Department of Mathematics, Queens College
Math 141 Final Exam, Fall 2006

This exam has two parts. You have 2% hours to answer the questions. You must show
all your work in the provided exam book.

PART I: CLEARLY WRITE THE LETTER OF THE CORRECT ANSWER IN YOUR EXAM BOOK.
EACH QUESTION HAS 3 POINTS.

1. The domain of the function f(x) = v/ + +/—x consists of

(A) all real numbers x Byallx >0 Qallx<0 (D) only x = 0
2 tm 20 is
) x=2+ x+2 |
1 , 1
(A) oo (B) —o0 - © 3 D) -7
3. lim sin x
"x50 x + tan x
(A)is0 (B) is % {Ois1 (D) does not exist

x? -1 forx <1

. Th
2x — 2 forx > 1 e

4. Suppose f(x) = {
(A) f is not continuous at x = 1
(B) f is continuous at x = 1 but f'(1) does not exist
(C) f(1) exists and is equal to 0
(D) f'(1) exists and is equal to 2

5. If f(x) = sin(x + cos x), then f'(x) is

(A) cos(1 — sin x)
(B) cos(x + cos x)
(C) (1 — sinx) cos(x + cos x)

(D) (1 + sinx) sin{x + cos x)
6. If f(x) = /14 4/x, then f'(9) is
1
@) ® 75 © 55 ® &

7. The position of a mass suspended from a spring is given by s(t) = 4t sin(5¢),
where s is in centimeters and ¢ is in seconds. Its acceleration (in cm/ sec?) at time

t=m/10is

(A) —107 (B) —57 (C) 0 (D) 20%
8. An equation of the téngent line to the ellipse 4x + y? = 25 at the point (2, 3) is

@Wy=3x+3 Gr=-fx+7 Oy=2-] Oy=-2Z
9. If e is very small, the best linear approximation to tan (% + e) is

(A)1 (B) 1+ 2¢ (c)1+§— (D)1+e¢

continued on the other side —



10, lim Y3 +H 2
h—0 h
(A) f(x)=xanda =8
(B) f(x) = yxanda =2
O f(x) =vB+xanda=38
D) f(x)=V8+xanda =2

11. Suppose f is a differentiable function such that f(—~1) = 1and f(1) = —1. Then
we can find a number ¢ in (~1,1) such that

(A) f{c)=0 (B) f'(c) = —1 ©) filc) = -2 - (D) f'(e) = -4
12. A function f whose derivative is f'(x) = (x — 1)(x® — 1) has

(A) a local minimum and a local maximum

(B) a local maximum only

(C) alocal minimum and a critical point of neither type
(D) a local maximum and a critical point of neither type

describes the derivative f'(a), where

PART II: SOLVE THE FOLLOWING 4 PROBLEMS. MAKE SURE YOU SHOW ALL YOUR WORK.

Problem 1. [10 points] Explain, without using a calculator, why the equation
P+3x-1=0

must have a root between 0 and 1. Then use a calculator to find the approximate location
of this root. Round your answer to 4 decimal places.

x+1
x2
(i) Find the domain of f and the vertical and horizontal asymptotes of its graph.
(i) Find the formulas for f""and f” and use them to determine the intervals of in-

crease/decrease and concavity of f. Make sure you clearly identify the critical

point(s) and their type (i.e., local max, local min, neither) as well as the inflection
point(s).

Problem 2. [20 points] Consider the function f(x) =

(iif) Use your calculator to graph f in an appropriate window and copy what you see
in your exam book. Explain why the features of this graph are consistent with
your findings in (i) and (ii).

1

Problem 3. {14 points] A balloon is rising 3
vertically over a point A on the ground
at the rate of 15 feet per second. Another
point B on the ground is 30 feet from A. At
the moment the balloon is 40 feet from A,

how fast is its distance from B increasing?

: ,

1 ‘\

1 .

A B
: "

~——30——

Problem 4. [20 points] A closed cylindrical can is to contain 1000 in® of liquid. It costs 1
cent/in? to make the side and 3 cents/in? to make the top and bottom. What dimensions
will minimize the manufacturing cost of this can? What will be the minimum cost? (For
a cylinder of base radius r and height k,

volume = nr?h  side area = 27rh top area = bottom area = 7r°.)
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