
Math 207 Fall 2014 Problem Set 1

Correspondences obtained by using ordered bases

Using an ordered basis to represent a vector as columns of scalars

Using an ordered basis B = {b1, . . . , bn} for a vector space V , there is a bijective correspon-

dence between the vectors in V and vectors in Rn. I will remind you of this correspondence

and also define some convenient terminology.

Any vector v ∈ V can be expressed uniquely as v =
∑n

i=1 αibi where αi ∈ R. Then v

corresponds to the column vector RepB(v) ∈ Rn defined by

RepB(p(x)) =


α1

α2

...

αn

 .

The correspondence

V ←→ Rn

v ←→ RepB(v)

is one-to-one since every vector in the space can be expressed as a linear combination of the

basis vectors uniquely and the corrspondence is onto since every linear combination of the

basis vectors is a vector in the space.

Note that the correspondence depends on the choice of ordered basis B, and that de-

pendence is reflected in the notation RepB(v).

Problem 1. Let V be the space of polynomials of degree less than or equal to four. The

set

B = {1 + x, 1− x, 1− 2x2, 1 + x− x3, x2 − x4}

is a basis for V . Use the ordered basis B to obtain a correspondence between V ↔ R5.

(a) Give the polynomials in V that correspond to the vectors
1

0

0

0

0

 ,


1

0

0

−1

0

 , and


1

0

−2

−1

1


(b) Give the vectors in R5 that correspond to the polynomials

x3, 3x2, 2x4 − 7, and 4x4 − 14
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Using ordered bases to represent linear transformations as a matrix

of scalars

Given an ordered basis BV = {v1, . . . , vk} of a vector space V and an ordered basis BW =

{w1, . . . , wn} of W , there’s a bijective correspondence between linear transformations T :

V →W and n× k matrices of scalars, defined as follows:

Given a linear transformation T : V →W , define a matrix RepBV ,BW
(T ) by setting the

i-th column to be RepBW
(T (vi)).

To put it another way, for each basis vector vi ∈ BV , the vector T (vi) is an element of

W and so it can be expressed uniquely in terms of the basis BW :

T (vi) =

n∑
j=1

aijwj .

The numbers aij for i = 1, . . . , k and j = 1, . . . , n define the n× k matrix

RepBV ,BW
(T ) =


a11 a12 · · · a1k
a21 a22 · · · a2k
...

...
...

an1 an2 · · · ank

 .

Notice, the i-th column of the matrix RepBV ,BW
(T ) is the column of scalars

ai1
ai2
...

ain

 = RepBW
(T (vi)).

Problem 2. As before, let V be the space of polynomials of degree less than or equal to

four and let

B = {1 + x, 1− x, 1− 2x2, 1 + x− x3, x2 − x4}

be a basis for V . The function T : V → V defined by T (p) = p′(t) + p(0) defines a linear

transformation.

(a) Using the correspondence V ←→ R5, express T as a matrix RepB,B(T ).

(b) Compute the polynomial T (x3) and compute the following product of a matrix with

a vector:

RepB,B(T )


1

0

0

−1

0

 .

(c) Let B′ = {1, t, t2, t3, t4} and compute the matrix RepB,B′(T ).

(d) Find a basis B′′ of V so that the matrix RepB,B′′(T ) is diagonal with either 1 or 0 on

the diagonal.
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Composition of linear transformations

Problem 3. This is a variation of problems 28 and 29 in section 2.8 of the Apostol’s book.

Let V be the space of all real polynomials. Define linear transformations by

D : V → V S : V → V T : V → V

p(t) 7→ p′(t) p(t) 7→ tp(t) p(t) 7→ tp′(t)

(a) Let p(t) = 2 + 3t− t2 + 4t3 Determine the image of p under

D,S, T,DT, TD,DS, SD, ST, TS,DT − TD, T 2D2 −D2T 2.

(b) Find the kernel of T , T − Id, and DT − 2D.

(c) Does D have a left inverse or a right inverse?

(d) Let S : V → V be defined by p(t) 7→ tp(t). Compute DS − SD and, more generally,

DSn − SnD.

Inner products and best approximation

Problem 4. Let V be the space of polynomials of degree less than or equal to three and

let

〈p, q〉 = p(0)q(0) + p′(0)q′(0) + p(1)q(1) + p′(1)q′(1).

(a) Prove that 〈p, q〉 defines an inner product on V . In particular, prove that if 〈p, p〉 = 0

then p = 0. Hint: first prove the lemma that if p is a polynomial and a is a number

for which p(a) = 0 and p′(a) = 0, then there exists a polynomial q so that p(x) =

(x− a)2q(x).

(b) Compute the angle between the polynomials 2t3 − 3t2 and 1.

(c) Use Gram-Schmidt to replace the basis {1, t, t2, t3} by an orthogonormal set.

(d) The following polynomials form a very nice basis for V .

e1 = t(t− 1)2

e2 = t2(t− 1)

e3 = (2t+ 1)(t− 1)2

e4 = t2(1− 2(t− 1))

Projecting an arbitrary differentiable function f onto V yields a linear combination of

the basis vectors

a1e1 + a2e2 + a3e3 + a4e4.

Describe (simply!) the coefficients ai in terms of the function f . The simplicity of this

description explains why {e1, e2, e3, e4} is such a nice basis for V .
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Problem 5. Each of the pictures below shows a polynomial approximation for cos(2t). Five

of them are degree four polynomials obtained by projection onto the subspace of quartic

polynomials, using one of the following inner products.

〈f, g〉1 = f(2)g(2) + f ′(2)g′(2) + f ′′(2)g′′(2) + f ′′′(2)g′′′(2)

〈f, g〉2 =

∫ 4

0

f(t)g(t)dt

〈f, g〉3 = f(0)g(0) + f(1)g(1) + f(2)g(2) + f(3)g(3) + f(4)g(4)

〈f, g〉4 = f(0)g(0) + f(2)g(2) + f ′(2)g′(2) + f ′′(2)g′′(2) + f(4)g(4)

〈f, g〉5 = f(0)g(0) + f ′(0)g′(0) + f(2)g(2) + f(4)g(4) + f ′(4)g′(4)

The sixth approximation is obtained by “gluing together” two degree two polynomials de-

fined on [0, 2] and [2, 4], each determined by projection using, respectively, the inner products

〈f, g〉6 = f(0)g(0) + f(2)g(2) + f ′(2)g′(2)

〈f, g〉7 = f(2)g(2) + f ′(2)g′(2) + f(4)g(4)
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Which pictures go with which approximations?


