1. If x, y, z are elements of a group G and $x y=x z$ then $y=z$.

Answer. True.

$$
x y=x z \Rightarrow x^{-1}(x y)=x^{-1}(x z) \Rightarrow\left(x^{-1} x\right) y=\left(x^{-1} x\right) z \Rightarrow e y=e z \Rightarrow y=z
$$

2. If f, g, h are functions from a set X to itself and $f g=f h$ then $g=h$.

Answer. False. For example, consider functions $\mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(n)=n^{2}, g(n)=-n$, and $h(n)=n$. Then $f g=f h$ but $g \neq h$.
3. The function $f:(\mathbb{Z} / 7 \mathbb{Z})^{\times} \rightarrow(\mathbb{Z} / 11 \mathbb{Z})^{\times}$defined by $f(x)=5 x \bmod 11$ is a left-invertible function.

Answer. True. It suffices to compute $f(x)$ for all $x \in \mathbb{Z} / 7 \mathbb{Z}$ and observe that f is one to one: $f(1)=5, f(2)=10, f(3)=4, f(4)=9, f(5)=3, f(6)=8$.
4. The function $f:(\mathbb{Z} / 7 \mathbb{Z})^{\times} \rightarrow(\mathbb{Z} / 11 \mathbb{Z})^{\times}$defined by $f(x)=5 x \bmod 11$ is a group homomorphism.

Answer. False. If f were a homomorphism, then $f(1)=1$, but $f(1)=5$.
5. $10 x \equiv 1 \bmod 21$ has a solution $x \in \mathbb{Z} / 21 \mathbb{Z}$.

Answer. True. It suffices to realize that $\operatorname{gcd}(10,21)=1$. Another way to see this is to simply observe that $x=19$ is a solution.
6. There exists a homomorphism $g: D_{8} \rightarrow S_{4}$ with $g\left(R_{90}\right)=(1234)$ and $g(H)=(12)$.

Answer. False. In D_{8} we have $R_{90} H=H R_{90}^{-1}$ so if g were a homomorphism, we'd need $(1234)(12)=(12)(1234)^{-1}$, but $(1234)(12)=(134)$ and $(12)(1234)^{-1}=(12)(4321)=$ (143).
7. $\mathrm{GL}(2,3)$ has order 48.

Answer. True. $\mathrm{GL}(2,3)$ consists of 2×2 invertible matrices with entries in $\mathbb{Z} / 3 \mathbb{Z}=\{0,1,2\}$. There are eight possibilities for the first row of an invertible 2×2 matrix (anything but $\left[\begin{array}{ll}0 & 0\end{array}\right]$). Then, there are six possibilities for the second row (anything except for 0,1 , or 2 times the first row).
8. True or False: The function $\phi: \operatorname{GL}(2,7) \rightarrow(\mathbb{Z} / 7 \mathbb{Z})^{\times}$defined by $\phi(M)=\operatorname{det}(M)$ is a homomorphism.

Answer. True. $\phi(A B)=\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=\phi(A) \phi(B)$.
9. For any group G and any element $x \in Z(G)$ we have $C_{G}(x)=G$.

Answer. True. If $x \in Z(G)$, the center of G, then $x y=y x$ for all $y \in G$. By definition, the centralizer $C_{G}(x)=\{y \in G: x y=y x\}$.
10. For any homomorphism $\phi: G \rightarrow H$, the set $K=\{g \in G: \phi(g)=e\}$ is a subgroup of G.

Answer. True. We know $\phi(e)=e$, so $e \in K$. Also, if $x, y \in K$, then $x y \in K$ since $\phi(x y)=$ $\phi(x) \phi(y)=(e)(e)=e$. Finally, if $x \in K$, then $x^{-1} \in K$ since $\phi\left(x^{-1}\right)=(\phi(x))^{-1}=e^{-1}=e$.
11. If G is a group with the property that $(a b)^{2}=a^{2} b^{2}$ for any $a, b \in G$, then G is abelian.

Answer. True. To see this, muliply the equation $(a b)^{2}=a^{2} b^{2}$ on the left by a^{-1} and the right by b^{-1} :

$$
(a b)^{2}=a^{2} b^{2} \Rightarrow a b a b=a a b b \Rightarrow b a b=a b b \Rightarrow b a=a b
$$

12. The permutation $(653124)(5421)$ has order two in S_{6}.

Answer. True. Compute $(653124)(5421)=(13)(56)$ and observe that $((13)(56))^{2}=e$
13. $\mathbb{Z} / 2 \mathbb{Z} \times Z / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ has twelve subgroups.

Answer. False, there are sixteen. There is one trivial subgroup $\{(0,0,0)\}$. There are seven subgroups of order two generated by single nonzero elements.

$$
\begin{aligned}
& \{(0,0,0),(1,0,0)\} \\
& \{(0,0,0),(0,1,0)\} \\
& \{(0,0,0),(0,0,1)\} \\
& \{(0,0,0),(1,1,0)\} \\
& \{(0,0,0),(1,0,1)\} \\
& \{(0,0,0),(0,1,1)\} \\
& \{(0,0,0),(1,1,1)\}
\end{aligned}
$$

Choosing two nonzero elements will generate a subgroup of order 4. There are seven of these.

$$
\begin{aligned}
& \{(0,0,0),(1,0,0),(0,1,0),(1,1,0)\} \\
& \{(0,0,0),(0,1,0),(0,0,1),(0,1,1)\} \\
& \{(0,0,0),(0,0,1),(1,0,0),(1,0,1)\} \\
& \{(0,0,0),(1,1,0),(1,0,1),(0,1,1)\} \\
& \{(0,0,0),(1,0,1),(1,1,1),(0,1,0)\} \\
& \{(0,0,0),(0,1,1),(1,1,1),(1,0,0)\} \\
& \{(0,0,0),(1,1,0),(1,1,1),(0,0,1)\}
\end{aligned}
$$

And there's the whole group.
14. The quaternions Q and the dihedral group D_{8} are isomorphic.

Answer. False. -1 is the only element of Q of order two, but D_{8} has several elements of order two, all of the reflections H, V, \ldots
15. $\mathrm{GL}(2,2)$ and S_{3} are isomorphic.

Answer. True. Recall the presentation $S_{3}=\left\langle f, g \mid f^{3}=g^{2}=e, g f=f^{2} g\right\rangle$.. The map $f: S_{3} \rightarrow \mathrm{GL}(2,2)$ defined by

$$
(1,2,3) \mapsto\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \text { and }(12) \mapsto\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

defines an isomorphism.
16. $\mathbb{Z} / 6 \mathbb{Z}$ are and $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$ are isomorphic.

Answer. True. Both are cyclic groups of order six, mapping a generator to a generator defines an isomorphism. For example, the map $1 \mapsto(1,1)$ defines an isomorphism.
17. $(Z / 7 \mathbb{Z})^{\times}$and $\mathbb{Z} / 6 \mathbb{Z}$ are isomorphic.

Answer. True. Both are cyclic groups of order six, mapping a generator to a generator defines an isomorphism. For example, the map $3 \mapsto 1$ defines an isomorphism.

Part II: Short Answer. 3 points

18. Choose one of the True / False problems and write a complete justification of your answer.
