1. If x, y, z are elements of a group G and xy = xz then y = z.

Answer. True.

$$xy = xz \Rightarrow x^{-1}(xy) = x^{-1}(xz) \Rightarrow (x^{-1}x)y = (x^{-1}x)z \Rightarrow ey = ez \Rightarrow y = z$$

2. If f, g, h are functions from a set X to itself and fg = fh then g = h.

Answer. False. For example, consider functions $\mathbb{Z} \to \mathbb{Z}$ defined by $f(n) = n^2$, g(n) = -n, and h(n) = n. Then fg = fh but $g \neq h$.

3. The function $f : (\mathbb{Z}/7\mathbb{Z})^{\times} \to (\mathbb{Z}/11\mathbb{Z})^{\times}$ defined by $f(x) = 5x \mod 11$ is a left-invertible function.

Answer. True. It suffices to compute f(x) for all $x \in \mathbb{Z}/7\mathbb{Z}$ and observe that f is one to one: f(1) = 5, f(2) = 10, f(3) = 4, f(4) = 9, f(5) = 3, f(6) = 8.

4. The function $f : (\mathbb{Z}/7\mathbb{Z})^{\times} \to (\mathbb{Z}/11\mathbb{Z})^{\times}$ defined by $f(x) = 5x \mod 11$ is a group homomorphism.

Answer. False. If f were a homomorphism, then f(1) = 1, but f(1) = 5.

5. $10x \equiv 1 \mod 21$ has a solution $x \in \mathbb{Z}/21\mathbb{Z}$.

Answer. True. It suffices to realize that gcd(10, 21) = 1. Another way to see this is to simply observe that x = 19 is a solution.

6. There exists a homomorphism $g: D_8 \rightarrow S_4$ with $g(R_{90}) = (1234)$ and g(H) = (12).

Answer. False. In D_8 we have $R_{90}H = HR_{90}^{-1}$ so if g were a homomorphism, we'd need (1234)(12) = (12)(1234)^{-1}, but (1234)(12) = (134) and (12)(1234)^{-1} = (12)(4321) = (143).

7. GL(2, 3) has order 48.

Answer. True. GL(2, 3) consists of 2×2 invertible matrices with entries in $\mathbb{Z}/3\mathbb{Z} = \{0, 1, 2\}$. There are eight possibilities for the first row of an invertible 2×2 matrix (anything but $\begin{bmatrix} 0 & 0 \end{bmatrix}$). Then, there are six possibilities for the second row (anything except for 0, 1, or 2 times the first row). **8.** True or False: The function ϕ : $\operatorname{GL}(2,7) \to (\mathbb{Z}/7\mathbb{Z})^{\times}$ defined by $\phi(M) = \det(M)$ is a homomorphism.

Answer. True. $\phi(AB) = \det(AB) = \det(A) \det(B) = \phi(A)\phi(B)$.

9. For any group *G* and any element $x \in Z(G)$ we have $C_G(x) = G$.

Answer. True. If $x \in Z(G)$, the center of *G*, then xy = yx for all $y \in G$. By definition, the centralizer $C_G(x) = \{y \in G : xy = yx\}$.

10. For any homomorphism $\phi : G \to H$, the set $K = \{g \in G : \phi(g) = e\}$ is a subgroup of *G*.

Answer. True. We know $\phi(e) = e$, so $e \in K$. Also, if $x, y \in K$, then $xy \in K$ since $\phi(xy) = \phi(x)\phi(y) = (e)(e) = e$. Finally, if $x \in K$, then $x^{-1} \in K$ since $\phi(x^{-1}) = (\phi(x))^{-1} = e^{-1} = e$.

11. If G is a group with the property that $(ab)^2 = a^2b^2$ for any $a, b \in G$, then G is abelian. Answer. True. To see this, muliply the equation $(ab)^2 = a^2b^2$ on the left by a^{-1} and the right by b^{-1} :

$$(ab)^2 = a^2b^2 \Rightarrow abab = aabb \Rightarrow bab = abb \Rightarrow ba = ab.$$

12. The permutation (653124)(5421) has order two in S_6 .

Answer. True. Compute (653124)(5421) = (13)(56) and observe that $((13)(56))^2 = e$

13. $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ has twelve subgroups.

Answer. False, there are sixteen. There is one trivial subgroup $\{(0, 0, 0)\}$. There are seven subgroups of order two generated by single nonzero elements.

```
 \{(0, 0, 0), (1, 0, 0)\} \\ \{(0, 0, 0), (0, 1, 0)\} \\ \{(0, 0, 0), (0, 0, 1)\} \\ \{(0, 0, 0), (1, 1, 0)\} \\ \{(0, 0, 0), (1, 0, 1)\} \\ \{(0, 0, 0), (0, 1, 1)\} \\ \{(0, 0, 0), (1, 1, 1)\}
```

Choosing two nonzero elements will generate a subgroup of order 4. There are seven of these.

 $\{(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)\} \\ \{(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1)\} \\ \{(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1)\} \\ \{(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)\} \\ \{(0, 0, 0), (1, 0, 1), (1, 1, 1), (0, 1, 0)\} \\ \{(0, 0, 0), (0, 1, 1), (1, 1, 1), (1, 0, 0)\} \\ \{(0, 0, 0), (1, 1, 0), (1, 1, 1), (0, 0, 1)\}$

And there's the whole group.

14. The quaternions Q and the dihedral group D_8 are isomorphic.

Answer. False. -1 is the only element of Q of order two, but D_8 has several elements of order two, all of the reflections H, V, \ldots

15. GL(2, 2) and S_3 are isomorphic.

Answer. True. Recall the presentation $S_3 = \langle f, g | f^3 = g^2 = e, gf = f^2g \rangle$.. The map $f: S_3 \to \text{GL}(2,2)$ defined by

$$(1, 2, 3) \mapsto \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
 and $(12) \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

defines an isomorphism.

16. $\mathbb{Z}/6\mathbb{Z}$ are and $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ are isomorphic.

Answer. True. Both are cyclic groups of order six, mapping a generator to a generator defines an isomorphism. For example, the map $1 \mapsto (1, 1)$ defines an isomorphism.

17. $(Z/7\mathbb{Z})^{\times}$ and $\mathbb{Z}/6\mathbb{Z}$ are isomorphic.

Answer. True. Both are cyclic groups of order six, mapping a generator to a generator defines an isomorphism. For example, the map $3 \mapsto 1$ defines an isomorphism.

Part II: Short Answer. 3 points

18. Choose one of the True / False problems and write a complete justification of your answer.