## Correspondences obtained by using ordered bases

## Using an ordered basis to represent a vector as columns of scalars

Using an ordered basis $B=\left\{b_{1}, \ldots, b_{n}\right\}$ for a vector space $V$, there is a bijective correspondence between the vectors in $V$ and vectors in $\mathbb{R}^{n}$. I will remind you of this correspondence and also define some convenient terminology.

Any vector $v \in V$ can be expressed uniquely as $v=\sum_{i=1}^{n} \alpha_{i} b_{i}$ where $\alpha_{i} \in \mathbb{R}$. Then $v$ corresponds to the column vector $\operatorname{Rep}_{B}(v) \in \mathbb{R}^{n}$ defined by

$$
\operatorname{Rep}_{B}(p(x))=\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right)
$$

The correspondence

$$
\begin{aligned}
V & \longleftrightarrow \mathbb{R}^{n} \\
v & \operatorname{Rep}_{B}(v)
\end{aligned}
$$

is one-to-one since every vector in the space can be expressed as a linear combination of the basis vectors uniquely and the corrspondence is onto since every linear combination of the basis vectors is a vector in the space.

Note that the correspondence depends on the choice of ordered basis $B$, and that dependence is reflected in the notation $\operatorname{Rep}_{B}(v)$.

Problem 1. Let $V$ be the space of polynomials of degree less than or equal to four. The set

$$
B=\left\{1+x, 1-x, 1-2 x^{2}, 1+x-x^{3}, x^{2}-x^{4}\right\}
$$

is a basis for $V$. Use the ordered basis $B$ to obtain a correspondence between $V \leftrightarrow \mathbb{R}^{5}$.
(a) Give the polynomials in $V$ that correspond to the vectors

$$
\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
0
\end{array}\right), \text { and }\left(\begin{array}{c}
1 \\
0 \\
-2 \\
-1 \\
1
\end{array}\right)
$$

(b) Give the vectors in $\mathbb{R}^{5}$ that correspond to the polynomials

$$
x^{3}, \quad 3 x^{2}, \quad 2 x^{4}-7, \text { and } 4 x^{4}-14
$$

## Using ordered bases to represent linear transformations as a matrix of scalars

Given an ordered basis $B_{V}=\left\{v_{1}, \ldots, v_{k}\right\}$ of a vector space $V$ and an ordered basis $B_{W}=$ $\left\{w_{1}, \ldots, w_{n}\right\}$ of $W$, there's a bijective correspondence between linear transformations $T$ : $V \rightarrow W$ and $n \times k$ matrices of scalars, defined as follows:

Given a linear transformation $T: V \rightarrow W$, define a matrix $\operatorname{Rep}_{B_{V}, B_{W}}(T)$ by setting the $i$-th column to be $\operatorname{Rep}_{B_{W}}\left(T\left(v_{i}\right)\right)$.

To put it another way, for each basis vector $v_{i} \in B_{V}$, the vector $T\left(v_{i}\right)$ is an element of $W$ and so it can be expressed uniquely in terms of the basis $B_{W}$ :

$$
T\left(v_{i}\right)=\sum_{j=1}^{n} a_{i j} w_{j}
$$

The numbers $a_{i j}$ for $i=1, \ldots, k$ and $j=1, \ldots, n$ define the $n \times k$ matrix

$$
\operatorname{Rep}_{B_{V}, B_{W}}(T)=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 k} \\
a_{21} & a_{22} & \cdots & a_{2 k} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n k}
\end{array}\right)
$$

Notice, the $i$-th column of the matrix $\operatorname{Rep}_{B_{V}, B_{W}}(T)$ is the column of scalars

$$
\left(\begin{array}{c}
a_{i 1} \\
a_{i 2} \\
\vdots \\
a_{i n}
\end{array}\right)=\operatorname{Rep}_{B_{W}}\left(T\left(v_{i}\right)\right)
$$

Problem 2. As before, let $V$ be the space of polynomials of degree less than or equal to four and let

$$
B=\left\{1+x, 1-x, 1-2 x^{2}, 1+x-x^{3}, x^{2}-x^{4}\right\}
$$

be a basis for $V$. The function $T: V \rightarrow V$ defined by $T(p)=p^{\prime}(t)+p(0)$ defines a linear transformation.
(a) Using the correspondence $V \longleftrightarrow \mathbb{R}^{5}$, express $T$ as a matrix $\operatorname{Rep}_{B, B}(T)$.
(b) Compute the polynomial $T\left(x^{3}\right)$ and compute the following product of a matrix with a vector:

$$
\operatorname{Rep}_{B, B}(T)\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
0
\end{array}\right)
$$

(c) Let $B^{\prime}=\left\{1, t, t^{2}, t^{3}, t^{4}\right\}$ and compute the matrix $\operatorname{Rep}_{B, B^{\prime}}(T)$.
(d) Find a basis $B^{\prime \prime}$ of $V$ so that the matrix $\operatorname{Rep}_{B, B^{\prime \prime}}(T)$ is diagonal with either 1 or 0 on the diagonal.

## Composition of linear transformations

Problem 3. This is a variation of problems 28 and 29 in section 2.8 of the Apostol's book. Let $V$ be the space of all real polynomials. Define linear transformations by

$$
\begin{array}{rlrl}
D: V & \rightarrow V & S: V & \rightarrow V \\
p(t) & \mapsto p^{\prime}(t) & p(t) & \mapsto t p(t)
\end{array} \quad p(t) \mapsto t p^{\prime}(t)
$$

(a) Let $p(t)=2+3 t-t^{2}+4 t^{3}$ Determine the image of $p$ under

$$
D, S, T, D T, T D, D S, S D, S T, T S, D T-T D, T^{2} D^{2}-D^{2} T^{2} .
$$

(b) Find the kernel of $T, T-\mathrm{Id}$, and $D T-2 D$.
(c) Does $D$ have a left inverse or a right inverse?
(d) Let $S: V \rightarrow V$ be defined by $p(t) \mapsto t p(t)$. Compute $D S-S D$ and, more generally, $D S^{n}-S^{n} D$.

## Inner products and best approximation

Problem 4. Let $V$ be the space of polynomials of degree less than or equal to three and let

$$
\langle p, q\rangle=p(0) q(0)+p^{\prime}(0) q^{\prime}(0)+p(1) q(1)+p^{\prime}(1) q^{\prime}(1) .
$$

(a) Prove that $\langle p, q\rangle$ defines an inner product on $V$. In particular, prove that if $\langle p, p\rangle=0$ then $p=0$. Hint: first prove the lemma that if $p$ is a polynomial and $a$ is a number for which $p(a)=0$ and $p^{\prime}(a)=0$, then there exists a polynomial $q$ so that $p(x)=$ $(x-a)^{2} q(x)$.
(b) Compute the angle between the polynomials $2 t^{3}-3 t^{2}$ and 1 .
(c) Use Gram-Schmidt to replace the basis $\left\{1, t, t^{2}, t^{3}\right\}$ by an orthogonormal set.
(d) The following polynomials form a very nice basis for $V$.

$$
\begin{gathered}
e_{1}=t(t-1)^{2} \\
e_{2}=t^{2}(t-1) \\
e_{3}=(2 t+1)(t-1)^{2} \\
e_{4}=t^{2}(1-2(t-1))
\end{gathered}
$$

Projecting an arbitrary differentiable function $f$ onto $V$ yields a linear combination of the basis vectors

$$
a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}+a_{4} e_{4} .
$$

Describe (simply!) the coefficients $a_{i}$ in terms of the function $f$. The simplicity of this description explains why $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is such a nice basis for $V$.

Problem 5. Each of the pictures below shows a polynomial approximation for $\cos (2 t)$. Five of them are degree four polynomials obtained by projection onto the subspace of quartic polynomials, using one of the following inner products.

$$
\begin{aligned}
\langle f, g\rangle_{1} & =f(2) g(2)+f^{\prime}(2) g^{\prime}(2)+f^{\prime \prime}(2) g^{\prime \prime}(2)+f^{\prime \prime \prime}(2) g^{\prime \prime \prime}(2) \\
\langle f, g\rangle_{2} & =\int_{0}^{4} f(t) g(t) d t \\
\langle f, g\rangle_{3} & =f(0) g(0)+f(1) g(1)+f(2) g(2)+f(3) g(3)+f(4) g(4) \\
\langle f, g\rangle_{4} & =f(0) g(0)+f(2) g(2)+f^{\prime}(2) g^{\prime}(2)+f^{\prime \prime}(2) g^{\prime \prime}(2)+f(4) g(4) \\
\langle f, g\rangle_{5} & =f(0) g(0)+f^{\prime}(0) g^{\prime}(0)+f(2) g(2)+f(4) g(4)+f^{\prime}(4) g^{\prime}(4)
\end{aligned}
$$

The sixth approximation is obtained by "gluing together" two degree two polynomials defined on $[0,2]$ and $[2,4]$, each determined by projection using, respectively, the inner products

$$
\begin{aligned}
\langle f, g\rangle_{6} & =f(0) g(0)+f(2) g(2)+f^{\prime}(2) g^{\prime}(2) \\
\langle f, g\rangle_{7} & =f(2) g(2)+f^{\prime}(2) g^{\prime}(2)+f(4) g(4)
\end{aligned}
$$



Which pictures go with which approximations?

