To get full credit you must show all work

- 1.(7) A box has a square base and a closed top. The volume is 3000 ft³. The top costs \$4/sq ft. The bottom costs \$8/sq ft. The sides cost \$2/sq ft. Find the dimensions of the box that minimizes the total cost. Justify that your answer gives the <u>absolute</u> minimum.
- 2.(6) Use the definition of definite integral; i.e., the limit of the Riemann sum, to evaluate $\int_{1}^{2} x^{2} dx$.

Note:
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}, \qquad \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
.

3.(6) Find the exact value of: $\int_{5}^{0} \sqrt{25-x^2} dx$ without using your calculator.

[Hint: consider the relationship of the definite integral to the area under the curve]

4.(20) Find $\frac{dy}{dr}$ for each of the following:

a)
$$y = \frac{x^3 \sqrt{x^2 + 1}}{(x+3)^{3/2}}$$
 [Hint: Use logarithmic] b) $y = \sin^{-1}(e^x)$ c) $y = \ln(x^3) + (\ln x)^3$

d)
$$y=x^2+2^x+x^x+2^2$$
 e) $y=\int_{\sin x}^3 \sqrt{3+t^2} dt$

5.(28) Evaluate each of the following integrals:

a)
$$\int \frac{x dx}{\sqrt{4-x^2}}$$
b)
$$\int \frac{dx}{\sqrt{4-x^2}}$$
c)
$$\int \frac{1+e^{2x}}{e^x} dx$$
d)
$$\int \frac{e^x}{1+e^{2x}} dx$$

- 6.(15) Let R be the region in the plane bounded by the curves $y=x^2$ and y=x+2. Set up, but you need **not** evaluate, the definite integrals for:
 - a) the area of R.
 - b) the volume generated by rotating R about the x-axis
 - c) the volume generated by rotating R about the line x = -1
- 7.(8) Let $f(x) = \frac{1}{x+1}$ for $x \ge 0$
 - a) Show that f has an inverse. Call it g.
 - b) Find g(x)
 - c) Find $g'(\frac{1}{2})$ in two ways:
 - i. by differentiating the expression for g(x),
 - ii. by using the general formula for the derivative of an inverse function.

8.(8) Evaluate: a)
$$\lim_{x\to\infty} \left(\frac{x}{x-2}\right)^x$$
 b) $\lim_{x\to0} \left(\frac{\sin 3x}{e^x-e^{-x}}\right)$.

- 9.(7) A bacteria culture grows at a rate proportional to its size. After 1 hour the bacteria count was 100 and after 3 hours it was 2500.
 - a) What was the initial population of the culture?
 - b) Find an expression for the population after t hours.
 - c) In what period of time does the population double?