Solutions to problems on the first midterm

Józef Dodziuk

October 7, 2016

- 1 Rewrite the equation as $-A^5 + 5A^4 4A^3 + A^2 A = I$ and then factor out A of the left side to get $(-A^4 + 5A^3 4A^2 + A I)A = I$. This shows that A is invertible with the inverse $(-A^4 + 5A^3 4A^2 + A I)$.
- **2** Start with the 4×8 matrix

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 3 & 5 & 0 & 0 & 0 & 1 & 0 \\ 1 & 3 & 5 & 7 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Subtract the first row from the second, then from the third and from the fourth. The result of these three row operations is

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 3 & 5 & 0 & -1 & 0 & 1 & 0 \\ 0 & 3 & 5 & 7 & -1 & 0 & 0 & 1 \end{bmatrix}.$$

Now subtract the second row in turn from the third and the fourth to get

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 5 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 5 & 7 & 0 & -1 & 0 & 1 \end{bmatrix}.$$

Then subtract the third row from the fourth to obtain

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 5 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 7 & 0 & 0 & -1 & 1 \end{bmatrix}.$$

Now divide rows by appropriate constants to get the identity matrix in the first 3×3 block.

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -\frac{1}{3} & \frac{1}{3} & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -\frac{1}{5} & \frac{1}{5} & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -\frac{1}{7} & \frac{1}{7} \end{bmatrix}$$

The inverse is the matrix consisting of the last four columns.

3 Use row operations to reduce the matrix to a triangular form. Here is what I got (yours may look somewhat different but would lead to the same answer).

$$\begin{bmatrix} 1 & c & 1 \\ 0 & 1 & c \\ 0 & 0 & c(c^2 - 2) \end{bmatrix}$$

An upper triangular matrix is invertible if and only if all of its diagonal entries are nonzero. Thus for the original matrix to be invertible $c \neq 0, \sqrt{2}, -\sqrt{2}$.

4 To verify that one matrix is the inverse of another, just multiply them to see whether the product is the identity matrix. Then to solve an equation AX = B set $X = A^{-1}B$. In our case,

$$X = \frac{1}{9} \begin{bmatrix} -5 & -1 & -1 \\ 1 & -7 & 2 \\ -1 & -2 & -3 \end{bmatrix} \begin{bmatrix} 4 & 3 & 2 & 1 \\ 6 & 7 & 8 & 9 \\ 1 & 3 & 7 & 9 \end{bmatrix}.$$

- **5** Rewrite the equation as $Q(A\mathbf{x}) = 0$. Since Q is invertible our equation is equivalent to $Q^{-1}Q(A\mathbf{x}) = 0$, i.e. $A\mathbf{x} = 0$
- **6** We use matrices and row reduction although we could work with equations themselves equally well. The augmented matrix of the system is

$$\begin{bmatrix} 1 & -2 & -1 & b_1 \\ -4 & 5 & 3 & b_2 \\ -2 & 1 & 1 & b_3 \end{bmatrix}.$$

We use row reduction to bring it to the form

$$\begin{bmatrix} 1 & -2 & -1 & b_1 \\ 0 & -3 & -1 & b_2 + 4b_1 \\ 0 & 0 & 0 & b_3 - b_2 - 2b_1 \end{bmatrix}.$$

This rewritten in terms of equations yields

Thus $b_3 - b_2 - 2b_1 = 0$ is a necessary condition for a solution to exist. It is also sufficient since, assuming $b_3 - b_2 - 2b_1 = 0$, we can assign *any* value to x_3 and solve successively for x_2 and x_1 .

7 Since $(C^T)^T = C$ for all matrices C and $(CD)^T = D^TC^T$ whenever the product CD is defined, we obtain

$$(BAB^T)^T = BA^TB^T = BAB^T.$$

The last equality follows from the fact that A is symmetric. Thus BAB^T is equal to its transpose, i.e. is symmetric.

8 Let $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4$ be the standard basis vectors in \mathbb{R}^4 . Then

$$T(\mathbf{e}_1) = \begin{bmatrix} 2\\1 \end{bmatrix}, \qquad T(\mathbf{e}_2) = \begin{bmatrix} 3\\-5 \end{bmatrix}, \qquad T(\mathbf{e}_3) = \begin{bmatrix} -5\\2 \end{bmatrix}, \qquad T(\mathbf{e}_4) = \begin{bmatrix} -1\\-3 \end{bmatrix}$$

and the matrix A such that $T = T_A$ is

$$\begin{bmatrix} 2 & 3 & -5 & -1 \\ 1 & -5 & 2 & -3 \end{bmatrix}.$$

Thus

$$T\left(\begin{bmatrix}1\\-1\\2\\4\end{bmatrix}\right) = A\begin{bmatrix}1\\-1\\2\\4\end{bmatrix} = \begin{bmatrix}-15\\-2\end{bmatrix}.$$

9 \mathbf{e}_1 , \mathbf{e}_2 , and \mathbf{e}_3 are respectively the first, the second, and the third columns of A. Thus

$$T(\mathbf{e}_1 + \mathbf{e}_2) = T(\mathbf{e}_1) + T(\mathbf{e}_2) = \begin{bmatrix} -1\\2\\7 \end{bmatrix} + \begin{bmatrix} 3\\-1\\1 \end{bmatrix} = \begin{bmatrix} 2\\1\\8 \end{bmatrix}.$$

10 A general second degree polynomial is of the form $p(x) = ax^2 + bx + c$. In our case, p(0) = 0, p(-1) = 1, and p(1) = 2. Thus

$$\begin{array}{rcl} c & = & 0 \\ a - b + c & = & 1 \\ a + b + c & = & 2. \end{array}$$

This system of equations is solved easily to give $a=\frac{3}{2},\ b=\frac{1}{2},\ c=0$ so that $p(x)=\frac{3}{2}x^2+\frac{1}{2}x$.