MIDTERM EXAM ANSWERS

MATH 333

1. Which of the following diagrams says "g is a right inverse of f"?

$A \xrightarrow{g} B$	$A \xrightarrow{f} B$	$B \xrightarrow{f} A$	$B \xrightarrow{\operatorname{id}_B} B$
$\operatorname{id}_A \downarrow f$	id_A	d_B	f g
A	A	B	Α

Answer. Only the first diagram. The first diagram says $fg = id_A$, which means that g is a right inverse of f. The second says $gf = id_A$, the third says $gf = id_B$, and the fourth says $gf = id_B$ all three of which say g is a left inverse of f.

2. If we let *e* be the identity permutation, $f = (1 \ 2 \ 3)$ and $g = (1 \ 2)$ then the group S_3 can be presented as

$$S_3 = \langle f, g | f^3 = g^2 = e, gf = f^2 g \rangle.$$

By choosing the right matrices for e, f, and g, the group GL(2, 2) can also be presented as

$$GL(2,2) = \langle f, g | f^3 = g^2 = e, gf = f^2 g \rangle.$$

Choose the right matrices for e, f, and g:

Answer.

$$f = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \qquad e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad g = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

The relations are straightforward to check.

- 3. Solve the equations, or explain why no solution exists:
 - (a) Solve 5x + 6 = 10 for $x \in \mathbb{Z}/11\mathbb{Z}$

Answer. Here, x = 3 is a solution since $(5)(3) + 6 = 21 \equiv 10 \mod 11$. To find this solution, I added -6 to both sides to get 5x = 4. Then I multiplied both sides by 9 to get $(9)(5)x = (9)(4) \mod 11 \Rightarrow x = 3 \mod 11$ since $(9)(5) = 1 \mod 11$ and $(9)(4) = 3 \mod 11$.

(b) Solve 5x + 6 = 10 for $x \in \mathbb{Z}/12\mathbb{Z}$

Answer. Here, x = 8 is a solution since $(5)(8) + 6 = 46 \equiv 10 \mod 12$. To find this solution, I added -6 to both sides to get 5x = 4. Then I multiplied both sides by 5 to get $(5)(5)x = (5)(4) \mod 12 \Rightarrow x = 8 \mod 12$ since $(5)(5) = 1 \mod 12$ and $(5)(4) = 8 \mod 12$.

Date: October 31, 2017.