Problem 1. Let V be the vector space of all $n \times n$ complex matrices. Prove that $\langle A, B\rangle=$ $\operatorname{trace}\left(A B^{*}\right)$ defines an inner product on V.

Problem 2. Let A be any $n \times n$ complex matrix. Prove that A and A^{t} are similar.
Problem 3. Prove that if $A^{2}=A$ then A is diagonalizable.
Problem 4. Let V be the space of real polynomials of degree ≤ 3 and let $\sigma: V \rightarrow V$ be the differentiation operator

$$
\sigma(p(t))=\frac{d p(t)}{d t}
$$

(a) What is the adjoint of σ if we equip V with the inner product defined by

$$
\langle p, q\rangle:=\int_{0}^{1} p(t) q(t) d t ?
$$

(b) What is the adjoint of σ if we equip V with the inner product defined by

$$
\langle p, q\rangle:=p(1) q(1)+p^{\prime}(1) q^{\prime}(1)+p^{\prime \prime}(1) q^{\prime \prime}(1)+p^{\prime \prime \prime}(1) q^{\prime \prime \prime}(1) ?
$$

Problem 5. Let $M=\left(\begin{array}{ccc}15 & -42 & 12 \\ -3 & 10 & -6 \\ -10 & 30 & -11\end{array}\right)$. Find a matrix N so that $N^{2}=M$.
Problem 6. Suppose that A is a 2×2 real matrix and let $v \in \mathbb{R}^{2}$ be any vector. Since \mathbb{R}^{2} is two dimensional, the three vectors $\left\{v, A v, A^{2} v\right\}$ must be linearly dependent. Prove that, in fact, $A^{2} v=\alpha A v+\beta v$ where $\alpha=\operatorname{trace}(A)$ and $\beta=-\operatorname{det}(A)$.

Problem 7. Suppose V is an n dimensional vector space. An operator $T: V \rightarrow V$ is called nilpotent if $T^{k}=0$ for some integer k.
(a) Prove that if T is nilpotent, then $T^{n}=0$.
(b) Prove that if T is nilpotent, then there is a basis of vectors of V so that the matrix for T is upper triangular with zeroes on the diagonal.

Problem 8. Let V be the space of polynomials of degree less than or equal to 2 . Let $T: V \rightarrow V$ be the homomorphism defined by

$$
p(x) \stackrel{T}{\mapsto} p(1) x^{2}+p^{\prime}(0) x+p^{\prime \prime}(0)
$$

(a) Compute the determinant and trace of T.
(b) Use the ordered basis $B=\left\{x^{2}, x, 1\right\}$ to express T as a 3×3 matrix $A=\operatorname{Rep}_{B, B}(T)$.
(c) Find a basis E consisting of eigenvectors for T.
(d) Let Q be the change of basis matrix $Q=\operatorname{Rep}_{B, E}(\mathrm{Id})$.
(e) Use your the ordered basis E to express T as a 3×3 matrix $B=\operatorname{Rep}_{E, E}(\mathrm{Id})$.

Problem 9. Let

$$
C=\left(\begin{array}{ccccc}
3 & 3 & 2 & 0 & 1 \\
3 & -5 & -2 & -4 & 1 \\
6 & 6 & 4 & 0 & 2 \\
3 & 5 & 3 & 1 & 1
\end{array}\right)
$$

(a) Find a basis for the kernel of C.
(b) Find a basis for the image of C.
(c) Find a basis for the space spanned by the columns of C.
(d) Find a basis for the space spanned by the columns of C^{t}.

Problem 10. Let

$$
A=\left(\begin{array}{ccc}
-1 & 8 & 2 \\
-1 & -7 & -1 \\
2 & 8 & -1
\end{array}\right) \text { and } B=\left(\begin{array}{ccc}
7 & 1 & 3 \\
7 & 3 & 4 \\
-10 & -2 & -4
\end{array}\right)
$$

(a) Find the characteristic and minimum polynomials and the Jordon canonical forms for A and B.
(b) Find matrices P and Q so that $P^{-1} A P$ and $Q^{-1} B Q$ are in Jordon form.
(c) Compute e^{A} and e^{B}.

Problem 11. Solve the two second order differential equations:

$$
\begin{aligned}
& y_{2}^{\prime \prime}=y_{2}-2 y_{1}^{\prime} \\
& y_{1}^{\prime \prime}=y_{1}+2 y_{2}^{\prime}
\end{aligned}
$$

subject to the initial conditions

$$
y_{1}(0)=0, \quad y_{2}(0)=0, \quad y_{1}^{\prime}(0)=0, \quad y_{2}^{\prime}(0)=1
$$

By translating them into a single system of the form $Y^{\prime}(t)=A Y(t)$ for a 4×4 matrix A.

