1. Which of the following is not a field? Explain.
 (a) The integers \mathbb{Z}
 (b) The rational numbers \mathbb{Q}
 (c) The real numbers \mathbb{R}
 (d) The complex numbers \mathbb{C}

2. Which of the following is not a field? Explain.
 (a) The numbers $\{0, 1\}$ with $+$ and \times defined “mod 2”.
 (b) The numbers $\{0, 1, 2\}$ with $+$ and \times defined “mod 3”.
 (c) The numbers $\{0, 1, 2, 3\}$ with $+$ and \times defined “mod 4”.
 (d) The numbers $\{0, 1, 2, 3, 4\}$ with $+$ and \times defined “mod 5”.

3. Let $\alpha \in \mathbb{C}$ be nonzero. Define the number $\frac{1}{\alpha}$ and prove that $\frac{1}{\alpha} = \alpha$.

4. Express $\frac{1}{4+5i}$ in the form $a+bi$ for real numbers a, b.

5. True or False:
 (a) There is only one number $\alpha \in \mathbb{R}$ so that $\alpha^3 = 2$.
 (b) There is only one number $\alpha \in \mathbb{C}$ so that $\alpha^3 = 2$.

6. True or False:
 (a) There exists a number $\alpha \in \mathbb{R}$ so that $\alpha^2 = -2$.
 (b) There exists a number $\alpha \in \mathbb{C}$ so that $\alpha^2 = -2$.

7. Does there exist a number $\alpha \in \mathbb{C}$ so that $\alpha(1 + I, 2, 2 + 2I, 3-2I) = (2, 2 - 2I, 4, 1-5I)$?

8. Let V be a vector space over a field F. Prove that
 (a) For all $v \in V$, $0v = 0$.

 Note: the zero on the left is the zero scalar in F and the zero on the right is the zero vector in V.

 (b) For all $v \in V$, $(-1)v = -v$.

 Note: the -1 on the left is a scalar in the field F, the $-v$ on the right is the additive inverse of the vector $v \in V$.
9. Using the correspondence \(a + bi \longleftrightarrow (a, b) \) complex numbers can be identified with points in the Cartesian plane. The four points pictured below correspond to \(z, w, z + w, \) and \(zw \) for two complex numbers \(z, w \in \mathbb{C} \). Which are which?

![Diagram showing four points on a Cartesian plane, labeled \(z, w, z + w, \) and \(zw \).]

10. Consider the vector space \(\mathbb{R}^4 \). Which of the following subsets are subspaces?

 (a) \(\{(a, b, c, d) \in \mathbb{R}^4 : a + b + c = 0\} \)

 (b) \(\{(a, b, c, d) \in \mathbb{R}^4 : abc = 0\} \)

 (c) \(\{(a, b, c, d) \in \mathbb{R}^4 : a \geq 0\} \)

 (d) \(\{(a, b, c, d) \in \mathbb{R}^4 : a = 2\} \)

 (e) \(\{(a, b, c, d) \in \mathbb{R}^4 : a = d\} \)

 (f) \(\{(a, b, c, d) \in \mathbb{R}^4 : a + b + 1 = c\} \)

 (g) \(\{(a, b, c, d) \in \mathbb{R}^4 : a + b = 2c\} \)

11. Consider the vector space \(\mathbb{R}^R \). Which of the following subsets are subspaces?

 (a) \(\{f : \mathbb{R} \to \mathbb{R} : f(1) = 1\} \)

 (b) \(\{f : \mathbb{R} \to \mathbb{R} : f(1) = 0\} \)

 (c) \(\{f : \mathbb{R} \to \mathbb{R} : f \text{ is onto}\} \)

 (d) \(\{f : \mathbb{R} \to \mathbb{R} : f \text{ is continuous}\} \)

 (e) \(\{f : \mathbb{R} \to \mathbb{R} : f \text{ is differentiable}\} \)

 (f) \(\{f : \mathbb{R} \to \mathbb{R} : f''(x) = f(x)\} \)
12. Let $V = \mathbb{R}^3$. Consider the following three subspaces of V

$$W = \{(0,0,a) \in V : a \in \mathbb{R}\}$$
$$X = \{(a,a,a) \in V : a \in \mathbb{R}\}$$
$$Y = \{(a,b,c) \in V : a + b + c = 0\}$$
$$Z = \{(a,a,b) \in V : a, b \in \mathbb{R}\}$$

True or False:

(a) $(1,1,-2) \in W$
(b) $(1,1,-2) \in X$
(c) $(1,1,-2) \in Y$
(d) $(1,1,-2) \in Z$
(e) W is a subspace of X
(f) W is a subspace of Y
(g) W is a subspace of Z
(h) X is a subspace of Z
(i) W is a subspace of Z
(j) $W \cap X = \{(0,0,0)\}$
(k) $X \cap Z = X$
(l) $Z = W + X$
(m) $Z = W \oplus X$
(n) $V = Y + Z$
(o) $V = Y \oplus Z$