EXAM

Linear Algebra Exam
Math 207: Fall 2014
November 25, 2014

ANSWERS

Problem 1. Find a 3×3 matrix A with nonzero integer entries so that $A^{3}=A$.

Answer:

If $A^{3}=A$ then $A^{3}-A=0$ which implies A satisfies the polynomial $A(A-I)(A+I)$. There are several simple diagonal matrices that satisfy that equation, for example $D=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$. Any matrix similar to D will satisfy $A^{3}=A$ also. So, to find the matrix A, we conjugate D by an invertible matrix P. To be sure that the result has integer entries, we choose P with integer entries and determinant 1 so that P^{-1} will have integer entries also. Here's a good choice, I found by performing row operations on the identity, but only the row operations row $_{i} \rightsquigarrow$ row $_{i}+$ row $_{j}$ which don't change the determinant.

$$
P=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \text { and its inverse } P^{-1}=\left(\begin{array}{ccc}
0 & -1 & 1 \\
1 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right)
$$

Then, we find

$$
A=P^{-1} D P=\left(\begin{array}{ccc}
-1 & -2 & -2 \\
1 & 2 & 2 \\
-1 & -1 & -1
\end{array}\right)
$$

Problem 2. Let V be the vector space of five-times differentiable real-valued functions and let W be the subspace of polynomials of degree less than or equal to five. The following formulae define symmetric bilinear functions on V, which restrict to inner products on W.

$$
\begin{aligned}
& \langle f, g\rangle_{1}=\int_{0}^{10} f(t) g(t) d t \\
& \langle f, g\rangle_{2}=f(0) g(0)+f(2) g(2)+f(4) g(4)+f(6) g(6)+f(8) g(8)+f(10) g(10) \\
& \langle f, g\rangle_{3}=f(1) g(1)+f(5) g(5)+f(9) g(9)+f^{\prime}(1) g^{\prime}(1)+f^{\prime}(5) g^{\prime}(5)+f^{\prime}(9) g^{\prime}(9) \\
& \langle f, g\rangle_{4}=f(5) g(5)+f^{\prime \prime}(5) g^{\prime \prime}(5)+f^{\prime \prime}(5) g^{\prime \prime}(5)+f^{\prime \prime \prime}(5) g^{\prime \prime \prime}(5)+f^{\prime \prime \prime \prime}(5) g^{\prime \prime \prime \prime}(5)+f^{\prime \prime \prime \prime \prime}(5) g^{\prime \prime \prime \prime \prime}(5)
\end{aligned}
$$

The following picture shows the function $f(t)=\sin (t)$ together with several degree five polynomials obtained by projecting f onto W using the given inner products. Which curves go with which inner products? Justify your answer, but don't do any computations!

Answer:

The solid one is the graph of f, the dotted one corresponds to \langle,\rangle_{1}, the dashed one corresponds to \langle,\rangle_{2}, the long-dashed corresponds to \langle,\rangle_{3}, and dot-dashed corresponds to \langle,\rangle_{4}.
To determine which are which, note that each is the element of W that minimizes the distance to $f \in V \backslash W$ where distance is determined by the norm corresponding the inner product. The dotted one minimizes $\int_{0}^{10}(f-p)^{2}$, the dashed one agrees with p at $0,2,4,6,8,10$ hence minimizes the \langle,\rangle_{2} distance. The long-dashed one agrees in value and derivative at $1,5,9$ hence minimizes the \langle,\rangle_{3} distance. It's not completely obvious that the dot-dashed one agrees in value and the first five derivatives at 5 , but it does give the best approximation of f in a neighborhood of 5 , but it minimizes the \langle,\rangle_{4} distance—it's fifth order Taylor polynomial for f centered at 5 .

Problem 3. Let

$$
M=\left(\begin{array}{cccc}
4 & -5 & -2 & 9 \\
-5 & 7 & 5 & -10 \\
3 & -5 & -3 & 7 \\
-4 & 5 & 3 & -8
\end{array}\right)
$$

Prove that M is not diagonalizable over the real numbers but M is diagonalizable over the complex numbers.
Hint: Compute M^{2}.
Answer:
A quick check shows that $M^{2}=-I \Leftrightarrow M^{2}+I=0$. Therefore, the minimum polynomial $m(t)$ of M divides $t^{2}+1$, and hence must equal $t^{2}+1$. Since $m(t)$ doesn't factor into linear factors over \mathbb{R}, M is not diagonalizable over \mathbb{R}.
Over the complex numbers, the minimum polynomial of M factors $m(t)=t^{2}+1=(t-i)(t+i)$, and we find that M is diagonalizable over \mathbb{C}. In fact, M is similar to a diagonal matrix with either i or $-i$ on the diagonal.

Problem 4. Compute e^{B} where $B=\left(\begin{array}{cc}-2 \pi & -\pi \\ 5 \pi & 2 \pi\end{array}\right)$.

Answer:

It's easier to work with a simpler matrix similar to B. We find $\chi_{B}(t)=t^{2}+\pi^{2}=(t-i \pi)(t+i \pi)$ so we have eigenvalues $\pm i \pi$. So, if we arrange corresponding eigenvectors as columns in a matrix P, we have $P^{-1} B P=D$ where

$$
D=\left(\begin{array}{cc}
i \pi & 0 \\
0 & -i \pi
\end{array}\right)
$$

Then

$$
\begin{aligned}
e^{B} & =e^{P D P^{-1}} \\
& =P e^{D} P^{-1} \\
& =P\left(\begin{array}{cc}
e^{i \pi} & 0 \\
0 & e^{-i \pi}
\end{array}\right) P^{-1} \\
& =P\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) P^{-1} \\
& =\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) .
\end{aligned}
$$

The second to last equality follows from the fact that $e^{i x}=\cos (x)+i \sin (x) \Rightarrow e^{i \pi}=$ -1 and $e^{-i \pi}=-1$.

Problem 5. Let V be the vector space of polynomials of degree less than or equal to two and define an inner product on V by

$$
\langle p, q\rangle=p(-1) q(-1)+p(0) q(0)+p(1) q(1)
$$

A convenient orthonormal basis for V is

$$
B=\left\{\frac{1}{2}(t-1) t, 1-t^{2}, \frac{1}{2} t(t+1)\right\}
$$

Consider $T: V \rightarrow V$ defined by $T(p)=p^{\prime}(t)$. Let T^{*} denote the adjoint of T.
Find $T^{*}(t)$.
Answer:
First, note that $\left\langle p, e_{1}\right\rangle=p(-1),\left\langle p, e_{2}\right\rangle=p(0)$, and $\left\langle p, e_{3}\right\rangle=p(1)$ for the given basis $B=$ $\left\{e_{1}, e_{2}, e_{3}\right\}$. To determine the matrix for the operator T, we differentiate each e_{i} and express the result in the basis B easily by evaluating $e_{i}^{\prime}(-1), e_{i}^{\prime}(0)$, and $e_{i}^{\prime}(1)$. The result is the following matrix:

$$
\operatorname{Rep}_{B, B}(T)=\left(\begin{array}{ccc}
-\frac{3}{2} & 2 & -\frac{1}{2} \\
-\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & -2 & \frac{3}{2}
\end{array}\right)
$$

Then, the matrix for T^{*} is simply the transpose:

$$
\operatorname{Rep}_{B, B}\left(T^{*}\right)=\left(\begin{array}{ccc}
-\frac{3}{2} & -\frac{1}{2} & \frac{1}{2} \\
2 & 0 & -2 \\
-\frac{1}{2} & \frac{1}{2} & \frac{3}{2}
\end{array}\right)
$$

In the basis B, the polynomial t is the vector $\operatorname{Rep}_{B}(t)=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right) . \operatorname{So}, T^{*}(t)$ is represented by the vector

$$
\left(\begin{array}{ccc}
-\frac{3}{2} & -\frac{1}{2} & \frac{1}{2} \\
2 & 0 & -2 \\
-\frac{1}{2} & \frac{1}{2} & \frac{3}{2}
\end{array}\right)\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)==\left(\begin{array}{c}
2 \\
-4 \\
2
\end{array}\right)
$$

So, $T^{*}(t)=2 e_{1}-4 e_{2}+2 e_{3}=6 t^{2}-4$.

