Problem 1. The Hessian matrix of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ at a point $p \in \mathbb{R}^{2}$ is defined to be

$$
H_{p}=\left(\begin{array}{cc}
\frac{\partial^{2} f(p)}{\partial x^{2}} & \frac{\partial^{2} f(p)}{\partial y \partial x} \\
\frac{\partial^{2} f(p)}{\partial x \partial y} & \frac{\partial^{2} f(p)}{\partial y^{2}}
\end{array}\right)
$$

You can think of the Hessian as a kind of second derivative of f since it's the derivative of the function $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $p \mapsto\left(\frac{\partial f(p)}{\partial x}, \frac{\partial f(p)}{\partial y}\right)$.

Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)=6 \sqrt{36-9(x-y+1)^{2}-4(x+y-3)^{2}}
$$

There is one critical point $p \in \mathbb{R}^{2}$ of f. Find the eigenvectors of the Hessian at that critical point and explain why they are orthogonal.

Problem 2. Find a 3×3 matrix A with nonzero integer entries so that $A^{2}=I$

Problem 3. Describe all the different similarity classes of matrices that have the characteristic polynomial $\chi(t)=t^{5}-2 t^{3}+t$? Which are invertible?

Problem 4. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $f(x, y)=(u, v)$ where

$$
\begin{aligned}
& u=\sin (x+y) \\
& v=\exp (x-2 y)
\end{aligned}
$$

Notice that $(0,0) \stackrel{f}{\mapsto}(0,1)$. In a neighborhood of the point $(x, y)=(0,0)$, the function f is invertible. That is, there exist an open set U containing $(u, v)=(0,1)$ and a function $g: U \rightarrow V$ so that $g(u, v)=(x, y)$.

Use the fact that f and g are inverses to compute the total derivative $D g$ implicitly at the point $(u, v)=(0,1)$.

Problem 5. Compute a determinant. Your choice:

$$
\left(\begin{array}{ccccc}
\cos (1) & \cos (6) & \cos (11) & \cos (16) & \cos (21) \\
\cos (2) & \cos (7) & \cos (12) & \cos (17) & \cos (22) \\
\cos (3) & \cos (8) & \cos (13) & \cos (18) & \cos (23) \\
\cos (4) & \cos (9) & \cos (14) & \cos (19) & \cos (24) \\
\cos (5) & \cos (10) & \cos (15) & \cos (20) & \cos (25)
\end{array}\right) \text { or }\left(\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \frac{1}{2} \\
1 & \frac{1}{2} & \frac{1}{3} \\
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{8} & \frac{1}{8} \\
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} & \frac{1}{9} \\
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} & \frac{1}{10}
\end{array}\right)
$$

EXAM

Final Exam

Math 207: Fall 2014
December 23, 2014

- Do problem 1. Do two more (for an A) or one more (for a B).

Success!

