
Math 207 Fall 2014 Problem Set 1 - Answers

Correspondences obtained by using ordered bases

Using an ordered basis to represent a vector as columns of scalars

Using an ordered basis B = {b1, . . . , bn} for a vector space V , there is a bijective correspon-

dence between the vectors in V and vectors in Rn. I will remind you of this correspondence

and also define some convenient terminology.

Any vector v ∈ V can be expressed uniquely as v =
∑n

i=1 αibi where αi ∈ R. Then v

corresponds to the column vector RepB(v) ∈ Rn defined by

RepB(p(x)) =


α1

α2

...

αn

 .

The correspondence

V ←→ Rn

v ←→ RepB(v)

is one-to-one since every vector in the space can be expressed as a linear combination of the

basis vectors uniquely and the corrspondence is onto since every linear combination of the

basis vectors is a vector in the space.

Note that the correspondence depends on the choice of ordered basis B, and that de-

pendence is reflected in the notation RepB(v).

Problem 1. Let V be the space of polynomials of degree less than or equal to four. The

set

B = {1 + x, 1− x, 1− 2x2, 1 + x− x3, x2 − x4}

is a basis for V . Use the ordered basis B to obtain a correspondence between V ↔ R5.

(a) Give the polynomials in V that correspond to the vectors
1

0

0

0

0

 ,


1

0

0

−1

0

 , and


1

0

−2

−1

1


Answer. 

1

0

0

0

0

 means 1e1 = 1 + x.
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
1

0

0

−1

0

 means 1e1 − 1e4 = 1 + x− (1 + x− x3) = x3.


1

0

−2

−1

1

 means 1e1−2e3−e4+e5 = 1+x−2(1−2x2)−(1+x−x3)+x2−x4 = −2+5x2+x3−x4.

(b) Give the vectors in R5 that correspond to the polynomials

x3, 3x2, 2x4 − 7, and 4x4 − 14

Answer. From above, we know

x3 ↔


1

0

0

−1

0


To find the vector that corresponds to 3x2, write

3x2 = α1e1 + α2e2 + α3e3 + α4e4 + α5e5

= α1 + α2 + α3 + α4 + (α1− α2 + α4)x+ (α5 − 2α3)x2 − α4x
3 − α5x

4.

Since 3x2 has no x3 or x4 terms, α5 = α4 = 0. So

3x2 = α1 + α2 + α3 + (α1− α2)x− 2α3x
2

So, 3 = −2α3 ⇒ α3 = − 3
2 . Then, setting the constant and linear terms equal to zero

yields

α1 + α2 = −3

2
= 0 and α1 − α2 = 0⇒ α1 =

3

4
and α2 =

3

4
.

So,

3x2 ↔


3
4
3
4

− 3
2

0

0


To express 2x4−7 = α1e1 +α2e2 +α3e3 +α4e4 +α5e5, note that −2e5−e3 = 2x4−1.

Also note that (e1 +e2) = 2⇒ −3e1−3e2) = −6. So, −2e5−e3−3e1−3e2 = 2x4−7.
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So,

2x4 − 7↔


−3

−3

−1

0

−2


Finally, since 4x4 − 14 = 2(2x4 − 7), we have

4x4 − 14↔


−6

−6

−2

0

−4


Using ordered bases to represent linear transformations as a matrix

of scalars

Given an ordered basis BV = {v1, . . . , vk} of a vector space V and an ordered basis BW =

{w1, . . . , wn} of W , there’s a bijective correspondence between linear transformations T :

V →W and n× k matrices of scalars, defined as follows:

Given a linear transformation T : V →W , define a matrix RepBV ,BW
(T ) by setting the

i-th column to be RepBW
(T (vi)).

To put it another way, for each basis vector vi ∈ BV , the vector T (vi) is an element of

W and so it can be expressed uniquely in terms of the basis BW :

T (vi) =

n∑
j=1

aijwj .

The numbers aij for i = 1, . . . , k and j = 1, . . . , n define the n× k matrix

RepBV ,BW
(T ) =


a11 a12 · · · a1k
a21 a22 · · · a2k
...

...
...

an1 an2 · · · ank

 .

Notice, the i-th column of the matrix RepBV ,BW
(T ) is the column of scalars

ai1
ai2
...

ain

 = RepBW
(T (vi)).

Problem 2. As before, let V be the space of polynomials of degree less than or equal to

four and let

B = {1 + x, 1− x, 1− 2x2, 1 + x− x3, x2 − x4}
be a basis for V . The function T : V → V defined by T (p) = p′(t) + p(0) defines a linear

transformation.
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(a) Using the correspondence V ←→ R5, express T as a matrix RepB,B(T ).

Answer. Compute T of each basis vector:

Te1 = 2 = e1 + e2

Te2 = 0

Te3 = −4x+ 1 =
3

2
e1 −

5

2
e2

Te4 = 2− 3x2 =
1

4
e1 +

1

4
e2 +

3

2
e3

Te5 = 2x− 4x3 = −3e1 − e2 + 4e4

Thus,

RepB,B(T ) =


1 0 3

2
1
4 −3

1 0 − 5
2

1
4 −1

0 0 0 3
2 0

0 0 0 0 −
0 0 0 0 0


(b) Compute the polynomial T (x3) and compute the following product of a matrix with

a vector:

RepB,B(T )


1

0

0

−1

0

 .

Answer. First, note that T (x3) = 3x2. Also that RepB(x3) =


1

0

0

−1

0

. Computing

the product

RepB,B(T )


1

0

0

−1

0

 =


1 0 3

2
1
4 −3

1 0 − 5
2

1
4 −1

0 0 0 3
2 0

0 0 0 0 4

0 0 0 0 0




1

0

0

−1

0

 =


3
4
3
4

− 3
2

0

0

 .

Note that the result


3
4
3
4

− 3
2

0

0

 is the vector that corresponds to 3x2. That is,

RepB,B(T ) RepB(x3) = RepB(T (x3)).
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(c) LetB′ = {1, t, t2, t3, t4} and compute the matrix RepB,B′(T ).Here, let {1, t, t2, t3, t4} =

{b1, b2, b3, b4, b5} and express

Te1 = 2 = 2b1

Te2 = 0

Te3 = 1− 4x = b1 − 4b2

Te4 = 2− 3x2 = 2b1 − 3b3

Te5 = 2x− 4x3 = 2b2 − 4b4

RepB,B′(T ) =


2 0 1 2 0

0 0 −4 0 2

0 0 0 −3 0

0 0 0 0 −4

0 0 0 0 0


As a consistency check, we compute

RepB,B′(T )


1

0

0

−1

0

 =


2 0 1 2 0

0 0 −4 0 2

0 0 0 −3 0

0 0 0 0 −4

0 0 0 0 0




1

0

0

−1

0

 =


0

0

3

0

0


which is the representatative of 3x2 in the basis B′. Thus,

RepB,B′(T ) RepB(x3) = RepB′(T (x3))

as expected.

(d) Find a basis B′′ of V so that the matrix RepB,B′′(T ) is diagonal with either 1 or 0 on

the diagonal.

Answer. Here’s one solution. Let B′′ = {2, x4, 1− 4x, 2− 3x2, 4x3} then

RepB,B′′(T ) =


1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


Composition of linear transformations

Problem 3. This is a variation of problems 28 and 29 in section 2.8 of the Apostol’s book.

Let V be the space of all real polynomials. Define linear transformations by

D : V → V S : V → V T : V → V

p(t) 7→ p′(t) p(t) 7→ tp(t) p(t) 7→ tp′(t)
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(a) Let p(t) = 2 + 3t− t2 + 4t3 Determine the image of p under

D,S, T,DT, TD,DS, SD, ST, TS,DT − TD, T 2D2 −D2T 2.

Answer. For SD and DS, see the part (d) of this problem. For the others, here are

some computations:

Dp = 3− 2t+ 12t2, Sp = 2t+ 3t2 − t3 + 4t4, Tp = 3t− 2t2 + 12t3.

DTp = D(3t−2t2+12t3) = 3−4t+36t2, TDp = T (3−2t+12t2) = t(−2+24t) = −2t+24t2

DSp = D(2t+3t2−t3+4t4) = 2+6t−3t2+16t3, SDp = S(3−2t+12t2) = 3t−2t2+12t3.

et cetera. Note that DT − TD = (3− 4t+ 36t2)− (−2t+ 24t2) = 3− 2t+ 12t2 = Dp.

For the last one:

(T 2D2 −D2T 2)p = T 2D2p−D2T 2p

= T 2p′′ −D2T (tp′)

= T (tp′′′)−D2(t(p′ + tp′′))

= T (tp′′′)−D2(tp′ + t2p′′)

= t(p′′′ + t2p′′′′)−D(p′ + tp′′ + 2tp′′ + t2p′′′)

= tp′′′ + t3p′′′′ − (p′′ + p′′ + tp′′′ + 2p′′ + 2tp′′′ + 2tp′′′ + t3p′′′′)

= −4p′′ − 4tp′′′

So

(T 2D2 −D2T 2)(2 + 3t− t2 + 4t3) = −4(−2 + 24t)− 4t(24) = 8− 192t.

(b) Find the kernel of T , T − Id, and DT − 2D.

Answer. If p ∈ ker(T ) then tp′ = 0 ⇒ p′ = 0 ⇒ p = c for some constant c. Thus

ker(T ) is the space of constant polynomials.

If p ∈ ker(T − Id) then tp′ − p = 0⇒ tp′ = p⇒ p(t) = ct for some constant t. Thus,

ker(T − Id) is the one dimensional subspace of polynomials of the form ct for some

constant c; i.e., the span of {t}.

A quick check reveals that (DT − 2D)(p) = tp′′ − p′, so to determine for which

polynomials p, we have (DT − 2D)(p) = 0, write p(t) = c0 + c1t + c22t + · · · + cnt
n.

Then

tp′′(t)− p′(t) = 2c2t+ 6c3t
2 + · · · (n)(n− 1)cnt

n−1 −
(
c1 + 2c2t+ 3c3t

2 + · · ·+ ncnt
n−1)

= −c1 + 3c2t
2 + · · ·+ (n)(n− 2)cnt

n−1

Setting tp′′(t) − p′(t) = 0 ⇔ c1 = c3 = · · · = cn = 0. Thus, the kernel of DT − 2D

consists of all polynomials of the form p(t) = c0 + c2t
2; i.e. the span of {1, t2}.

(c) Does D have a left inverse or a right inverse?
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Answer. Since D has a nontrivial kernel, it does not have a left inverse. To see this,

let p be the constant polynomial p(t) = 1. For any linear map F : V → V , we have

FD(p) = F (0) = 0 6= p

and so FD 6= Id for any linear F : V → V .

The map D does have a right inverse. Here’s one: Let I : V → V be defined by

I(p) =
∫ t

0
p(s)ds. Then

DI(p(t)) = D

∫ t

0

p(s)ds = p(t).

The last equality follows from the fundamental theorem of calculus. So DI = Id and

we see that I is a right inverse of D.

The fact that D has a set-theoretic right inverse says that D is onto; i.e. every

polynomial is the derivative of another polynomial (certainly true — every polynomial

has many antiderivatives). However, to say that D has a right inverse that is a linear

transformation says that an antiderivative for each polynomial can be chosen so the

totality of choices defines a linear map (this is only true if we choose the “constant of

integration” to be zero).

(d) Let S : V → V be defined by p(t) 7→ tp(t). Compute DS − SD and, more generally,

DSn − SnD.

Answer. DS(p) = D(tp) = p + tp′, SD(p) = S(p′) = tp′, and (DS − SD)(p) =

p+ tp′ − tp′ = p. So DS − SD = Id .

More generally, DSn(p) = tnp = ntn−1p+ tnp′, SnD(p) = Sn(p′) = tnp′, and (DSn−
SnD)(p) = ntn−1p.

Inner products and best approximation

Problem 4. Let V be the space of polynomials of degree less than or equal to three and

let

〈p, q〉 = p(0)q(0) + p′(0)q′(0) + p(1)q(1) + p′(1)q′(1).

(a) Prove that 〈p, q〉 defines an inner product on V . In particular, prove that if 〈p, p〉 = 0

then p = 0. Hint: first prove the lemma that if p is a polynomial and a is a number

for which p(a) = 0 and p′(a) = 0, then there exists a polynomial q so that p(x) =

(x− a)2q(x).

Answer. It’s straightforward to check that 〈 , 〉 as defined is symmetric and bilinear,

and it’s clear that as a sum of squares, 〈p, p〉 ≥ 0 for all p ∈ V . The one property

that’s not straightforward to check is that 〈p, p〉 = 0 only for the zero polynomial. To

check this, we first prove the lemma in the hint.

Lemma. If p is a polynomial and a is a number for which p(a) = 0 and p′(a) = 0,

then there exists a polynomial q so that p(t) = (t− a)2q(t).
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Proof. First, recall that if p is any polynomial and a is a number for which p(a) = 0,

then there exists a polynomial q so that that

p(t) = (t− a)q(t).

Now assume that for a particular polynomial p we have p(a) = 0 and p′(a) = 0.

Since p(a) = 0 then there exists a polynomial q with p(t) = (t − a)q(t). Note that

p′(t) = (t−a)q′(t)+q(t). Since p′(a) = 0 we have 0 = p′(a) = (a−a)q′(a)+q(a) = q(a).

Since q is a polynomial for which q(a) = 0, there exists a polynomial r of degree so

that q(t) = (t− a)r(t). Therefore,

p(t) = (t− a)2r(t).

Now suppose that 〈p, p〉 = 0. Then p(0)2 + p′(0)2 + p(1)2 + p′(1)2 = 0 ⇒ p(0) =

p′(0) = p(1) = p′(1) = 0. Since p(0) = 0 and p′(0) = 0, we know p(t) is divisible by

t2. Since p(1) = p′(1) = 0 we know p(t) is divisible by (t− 1)2. The only polynomial

of degree less than or equal to three that’s divisible by both t2 and (t− 1)2 is zero.

(b) Compute the angle between the polynomials 2t3 − 3t2 and 1.

Answer. A quick computation gives

〈2x3 − 3x2, 1〉√
〈2x3 − 3x2, 2x3 − 3x2〉

√
〈1, 1〉

= − 1√
2
.

So the angle between these two polynomials is

arccos

(
− 1√

2

)
=

3π

4
.

(c) Use Gram-Schmidt to replace the basis {1, t, t2, t3} by an orthogonormal set.

Answer. There’s a lot of computation to do this, the result is{
1√
2
,

2t− 1√
10

,
(t− 1)t√

2
,

10t3 − 15t2 + t+ 2√
10

}
(d) The following polynomials form a very nice basis for V .

e1 = t(t− 1)2

e2 = t2(t− 1)

e3 = (2t+ 1)(t− 1)2

e4 = t2(1− 2(t− 1))

Projecting an arbitrary differentiable function f onto V yields a linear combination of

the basis vectors

a1e1 + a2e2 + a3e3 + a4e4.

Describe (simply!) the coefficients ai in terms of the function f . The simplicity of this

description explains why {e1, e2, e3, e4} is such a nice basis for V .
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Answer. In general, for any orthonormal basis {e1, . . . , en} of V , the projection of

an any f onto V is obtained by

ProjV (f) =

n∑
i=1

〈f, ei〉ei.

Now, each term in the sum above 〈f, ei〉 is a sum of four products

ei(0)f(0) + e′i(0)f ′(0) + ei(1)f ′(1) + e′i(1)f ′(1).

Now, here’s what’s so special about the given basis:

e′1(0) = 1 and e1(0) = e1(1) = e′1(1) = 0

e′2(1) = 1 and e2(0) = e2(1) = e′2(0) = 0

e3(0) = 1 and e3(1) = e′3(0) = e′3(1) = 0

e4(1) = 1 and e4(0) = e′4(0) = e′4(1) = 0

So, instead of a complicated express for 〈f, ei〉, we have simply

〈f, e1〉 = f ′(0), 〈f, e2〉 = f ′(1), 〈f, e3〉 = f(0), 〈f, e4〉 = f(1).

So,

ProjV (f) = f ′(0)e1 + f ′(1)e2 + f(0)e3 + f(1)e4.

Problem 5. Each of the pictures below shows a polynomial approximation for cos(2t). Five

of them are degree four polynomials obtained by projection onto the subspace of quartic

polynomials, using one of the following inner products.

〈f, g〉1 = f(2)g(2) + f ′(2)g′(2) + f ′′(2)g′′(2) + f ′′′(2)g′′′(2)

〈f, g〉2 =

∫ 4

0

f(t)g(t)dt

〈f, g〉3 = f(0)g(0) + f(1)g(1) + f(2)g(2) + f(3)g(3) + f(4)g(4)

〈f, g〉4 = f(0)g(0) + f(2)g(2) + f ′(2)g′(2) + f ′′(2)g′′(2) + f(4)g(4)

〈f, g〉5 = f(0)g(0) + f ′(0)g′(0) + f(2)g(2) + f(4)g(4) + f ′(4)g′(4)

The sixth approximation is obtained by “gluing together” two degree two polynomials de-

fined on [0, 2] and [2, 4], each determined by projection using, respectively, the inner products

〈f, g〉6 = f(0)g(0) + f(2)g(2) + f ′(2)g′(2)

〈f, g〉7 = f(2)g(2) + f ′(2)g′(2) + f(4)g(4)
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Answer. The answers are

5 1

2 3

6/7 4

1 2 3 4

-1.0

-0.5

0.5

1.0

f ¢H0L g¢H0L + f ¢H4L g¢H4L + f H0L gH0L + f H2L gH2L + f H4L gH4L

1 2 3 4

-3

-2

-1

1

2

f H4L H2L gH4L H2L + f H3L H2L gH3L H2L + f ¢¢H2L g¢¢H2L + f ¢H2L g¢H2L + f H2L gH2L

1 2 3 4

-1.0

-0.5

0.5

1.0

à
0

4

f HtL gHtL â t

1 2 3 4

-1.0

-0.5

0.5

1.0

f H0L gH0L + f H1L gH1L + f H2L gH2L + f H3L gH3L + f H4L gH4L

1 2 3 4

-1.0

-0.5

0.5

1.0
8 f ¢H2L g¢H2L + f H0L gH0L + f H2L gH2L, f ¢H2L g¢H2L + f H2L gH2L + f H4L gH4L<

1 2 3 4

-1.0

-0.5

0.5

1.0

1.5

f ¢¢H2L g¢¢H2L + f ¢H2L g¢H2L + f H0L gH0L + f H2L gH2L + f H4L gH4L


