QUEENS COLLEGE DEPARTMENT OF MATHEMATICS

Final Examination 2 1/2 Hours

Mathematics 142

Fall 2006

Instructions: Answer all questions. Show all work.

1) Find the following indefinite integrals:

(a)
$$\int x \tan(x^2) dx$$

(b)
$$\int \frac{dx}{\sqrt{1-9x^2}}$$

(c)
$$\int \cos x \ e^{\sin x} \ dx$$

(d)
$$\int \frac{dx}{\sqrt{1-9x}}$$

- 2) Consider the sum $S_n = \sum_{i=1}^n \frac{1}{n} (2 + e^{i/n})$.
 - (a) Use your calculator to compute S_{20} .
 - (b) Interpret S_n as a Riemann sum associated with a specific definite integral and thereby evaluate $\lim_{n\to\infty} S_n$
- 3) A piece of wire is bent into the shape of a sector of a circle as shown in the accompanying figure. If the sector is to enclose an area of π square centimeters, what are the dimensions which minimize the length of the wire?

$$\left(\text{area of sector A} = \frac{1}{2}r^2\theta\right)$$

- 4) Let R be the region in the plane bounded by the curves $y=x^2$ and y=x+12. Set up, but do <u>not</u> evaluate, definite integrals for:
 - (a) The area of R
 - (b) The volume generated by rotating R about the x axis
 - (c) The volume generated by rotating R about the line x=10.
- 5) Find the derivative $\frac{dy}{dx}$ in each of the following:

(a)
$$y = x^3 + 3^x$$

(b)
$$y = \sin^{-1}(x^2)$$

(c)
$$y=x(\ln x)^3$$

(d)
$$y = \int_{2}^{x} \sqrt{2 - \sin t} \ dt$$

- Show $f(x)=4x+\cos x-\sin x$ has an inverse g on <u>any</u> interval. (Do not attempt to find it!) For the interval $[0,3\pi]$, determine the domain and range of g. Given that $(\frac{\pi}{4},\pi)$ is a point on the graph of f, compute $g'(\pi)$.
- 7) A continuous function, f, takes on the following values: f(0)=4, f(1)=0, f(2)=-6, f(3)=-5, f(4)=-2, f(5)=-1, f(6)=1, f(7)=5, f(8)=-2, f(9)=-3.
 - (a) Evaluate $\int_1^8 f'(x) dx$,
- **(b)** If $g(x) = \int_1^x f(t) dt$ evaluate g'(5).

(over)

- 8) The fish population in a lake is growing exponentially. If it triples in 10 years, how long does it take to double?
- 9) Find an equation for the curve that passes through the point (1,1) and such that the slope of the tangent line at (x,y) is $\frac{y^2}{x^3}$.