Problem 1. Find a 3×3 matrix A with nonzero integer entries so that $A^{3}=A$. Answer:

Problem 2. Let V be the vector space of five-times differentiable real-valued functions and let W be the subspace of polynomials of degree less than or equal to five. The following formulae define symmetric bilinear functions on V, which restrict to inner products on W.

$$
\begin{aligned}
\langle f, g\rangle_{1} & =\int_{0}^{10} f(t) g(t) d t \\
\langle f, g\rangle_{2} & =f(0) g(0)+f(2) g(2)+f(4) g(4)+f(6) g(6)+f(8) g(8)+f(10) g(10) \\
\langle f, g\rangle_{3} & =f(1) g(1)+f(5) g(5)+f(9) g(9)+f^{\prime}(1) g^{\prime}(1)+f^{\prime}(5) g^{\prime}(5)+f^{\prime}(9) g^{\prime}(9) \\
\langle f, g\rangle_{4} & =f(5) g(5)+f^{\prime \prime}(5) g^{\prime \prime}(5)+f^{\prime \prime}(5) g^{\prime \prime}(5)+f^{\prime \prime \prime}(5) g^{\prime \prime \prime}(5)+f^{\prime \prime \prime \prime}(5) g^{\prime \prime \prime \prime}(5)+f^{\prime \prime \prime \prime \prime}(5) g^{\prime \prime \prime \prime \prime}(5)
\end{aligned}
$$

The following picture shows the function $f(t)=\sin (t)$ together with several degree five polynomials obtained by projecting f onto W using the given inner products. Which curves go with which inner products? Justify your answer, but don't do any computations!

Answer:

Problem 3. Let

$$
M=\left(\begin{array}{cccc}
4 & -5 & -2 & 9 \\
-5 & 7 & 5 & -10 \\
3 & -5 & -3 & 7 \\
-4 & 5 & 3 & -8
\end{array}\right)
$$

Prove that M is not diagonalizable over the real numbers but M is diagonalizable over the complex numbers.
Hint: Compute M^{2}.
Answer:

Problem 4. Compute e^{B} where $B=\left(\begin{array}{cc}-2 \pi & -\pi \\ 5 \pi & 2 \pi\end{array}\right)$.
Answer:

Problem 5. Let V be the vector space of polynomials of degree less than or equal to two and define an inner product on V by

$$
\langle p, q\rangle=p(-1) q(-1)+p(0) q(0)+p(1) q(1)
$$

A convenient orthonormal basis for V is

$$
B=\left\{\frac{1}{2}(t-1) t, 1-t^{2}, \frac{1}{2} t(t+1)\right\}
$$

Consider $T: V \rightarrow V$ defined by $T(p)=p^{\prime}(t)$. Let T^{*} denote the adjoint of T.

Find $T^{*}(t)$.
Answer:

EXAM

Linear Algebra Exam

Math 207: Fall 2014
November 25, 2014

- There are five problems. Do three for an A, do two for a B.

Success!

