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Problem 1. The Hessian matrix of a function f : R2 → R at a point p ∈ R2 is defined to be

Hp =

∂2f(p)
∂x2

∂2f(p)
∂y∂x

∂2f(p)
∂x∂y

∂2f(p)
∂y2


You can think of the Hessian as a kind of second derivative of f since it’s the derivative of the
function R2 → R2 defined by p 7→

(
∂f(p)
∂x , ∂f(p)∂y

)
.

Define f : R2 → R by

f(x, y) = 6
√

36− 9(x− y + 1)2 − 4(x+ y − 3)2.

There is one critical point p ∈ R2 of f . Find the eigenvectors of the Hessian at that critical point
and explain why they are orthogonal.
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Problem 1. Answer:
We compute the derivative of f :

Df =

(
∂f

∂x
,
∂f

∂y

)
= d (−18(x− y + 1)− 8(x+ y − 3), 18(x− y + 1)− 8(x+ y − 3))

where d = 3
(
36− 9(x− y + 1)2 − 4(x+ y − 3)2

)− 1
2 . Solving

Df = 0⇒
{
−18(x− y + 1)− 8(x+ y − 3) = 0
18(x− y + 1)− 8(x+ y − 3) = 0

}
⇔
{
−13x+ 5y = −3
5x− 13y = −21

}
One finds the unique solution (x, y) = (1, 2) (see the footnote for the computation).
The Hessian is a little messy, but if you keep your computation organized, it simplifies after
evaluating at p = (x, y) = (1, 2) and you find

Hp =

(
−13 5
5 −13

)
As a symmetric matrix, the eigenvectors will be orthogonal (and this is true in general since the
equality of mixed partials imply that the Hessian of any smooth function will be symmetric).
The characteristic polynomial of Hp is t2+26t+144 = (t+18)(t+8) so we have eigenvalues
λ1 = 8 and λ2 = 18 with corresponding eigenvectors

e1 =

(
1
1

)
and e2 =

(
−1
1

)
.

Footnote: Here’s one way to find the critical point:(
−13 5
5 −13

)−1( −3
−21

)
=

1

144

(
−13 −5
−5 −13

)(
−3
−21

)
=

(
1
2

)
It’s a coincidence of the particulars of this problem that this matrix that we invert to find the
critical point happens to be the Hessian at that critical point—that’s not something you would
expect.
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Problem 2. Find a 3× 3 matrix A with nonzero integer entries so that A2 = I

Answer:
The matrix I certainly satisfies I2 = I but I has many entries which are zero. To find a
matrix with nonzero entries, notice that if A2 = I then A2 − I = 0 which implies A satisfies
the polynomial (A − I)(A + I). There are several simple diagonal matrices that satisfy that
equation, for example

D =

 1 0 0
0 1 0
0 0 −1

 .

Any matrix similar to D will satisfy A2 = I also. So, to find the matrix A, we conjugate D by
an invertible matrix P . To be sure that the result has integer entries, we choose P with integer
entries and determinant 1 so that P−1 and hence P−1DP , will have integer entries. Here’s a
good choice, I found by performing row operations on the identity, but only the row operations
rowi  rowi + rowj which don’t change the determinant.

P =

 1 1 0
0 1 1
1 1 1

 and its inverse P−1 =

 0 −1 1
1 1 −1
−1 0 1


Then, we obtain a solution to the problem

A = P−1DP =

 −1 −2 −2
2 3 2
−2 −2 −1

 .
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Problem 3. Describe all the different similarity classes of matrices that have the characteristic
polynomial χ(t) = t5 − 2t3 + t? Which are invertible?

Answer:
Factoring χ(t) yields χ(t) = t(t− 1)2(t+ 1)2. There are several possibilities for the minimum
polynomials:

• m(t) = t(t− 1)(t+ 1) corresponding to matrices similar to


0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 −1



• m(t) = t(t− 1)2(t+ 1) corresponding to matrices similar to


0 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 −1



• m(t) = t(t− 1)(t+ 1)2 corresponding to matrices similar to


0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −1 1
0 0 0 0 −1



• m(t) = t(t− 1)2(t+ 1)2corresponding to matrices similar to


0 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 −1 1
0 0 0 0 −1


None are invertible—lots of ways to see that. For one, they all have determinant 0. For another,
0 is a root of χ(t) ⇒ 0 is an eigenvalue⇒ the matrix has a nontrivial kernel⇒ the matrix is
not invertible.
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Problem 4. Consider the function f : R2 → R2 defined by f(x, y) = (u, v) where

u = sin(x+ y)

v = exp(x− 2y)

Notice that (0, 0)
f7→ (0, 1). In a neighborhood of the point (x, y) = (0, 0), the function f is

invertible. That is, there exist an open setU containing (u, v) = (0, 1) and a function g : U → V
so that g(u, v) = (x, y).

Use the fact that f and g are inverses to compute the total derivative Dg implicitly at the point
(u, v) = (0, 1).

Answer:
Differentiating f ◦ g = id yields Df ◦ Dg = id . Therefore, Dg is the inverse of Df . We
compute

Df =

(
cos(x+ y) cos(x+ y)
exp(x− 2y) −2 exp(x− 2y)

)
and at (x, y) = (0, 0) gives Df(0, 0) =

(
1 1
1 −2

)
Inverting yields

Dg(0, 1) =
1

3

(
2 1
1 −1

)

Problem 5. Compute a determinant. Your choice:

cos(1) cos(6) cos(11) cos(16) cos(21)

cos(2) cos(7) cos(12) cos(17) cos(22)

cos(3) cos(8) cos(13) cos(18) cos(23)

cos(4) cos(9) cos(14) cos(19) cos(24)

cos(5) cos(10) cos(15) cos(20) cos(25)


Answer:
This was inspried by a 2009 Putnam exam question. Replacing the first row with the first row
plus the last row does not change the determinant and yields(
cos(1) + cos(5) cos(6) + cos(10) cos(11) + cos(15) cos(16) + cos(20) cos(21) + cos(25)

)
Using the fact that cos(a) + cos(b) = 2 cos

(
a+b
2

)
cos
(
a−b
2

)
, we get(

2 cos(3) cos(2) 2 cos(8) cos(2) 2 cos(13) cos(2) 2 cos(18) cos(2) 2 cos(23) cos(2)
)

Since this row is a multiple of the middle row (it’s 2 cos(2) times the middle row) the determi-
nant is zero.
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Problem 5. Continued. 

1 1 1 1 1 1 1 1 1 1

1 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1 1
2

1
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1
3

1
3

1
3

1
3

1
3

1
3

1
3

1 1
2

1
3
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5
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5
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6
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5
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6
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7
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5
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6
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7
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8

1
9

1
10


Answer:
This was inspired by a 2014 putnam exam question. Replacing row 2 by row 1 - row 2 multiplies
the determinant by −1 and yields(

0 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

)
Replacing row 3 by row 2 - row 3 multiplies the determinant by −1 and yields(

0 0 1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

)
Continuing in this way yields a matrix with negative the original determinant that is upper
triangular with 1

k−1 −
1
k = 1

k(k−1) on the diagonals:

1 1 1 1 1 1 1 1 1 1

0 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

0 0 1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

0 0 0 1
12

1
12

1
12

1
12

1
12

1
12

1
12

...
...

0 0 0 0 0 0 0 0 1
72

1
72

0 0 0 0 0 0 0 0 0 1
90


So the determinant of the original is negative the determinant of the upper tirangular one (nine
products by −1) which is the product of the diagonal entries. The answer is

− (1)

(
1

2

)(
1

6

)(
1

12

)(
1

20

)(
1

30

)(
1

42

)(
1

56

)(
1

72

)(
1

90

)
= − 1

(22)(32)(42)(52)(62)(72)(82)(92)(10)


