instances of decline and

enewal. 

Because of the very fine geographical granularity required in our

nalysis, obtaining data to try to quantify within-city migration is rather

hallenging. To do so we obtained administrative data from the New

ork City department of education about enrollment in all public schools

n the city. These data contain information on each school’s total en-

ollment (by grade) as well as the socio-economic composition of the

tudent body. 38 Thus we can analyze if the level and composition of en-

ollment has changed in the post-Sandy period. The econometric speci-

cation we consider is 

 𝑠𝑧𝑡 = 𝛼𝑠 + 𝛼𝑡 + 𝑃 𝑜𝑠𝑡 𝑡 ×
(
𝛽0 𝑎𝑣𝐻𝐸𝑍𝐴𝐵 𝑠 + 𝛽1 𝑎𝑣𝐷𝑎𝑚 𝑠 

)
+ 𝜀 𝑠𝑧𝑡 , (9)

here the dependent variable alternates from total enrollment in the

chool, to enrollment in earlier grades (second or earlier), percent of

he students that are black or Hispanic, and percent of the students in

overty. The subindices refer to school s , neighborhood (block) z and

ear t . The key right-hand side regressors are the average number of

roperties in the school’s catchment area that are located in the flood

one ( avHEZAB s ) and the fraction of units in the school catchment area

hat were damaged ( avDam s ). The key coefficients of interest are 𝛽0 ,

hich captures the effect of a marginal increase in the fraction of prop-

rties in the catchment area that are part of the flood zone, and 𝛽1 ,

hich captures the additional effect of damage. 

Unfortunately, our estimates of this model do not deliver any statis-

ically significant treatment effects for any of the outcomes considered

as can be seen in Table C.3 ). Thus, we do not find any significant evi-

ence for out-migration. However, it is also important to keep in mind

hat households with young children are perhaps the least mobile type

f household. Thus we cannot rule out out-migration of households with

lder or no children. 

.1.5. Summing up 

While hurricane Sandy created a great deal of disruption on neigh-

orhoods located in the flood zone, our findings suggest that the re-

ulting impact on housing prices was short-lived. Infrastructures, trans-

ortation and utilities were back to nearly normal service within a few
38 Merging the school-level data into our dataset required mapping school ad- 

resses into latitude-longitude points, which was done using Google’s API. The 

ataset contains 1857 schools but we focus our analysis on the 722 elementary 

chools. 
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onths of the storm, damaged properties were largely rebuilt over a

-year period, and we have found no evidence of out-migration. In ad-

ition, our finding of a gradual emergence of a price penalty for non-

amaged properties within the flood zone appears at odds with the ex-

ected dynamic effects of unmeasured damage. All in all, these obser-

ations suggest that other mechanisms must be at play to explain the

ersistence of the reduction in flood zone housing values five years af-

er the hurricane. 

.2. Flood insurance reform 

During the first half of 2013, FEMA released detailed information en-

ailing upcoming steep increases in flood insurance costs for properties

n New York’s flood zone. The announcements made the public aware

f the new, preliminary FEMA flood maps for New York city, which sub-

tantially increased the number of properties subject to mandatory flood

nsurance requirements. As quickly recognized ( Dixon et al., 2013 ), the

ew flood maps had the potential to affect housing values in flood-prone

reas, triggering an immediate backlash among homeowners in those

eighborhoods ( Checker, 2016 ). 

.2.1. A brief history of flood insurance 

Congress created the National Flood Insurance Program (NFIP) in

968, which is administered by FEMA, with the goal of providing afford-

ble (i.e. subsidized) flood insurance to homeowners. An integral part

f the program is the Flood Insurance Rate Map, which establishes risk

ones. These zones determine flood risk for each property and, impor-

antly, properties located on the high-risk zone are required to purchase

ood insurance if they have federally backed mortgages (or if they have

eceived FEMA assistance in the past). 39 

Largely because of hurricane Katrina, the NFIP accumulated a large

mount of debt – over 25 billion dollars. In order to make the program

nancially stable Congress passed the Biggert-Waters Flood Insurance Re-

orm Act in 2012 (but prior to hurricane Sandy), which basically elimi-

ated subsidies to flood insurance rates and phased out a number of ex-

mptions. However, as a result of vigorous public opposition in affected

reas, Congress passed the 2013 Homeowner Flood Insurance Affordabil-

ty Act , allowing for a more gradual adjustment by capping annual rate

ncreases to 18%. 

In addition to these legal changes, revised Flood Insurance Rate Maps

ere commissioned for all flood-prone areas in the country. The prelim-

nary map for New York was released in June 2013, although the press

ad already publicized early releases as early as January 2013 (New

ork Times, 1/28/2013). The new map expands the high-risk zone, dou-

ling the number of properties that may be subject to mandatory flood

nsurance. 40 In addition the new map also increases the required ele-

ations for the buildings already located in high-risk zones. Properties

hat fail to do so will face steep increases in flood insurance premia. 

As of 2018, the 2013 preliminary flood map has not yet become

ffective because New York City filed an appeal, arguing that the pro-

osed map overestimates flood risk in some parts of the city. In October

016, FEMA announced that the appeal was accepted and, therefore,
39 High-risk areas are defined as areas in the 100-year floodplain. According to 

 study by RAND ( Dixon et al., 2013 ), when New York City was hit by hurricane 

andy, 3 out of 4 properties in the high-risk zone in New York City were required 

o have flood insurance, but only slightly more than half of all properties had 

t. Among homeowners not required to have flood insurance, take up rates were 

ound to be low. 
40 The Flood Insurance Map currently in effect was adopted in 1983 and has 

uffered only very minor updates since then, with the latest update dating back 

o 2007. The 1983/2007 map contains approximately 21,000 residential parcels 

with mostly 1-to-4 family houses) in the high-risk zone. The 2013 prelimi- 

ary map contains over 47,000 residential parcels in the high-risk zone, which 

mounts to more than 6% of all city parcels. 
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ood insurance rates are still based on the 1983/2007 map. Nonethe-

ess, the release of the preliminary map may have affected housing val-

es. According to a 2013 study commissioned by the City of New York

 Dixon et al., 2013 ), the expanded flood map and the phase-out of the

ood insurance subsidies will lead to large increases in the cost of flood

nsurance in the city’s flood zone. Interestingly, the highest increases

ill not concern the properties that face the highest risk of flooding.

ather, the highest increases in flood insurance costs will be suffered by

he properties that were just outside the high-risk zone under the old

ap but are located in the high-risk zone of the 2013 map, which is the

ase for more than 20,000 structures. 41 

.2.2. Our test 

Separately identifying the effect of flood insurance reform from the

ffect of hurricane Sandy is complicated by the fact that both events

verlapped in time and space. To try to accomplish this task, we ob-

ained the geo-coded data for the 1983/2007 (effective) flood map, and

or the 2013 (preliminary) map from FEMA, and matched them with our

ales dataset. Next, we classified all properties in the city on the basis

f their risk category in each of the two flood maps, and created an in-

icator for parcels that were not in the high risk zone according to the

983/2007 map but are considered to be at high risk of flooding under

he preliminary 2013 map. For short we will refer to these properties as

ew risks . 

The rationale behind our test is to investigate whether the values for

ew-risk properties have fallen disproportionately more. It is important

o keep in mind that the flood insurance reforms will affect all home-

wners that carry flood insurance, as subsidies are gradually removed.

owever, new-risk properties are likely to suffer from a larger increase

n flood insurance costs (or the need to invest heavily in their property

o meet the more demanding building code requirements for the high-

isk zone). Within HEZAB , 74% of properties have the same risk levels

nder both flood maps, but 25% (or 17,314) are considered at high risk

f flooding in the 2013 map but were deemed to be at low risk in the

983/2007 flood map. 

Table C.4 presents the results of our test. In column 1 we reproduce

stimates already discussed earlier, where the post-Sandy reduction in

ousing prices is estimated to be 7 log points for the properties located

n HEZAB. Column 2 replaces indicator HEZAB for an indicator for new-

isk properties, along with its interaction with the post-Sandy indicator.

he interaction term is highly significant and the point estimate entails

 6 log-point price reduction for new-risk properties, closely matching

he finding in column 1. In order to disentangle the roles played by

aving been affected by Sandy (measured by HEZAB) and being reclas-

ified as a high flood risk in the 2013 flood map, we estimate a model

hat includes both sets of indicators. The estimates for this horse-race

odel are reported in column 3. The point estimate for the coefficient

f the interaction term for HEZAB falls only slightly, to −0 . 06 , relative

o column 1. In contrast, the coefficient of the interaction for new risks

alls to −0 . 01 and becomes statistically insignificant. Thus, the drop in

ousing prices from the beginning of 2013 onward appears to be linked

o being located in the hurricane evacuation zones, rather than to being

 new risk . Last, column 4 disaggregates HEZAB by the level of damage
41 Since these properties were not considered to be at risk of flooding, they 

ere not build according to the elevation requirements of the properties in the 

igh-risk zone. As a result, when they become subject to the new mandatory 

equirements their rates will be much higher than for the typical properties 

hat had been in the high-risk zone all along. According to Dixon et al. (2013) , 

 typical increase in flood insurance premiums will entail an increase in the 

nnual premium from $500 to $5000 in order to keep constant the level of 

overage. Rule-of-thumb capitalization rules for such a permanent increase in 

andatory flood insurance could lead to reductions in the value of the property 

f approximately $90,000. Given that the typical house in these areas has an 

ssessed market value of approximately $500,000, thus the resulting reduction 

n value would be around 18%. 
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uffered by each property. The results again confirm the previous inter-

retation: new-risk properties do not seem to have suffered a reduction

n value. 

Summing up, flood insurance reform does not appear to be responsi-

le for the price declines documented earlier. However, we expect that

nce the new flood map becomes effective, housing prices on the flood

one will adjust in response to the higher premiums. 

.3. Learning about flood risk 

The mechanisms discussed above do not provide satisfactory expla-

ations for the persistent reduction in housing values in New York’s

ood zone following hurricane Sandy. This section presents a mech-

nism that does appear to be consistent with our empirical findings.

n a nutshell, hurricane Sandy may have revealed important informa-

ion regarding the risks of living in flood-prone areas and, more specifi-

ally, about the probability of extreme events that had previously been

onsidered practically impossible. This idea has been formalized by

ozlowski et al. (2015) in the context of macroeconomic fluctuations.

hese authors argue that it provides a plausible explanation for the slow

ecovery from the Great Recession. 42 

For decades, urban economists have recognized that households do

ot have perfect information regarding the likelihood of hazard events

nd, therefore, update their beliefs on the basis of new information and

his may affect housing values ( Rubin and Yezer, 1987 ). However, indi-

idual occurrences of common events typically will have much smaller

ffects on beliefs than unexpected or unusually large ones ( Yezer, 2010 ).

his important observation helps account for the short persistence of

he effects of flooding episodes documented in many studies. For in-

tance, Kocornik-Mina et al. (2015) examined a large dataset of mas-

ive flooding events across the world and concluded that economic

ctivity (measured by night lights) typically returned to pre-flooding

evels after one year. In the context of the effects of hurricanes on

ousing prices, Hallstrom and Smith (2005) , Bin and Landry (2013) ,

treya et al. (2013) and Zhang (2016) reported temporary reductions

n the prices of houses located on the flood plain, with the effects van-

shing rapidly, often within 2 or 3 years. Complementing these stud-

es, Gallagher (2014) documented that flooding events are typically

ollowed by spikes in flood-insurance take-up rates. These sudden in-

reases are short-lived, peaking 1 or 2 years after the flood and con-

erging rapidly to baseline levels. In a recent study, Bakkensen and Bar-

age (2017) build a model of the housing market where flood risk beliefs

re endogenously updated. Their analysis highlights that belief hetero-

eneity can magnify substantially the negative price effects of sea level

ise. 

In contrast, as formalized by Kozlowski et al. (2015) , extreme shocks,

uch as the Great Recession or hurricane Sandy, can lead to highly

ersistent changes in beliefs and in the economic outcomes affected

y those beliefs. The key to modeling this type of learning is to con-

ider flexible specifications for beliefs, where new observations lead to

pdates of the density locally around those observations. Because ex-

reme events are typically infrequent, their influence on that region of

he distribution of beliefs is highly persistent. In our context, hurricane

andy may have led to an increase in the probability of massive flooding

vents, reducing the willingness to pay for living in flood-prone areas. 43 

Additional evidence in favor of an information-based mechanism is

rovided by the recent study by Bernstein et al. (2018) . The goal of

his study is to estimate the effects of exposure to rising sea levels on
42 This mechanism is also similar to the explanation proposed by Abadie and 

ermisi (2008) to account for the reduction in the demand for downtown office 

pace in Chicago following the attacks of 9/11. 
43 This mechanism is further supported by the analysis in Conte and 

elly (2017) who provide evidence of thick tails regarding the distribution of 

amages arising from a hurricane. Naturally, an upward revision in flood risk 

ill negatively affect rents and housing prices, as is the case in Frame (1998) . 

t

l

e

(

b

c

t

96 
ome prices using a nation-wide data (from Zillow). In contrast to us,

heir analysis does not focus on the aftermath of any specific flooding

vent. The main finding is that flood-prone houses sell at a 7.5% dis-

ount relative to observationally equivalent properties that are at the

ame distance from the coast but face a much lower risk of flooding.

he authors argue that the effect on home prices is driven by sophisti-

ated buyers and communities that are concerned about and aware of

he consequences of climate change. 

. Conclusion 

Our analysis has provided robust evidence that hurricane Sandy led

o an important, and highly persistent, reduction in prices in the af-

ected neighborhoods. Our findings suggest that properties damaged by

he hurricane suffered a large immediate drop in value, and recovered

nly part of their original value. In contrast, non-damaged properties

n the flood zone experienced a gradual reduction in prices over the 5-

ear period following the storm. Our findings suggest that, by 2017, the

enalty associated with being located in the affected areas converged

o approximately 9%, regardless of the degree of damage caused by the

torm. 

In our view, the partial recovery in the values of properties that were

amaged by the hurricane reflects the gradual process of repairing and

ebuilding. However, the most likely explanation for the persistent price

enalty, which affects even properties that were not damaged by Sandy,

s that the storm triggered an upward revision of the risk of massive

ooding events. More research is needed to try to document the various

ays in which households and businesses located in flood-prone areas

ry to adjust to the increased perception of the risk of living in those

reas. 

ppendix A. Merging process 

Each dataset uses a different system of geographic coordinates. The

ousing dataset identifies observations by exact address and tax lot iden-

ifiers; FEMA data employ spherical latitude and longitude; and the hur-

icane evacuation zones (HEZ) are geocoded using the cartesian approx-

mation for New York State. 

Our strategy was to map the FEMA and HEZ datasets into tax lots,

hich could then be merged with the housing data. To do so we used an

dditional dataset as cross-walk. This dataset is called PLUTO and is a

ompilation of variables maintained by different New York City agencies

hat contains a wealth of information. 44 Using the PLUTO shape files,

e were able to map each of the points in the HEZ and FEMA datasets

nto the corresponding polygons of the tax lots. We refer to this dataset

s FEMA-HEZ, which contains the hurricane evacuation zone and the

xtent of damage for all tax lots in New York City. 45 The accuracy of this

erge was extremely high. Furthermore, PLUTO identifies each parcel

olygon by its center-point coordinates (based on the New York State

lane approximation) along with its borough, block and lot (or BBL),

hich allows us to match the FEMA-HEZ data with the housing dataset

y BBL. 

.1. More details on merging of datasets 

We describe in more detail the merging process. 
44 PLUTO contains information on over 857,000 tax lots, corresponding to 

hree types of data: tax lot characteristics, building characteristics, and district- 

evel data. In PLUTO all apartments belonging to the same Coop will display the 

xact same information (e.g. year built) because they belong to the same tax lot 

BBL). Unlike other city datasets, in PLUTO all Condo apartments in the same 

uilding appear under a common tax lot and thus are treated symmetrically to 

oop apartments. 
45 We note that the variables in this dataset (storm surge, damage determina- 

ion points, and hurricane evacuation zones) do not vary over time. 
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1. FEMA Damage-Point Estimates and PLUTO. In the FEMA data, each

observation is characterized by its longitude and latitude in spheri-

cal coordinates. In total we had more than 55,000 individual points

corresponding to New York City (and 319,000 for the overall Sandy

inundation zone). We first mapped spherical coordinates to Carte-

sian XY (New York state) coordinates. Next we mapped these into

New York City tax lots using the shape files provided by PLUTO. In

the resulting dataset each observation is identified by its BBL (and

its longitude and latitude). 

Then we proceeded to check the quality of the merge between the

FEMA and PLUTO datasets. About 99.7% of the cases in the FEMA

data mapped into a NYC tax lot. Next, we randomly sampled 50

cases and manually checked that their spherical coordinates landed

in the correct tax lot. 46 The matches were correct in 98% of the cases

(49 out of the 50). 47 In short the mapping from FEMA to tax lots in

PLUTO was extremely accurate. 

2. Multiplicity of FEMA cases within a BBL. In the FEMA data, each ob-

servation is uniquely defined by an administrative ID, which is not

useful for our purposes, and a latitude-longitude (Cartesian) pair.

However, not all of these observations are uniquely matched to a

single BBL. 48 Specifically, 14% of all FEMA cases correspond to mul-

tiple determinations points within the same tax lot. 49 We adopt the

simplest option: we average damage values across all cases within

the same BBL. 

3. FEMA-PLUTO and HEZ. We checked the quality of this match in

a similar manner as before. Again the success rate was very high:

only 0.4% of the cases (fewer than 200) in the FEMA-PLUTO data

were not matched to a tax lot. We again randomly sampled 25 cases

from the FEMA-PLUTO-HEZ dataset. We checked the spherical co-

ordinates for each of those points using the NYC City Map to locate

the resulting tax lot, and the NYC Hurricane Evacuation Zone Map

to check the evacuation zone assigned to that point. The success rate

was 100%. 

4. FEMA Storm Surge and PLUTO. The raw storm surge data contains

350,154 observations covering the 5 boroughs of the city. Each ob-

servation refers to a longitude-latitude pair and the data has high ge-

ographic resolution. Hence, not surprisingly, many points map into

the same BBL and therefore there are many duplicates (about 2000

on average but ranging from 1 to 30,089). Since our unit of analy-

sis is based on BBLs in the final dataset, we now collapse by BBL.

The resulting data contains 7,675 observations. We then proceed to

merge with PLUTO and obtain a perfect match (except for one ob-

servation). Some of those BBLs are among the small number that

cannot be assigned to a hurricane evacuation zone (including the

non-evacuation zone). In the end 6449 BBLs can be matched with

the PLUTO-HEZ dataset. We view this list of BBLs as the complete

list of BBLs that were located in the Sandy surge area. 

The PLUTO-HEZ-FEMA Data. This dataset encompasses all the data

hat is time-invariant: the inclusion or not of each tax lot in a hurri-

ane evacuation zones and the level of damage (if any) suffered during

andy. The unit of observation is the BBL. 50 We then merge these data

ith the property sales dataset, where the unit of observation is the

BL-Apartment and year. The merger proceeds in several steps. First,

e begin with the PLUTO-HEZ dataset, which contains 857,000 tax lots.
46 To do this we used the NYC City Map 

 http://maps.nyc.gov/doitt/nycitymap ). 
47 In the unsuccessful match the procedure identified the neighboring lot. 
48 The 55,534 observations correspond to 47,879 unique BBLs. 
49 Specifically, 3.80% of the observations appear exactly twice in a BBL, 1.08% 

ppear exactly three times in a BBL, 0.66% appear four times, and 8% appear 

 or more times. The most extreme case is a BBL for which we have 1911 ob- 

ervations, which corresponds to the Breezy Point Cooperative in Queens that 

ontains many one-family houses. 
50 Recall that in the FEMA dataset we collapsed all cases by BBL so that in- 

tances of multiple cases with the same BBL got averaged into a single value. 
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97 
owever, in 27,000 cases the hurricane evacuation zone is missing. We

rop these observations so that the resulting dataset has about 830,000

ax lots. Second, we merge with the PLUTO-FEMA dataset, which con-

ains roughly 48,000 cases (tax lots). This dataset contains all the tax

ots (buildings) affected by Sandy. The vast majority (98%) of the tax

ots in PLUTO-FEMA are successfully matched to the (much larger) set

f tax lots in the PLUTO-HEZ dataset. The crucial step now is that we

ssign a zero value for the damage variable to all tax lots that were in

he PLUTO-HEZ dataset but were not in the PLUTO-FEMA dataset. That

s, we rely on the fact that the FEMA dataset contained all buildings af-

ected by Sandy and that any building not included in the dataset was

ot damaged. The combined PLUTO-HEZ-FEMA dataset contains over

30,000 tax lots. 

Details on HEZ. Table C.1 in Appendix B reports the distribution of tax

ots (BBLs) across hurricane evacuation zones. About 4% of the parcels

re located in HEZA and HEZAB accounts for 13% of the city’s parcels.

he city borough with the highest share of tax lots on HEZAB is Brooklyn

ith 21%. 

Details on damage-point estimates. Table C.2 reports the classification

f damage levels across buildings in the overall Sandy inundation zone

nd in the subset that is located within New York City. Column 1 re-

orts damage levels for the buildings in the whole Sandy inundation

rea (close to 319,000 observations), with almost 7% of all buildings

aving suffered major damage. Column 2 reports on the points of the

andy inundation zone located in New York City. Over 13% of all build-

ngs in this area suffered major damage. Columns 3 through 7 report the

amage distributions for each of the five boroughs. Focusing on the cate-

ory of major damage, Staten Island and Queens were the boroughs that

ere hit the hardest, with 26% and 17% of the buildings having suffered

ajor damage, followed by Brooklyn (8%). The Bronx and Manhattan

ere the boroughs for which major damage was much less prevalent

2.40% and 0.31%, respectively). 51 

ppendix B. More details on sales-FEMA dataset 

We begin by verifying that the final dataset retains the key features

f the original data in terms of differences across boroughs in average

ousing prices and average damage inflicted by Sandy. Table 1 reports

ummary statistics for these data. First, Manhattan remains as the bor-

ugh with the highest median sale prices (640,000 dollars), followed

y Brooklyn (369,000 dollars), Queens (400,000 dollars), the Bronx

369,000 dollars), and Staten Island (395,000 dollars). In comparison

he median sale price (across all years and boroughs) for New York City

s 440,000 dollars. 52 Next, we focus on the share of properties in each

orough that are located in hurricane evacuation zones A or B (HEZAB).

rooklyn and Staten Island are the city boroughs with with the highest

hare of properties on HEZAB, at 19% and 16%, respectively, followed

y Queens (8%), Manhattan (6%), and at a large distance behind, the

ronx (2%). 53 Finally, we turn to average damage levels caused by hurri-

ane Sandy. In our combined dataset, Brooklyn and Queens are the bor-

ughs that suffered the most damage. Respectively, 0.85% and 0.76%

f all properties in these boroughs suffered major damage or were de-

troyed, compared to a city-wide average of 0.51%. Although the fig-

res are not directly comparable because of the different denominators

citywide versus inundation zone), the ranking is consistent with the

igh levels of damage in these boroughs reported in the original FEMA

ata ( Table C.2 ). 
51 We note that these percents do not refer to all buildings in the city or borough 

ut, rather, only to the buildings that were part of the inundation zone. 
52 Condo apartments could not be merged into our dataset due to a recoding 

n the PLUTO dataset. 
53 For New York City as a whole, 11% of observations in our final dataset are 

ocated on HEZAB. 

http://maps.nyc.gov/doitt/nycitymap


F. Ortega, S. Ta ṣ p ı nar Journal of Urban Economics 106 (2018) 81–100 

A

ane evacuation zones. 

gency Management. July 2011 version. 

HEZ B HEZ C Rest of city 

0.10 0.23 0.65 

0.02 0.16 0.82 

0.17 0.24 0.54 

0.08 0.12 0.79 

0.02 0.10 0.76 

0.09 0.17 0.70 

ax parcels of each of the five boroughs across the 

ased on PLUTO-HEZ dataset. Zone A is the highest 

 Bronx Brooklyn Queens SI 

69.87 43.50 32.20 35.74 

27.73 48.74 50.38 37.46 

2.40 7.75 17.40 26.15 

0.00 0.02 0.01 0.66 

1958 29,916 21,420 11,576 

tion estimates data. Specifically, we use the variable 𝐷𝑀 𝐺 _ 𝐶𝑂𝑀 𝐵 that is based 

servation damage. Sample “All ” refers to all buildings in the Sandy Inundation 

rminations were made outside the inundation zone. Sample “NYC ” refers to the 

attan, Bronx, Brooklyn, Queens and Staten Island). Each column adds up to 100 
ppendix C. Tables and Figures 

Fig. C.1. Hurric

notes: New York City Office of Emer

Table C.1 

Hurricane evacuation zones. 

Borough HEZ A 

1 Manhattan 0.02 

2 Bronx 0.00 

3 Brooklyn 0.04 

4 Queens 0.01 

5 Staten Island 0.12 

NYC 0.04 

Source: The table reports the distribution of t

hurricane evacuation zones. Calculations are b

risk and zone C the lowest risk. 

Table C.2 

FEMA damage determination estimates. 

Sample All NYC Manhattan

% Affected 50.01 39.10 39.88 

% Minor 43.10 46.95 59.80 

% Major 6.90 13.56 0.31 

% Destroyed 0.26 0.39 0.00 

Obs. 318,735 67,302 2254 

Notes: Own calculations based on FEMA’s building point damage determina

on a combination of visible aerial imagery and field-verified inundation ob

area (318,735) as well as points where visible aerial imagery damage dete

subset of buildings that are in one of New York City’s five boroughs (Manh
as it reports the distribution over damage levels for each of the samples. 

98 
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Table C.3 

Enrollment in public schools. 

Dep. Var. 1 2 3 

lnenrol lnenrolpkk12 pctblackhisp 

Post × AvHEZAB − 0.01 0.01 0 

[0.02] [0.02] [0.00] 

Post × AvDam0 

Post × AvDam1 

Post × AvDam2 

Obs. 3178 3173 3178 

Groups 646 646 646 

R -squared 0.003 0.021 0.042 

Fixed-effects school DBN school DBN school DBN 

Clustering s.e. Block Block Block 

Notes: The dependent variables in columns 1–4 are: log of enrollment in ele

black or hispanic students, percent of poor students. The dependent variab

by total school enrollment. School DBN is the official numerical identificat

in school district s that lie within HEZAB. avDam 0 s is the fraction of prop

Analogous definitions apply for avDam 1 s and avDam 2 s . 
∗ ∗ ∗ p < 0.01, ∗ ∗ p < 0

Table C.4 

Horse race between HEZAB and ‘New risks’. 

Horse race 1 

Dep. var. lnp 

Post × HEZAB − 0.07 ∗ ∗ ∗ 

[0.01] 

Post × Newrisk 

Post × Dam0 

Post × Dam1 

Post × Dam2 

Observations 192,055 

R -squared 0.141 

Number of BB 18,455 

Quarter dummies Yes 

Controls Yes 

Notes: Sample of 1-family and 2-family houses. A property is classified as N

Insurance Rates Map but was not on the floodplain under the 2007 (effectiv

include the log of the gross square footage and the year built or last altered

and Dam2, included in the relevant specifications. 
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