Department of Mathematics, Queens College Math 141 Final Exam, Fall 2006

This exam has two parts. You have $2\frac{1}{2}$ hours to answer the questions. You must show all your work in the provided exam book.

 $\underline{PART\ I}$: Clearly write the letter of the correct answer in your exam book. Each question has 3 points.

(A) all real numbers x (B) all $x \ge 0$ (C) all $x \le 0$ (D) only x = 0

1. The domain of the function $f(x) = \sqrt{x} + \sqrt{-x}$ consists of

2. $\lim_{x \to -2^+} \frac{x^2 - 5}{x + 2}$ is	·		
(A) +∞	(B) −∞	(C) $\frac{1}{4}$	(D) $-\frac{1}{4}$
3. $\lim_{x \to 0} \frac{\sin x}{x + \tan x}$			
(A) is 0	(B) is $\frac{1}{2}$	(C) is 1	(D) does not exist
4. Suppose $f(x) =$	$\begin{cases} x^2 - 1 & \text{for } x \le 1 \\ 2x - 2 & \text{for } x > 1 \end{cases}$	Then	
(A) f is not continuo (B) f is continuo (C) $f'(1)$ exists a (D) $f'(1)$ exists a	us at $x = 1$ but $f'(1)$ do nd is equal to 0	es not exist	
5. If $f(x) = \sin(x - 1)$ (A) $\cos(1 - \sin x)$ (B) $\cos(x + \cos x)$ (C) $(1 - \sin x)$ co (D) $(1 + \sin x)$ si	$\frac{x'}{\cos(x+\cos x)}$		
6. If $f(x) = \sqrt{1+x}$	\sqrt{x} , then $f'(9)$ is		
(A) $\frac{1}{6}$	(B) $\frac{1}{12}$	(C) $\frac{1}{24}$	(D) $\frac{1}{48}$
7. The position of where s is in cer $t = \pi/10$ is	a mass suspended from t is in second t is in second t	n a spring is given onds. Its acceleration	by $s(t) = 4t \sin(5t)$ in (in cm/sec ²) at time
(A) -10π	(B) -5π	(C) 0	(D) 20n
8. An equation of t	he tangent line to the el	$lipse 4x^2 + y^2 = 25 a$	t the point (2,3) is
	(B) $y = -\frac{4}{3}x + \frac{17}{3}$		
9. If s is very small	the best linear approvi	mation to $\tan \left(\frac{\pi}{2}\right)$) ia

(B) $1 + 2\varepsilon$

(A) 1

(C) $1 + \frac{\varepsilon}{2}$

(D) $1 + \varepsilon$

10.
$$\lim_{h\to 0} \frac{\sqrt[3]{8+h}-2}{h}$$
 describes the derivative $f'(a)$, where

(A)
$$f(x) = \sqrt[3]{x}$$
 and $a = 8$

(B)
$$f(x) = \sqrt[3]{x}$$
 and $a = 2$

(C)
$$f(x) = \sqrt[3]{8+x}$$
 and $a = 8$

(D)
$$f(x) = \sqrt[3]{8+x}$$
 and $a = 2$

11. Suppose f is a differentiable function such that f(-1) = 1 and f(1) = -1. Then we can find a number c in (-1,1) such that

(A)
$$f'(c) = 0$$

(B)
$$f'(c) = -1$$

$$(C) f'(c) = -2$$

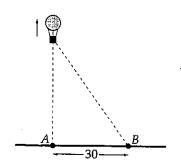
(B)
$$f'(c) = -1$$
 (C) $f'(c) = -2$ (D) $f'(c) = -4$

12. A function f whose derivative is
$$f'(x) = (x-1)(x^2-1)$$
 has

- (A) a local minimum and a local maximum
- (B) a local maximum only
- (C) a local minimum and a critical point of neither type
- (D) a local maximum and a critical point of neither type

PART II: SOLVE THE FOLLOWING 4 PROBLEMS. MAKE SURE YOU SHOW ALL YOUR WORK.

Problem 1. [10 points] Explain, without using a calculator, why the equation


$$x^3 + 3x - 1 = 0$$

must have a root between 0 and 1. Then use a calculator to find the approximate location of this root. Round your answer to 4 decimal places.

Problem 2. [20 points] Consider the function $f(x) = \frac{x+1}{x^2}$.

- (i) Find the domain of f and the vertical and horizontal asymptotes of its graph.
- (ii) Find the formulas for f' and f'' and use them to determine the intervals of increase/decrease and concavity of f. Make sure you clearly identify the critical point(s) and their type (i.e., local max, local min, neither) as well as the inflection point(s).
- (iii) Use your calculator to graph f in an appropriate window and copy what you see in your exam book. Explain why the features of this graph are consistent with your findings in (i) and (ii).

Problem 3. [14 points] A balloon is rising vertically over a point A on the ground at the rate of 15 feet per second. Another point B on the ground is 30 feet from A. At the moment the balloon is 40 feet from A, how fast is its distance from B increasing?

Problem 4. [20 points] A closed cylindrical can is to contain 1000 in³ of liquid. It costs 1 cent/in² to make the side and 3 cents/in² to make the top and bottom. What dimensions will minimize the manufacturing cost of this can? What will be the minimum cost? (For a cylinder of base radius r and height h,

volume =
$$\pi r^2 h$$
 side area = 2π

side area =
$$2\pi rh$$
 top area = bottom area = πr^2 .)