Solutions to problems on the first midterm

Józef Dodziuk

October 7, 2016

1 Rewrite the equation as $-A^{5}+5 A^{4}-4 A^{3}+A^{2}-A=I$ and then factor out A of the left side to get $\left(-A^{4}+5 A^{3}-4 A^{2}+A-I\right) A=I$. This shows that A is invertible with the inverse $\left(-A^{4}+5 A^{3}-4 A^{2}+A-I\right)$.

2 Start with the 4×8 matrix

$$
\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 3 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 3 & 5 & 0 & 0 & 0 & 1 & 0 \\
1 & 3 & 5 & 7 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Subtract the first row from the second, then from the third and from the fourth. The result of these three row operations is

$$
\left[\begin{array}{rrrrrrrr}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 3 & 5 & 0 & -1 & 0 & 1 & 0 \\
0 & 3 & 5 & 7 & -1 & 0 & 0 & 1
\end{array}\right] .
$$

Now subtract the second row in turn from the third and the fourth to get

$$
\left[\begin{array}{rrrrrrrr}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 5 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 5 & 7 & 0 & -1 & 0 & 1
\end{array}\right] .
$$

Then subtract the third row from the fourth to obtain

$$
\left[\begin{array}{rrrrrrrr}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 5 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 7 & 0 & 0 & -1 & 1
\end{array}\right] .
$$

Now divide rows by appropriate constants to get the identity matrix in the first 3×3 block.

$$
\left[\begin{array}{rrrrrrrr}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{3} & \frac{1}{3} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & -\frac{1}{5} & \frac{1}{5} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & -\frac{1}{7} & \frac{1}{7}
\end{array}\right]
$$

The inverse is the matrix consisting of the last four columns.

3 Use row operations to reduce the matrix to a triangular form. Here is what I got (yours may look somewhat different but would lead to the same answer).

$$
\left[\begin{array}{ccc}
1 & c & 1 \\
0 & 1 & c \\
0 & 0 & c\left(c^{2}-2\right)
\end{array}\right]
$$

An upper triangular matrix is invertible if and only if all of its diagonal entries are nonzero. Thus for the original matrix to be invertible $c \neq$ $0, \sqrt{2},-\sqrt{2}$.

4 To verify that one matrix is the inverse of another, just multiply them to see whether the product is the identity matrix. Then to solve an equation $A X=B$ set $X=A^{-1} B$. In our case,

$$
X=\frac{1}{9}\left[\begin{array}{rrr}
-5 & -1 & -1 \\
1 & -7 & 2 \\
-1 & -2 & -3
\end{array}\right]\left[\begin{array}{llll}
4 & 3 & 2 & 1 \\
6 & 7 & 8 & 9 \\
1 & 3 & 7 & 9
\end{array}\right] .
$$

5 Rewrite the equation as $Q(A \mathbf{x})=0$. Since Q is invertible our equation is equivalent to $Q^{-1} Q(A \mathbf{x})=0$, i.e. $A \mathbf{x}=0$

6 We use matrices and row reduction although we could work with equations themselves equally well. The augmented matrix of the system is

$$
\left[\begin{array}{rrrr}
1 & -2 & -1 & b_{1} \\
-4 & 5 & 3 & b_{2} \\
-2 & 1 & 1 & b_{3}
\end{array}\right] .
$$

We use row reduction to bring it to the form

$$
\left[\begin{array}{rrrc}
1 & -2 & -1 & b_{1} \\
0 & -3 & -1 & b_{2}+4 b_{1} \\
0 & 0 & 0 & b_{3}-b_{2}-2 b_{1}
\end{array}\right] .
$$

This rewritten in terms of equations yields

$$
\begin{array}{rlcc}
x_{1}-2 x_{2}-x_{3} & = & b_{1} \\
& -3 x_{2}-x_{3} & = & b_{2}+4 b_{1} \\
& 0 & = & b_{3}-b_{2}-2 b_{1} .
\end{array}
$$

Thus $b_{3}-b_{2}-2 b_{1}=0$ is a necessary condition for a solution to exist. It is also sufficient since, assuming $b_{3}-b_{2}-2 b_{1}=0$, we can assign any value to x_{3} and solve successively for x_{2} and x_{1}.

7 Since $\left(C^{T}\right)^{T}=C$ for all matrices C and $(C D)^{T}=D^{T} C^{T}$ whenever the product $C D$ is defined, we obtain

$$
\left(B A B^{T}\right)^{T}=B A^{T} B^{T}=B A B^{T}
$$

The last equality follows from the fact that A is symmetric. Thus $B A B^{T}$ is equal to its transpose, i.e. is symmatric.
$\mathbf{8}$ Let $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}$ be the standard basis vectors in \mathbb{R}^{4}. Then

$$
T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{r}
3 \\
-5
\end{array}\right], \quad T\left(\mathbf{e}_{3}\right)=\left[\begin{array}{r}
-5 \\
2
\end{array}\right], \quad T\left(\mathbf{e}_{4}\right)=\left[\begin{array}{l}
-1 \\
-3
\end{array}\right]
$$

and the matrix A such that $T=T_{A}$ is

$$
\left[\begin{array}{rrrr}
2 & 3 & -5 & -1 \\
1 & -5 & 2 & -3
\end{array}\right]
$$

Thus

$$
T\left(\left[\begin{array}{r}
1 \\
-1 \\
2 \\
4
\end{array}\right]\right)=A\left[\begin{array}{r}
1 \\
-1 \\
2 \\
4
\end{array}\right]=\left[\begin{array}{c}
-15 \\
-2
\end{array}\right]
$$

$\mathbf{9} \mathbf{e}_{1}, \mathbf{e}_{2}$, and \mathbf{e}_{3} are respectively the first, the second, and the third columns of A. Thus

$$
T\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)=T\left(\mathbf{e}_{1}\right)+T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{r}
-1 \\
2 \\
7
\end{array}\right]+\left[\begin{array}{r}
3 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
8
\end{array}\right]
$$

10 A general second degree polynomial is of the form $p(x)=a x^{2}+b x+c$. In our case, $p(0)=0, p(-1)=1$, and $p(1)=2$. Thus

$$
\begin{aligned}
c & =0 \\
a-b+c & =1 \\
a+b+c & =2
\end{aligned}
$$

This system of equations is solved easily to give $a=\frac{3}{2}, b=\frac{1}{2}, c=0$ so that $p(x)=\frac{3}{2} x^{2}+\frac{1}{2} x$.

