Correspondences obtained by using ordered bases

Using an ordered basis to represent a vector as columns of scalars

Using an ordered basis $B=\left\{b_{1}, \ldots, b_{n}\right\}$ for a vector space V, there is a bijective correspondence between the vectors in V and vectors in \mathbb{R}^{n}. I will remind you of this correspondence and also define some convenient terminology.

Any vector $v \in V$ can be expressed uniquely as $v=\sum_{i=1}^{n} \alpha_{i} b_{i}$ where $\alpha_{i} \in \mathbb{R}$. Then v corresponds to the column vector $\operatorname{Rep}_{B}(v) \in \mathbb{R}^{n}$ defined by

$$
\operatorname{Rep}_{B}(p(x))=\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right)
$$

The correspondence

$$
\begin{aligned}
V & \longleftrightarrow \mathbb{R}^{n} \\
v & \operatorname{Rep}_{B}(v)
\end{aligned}
$$

is one-to-one since every vector in the space can be expressed as a linear combination of the basis vectors uniquely and the corrspondence is onto since every linear combination of the basis vectors is a vector in the space.

Note that the correspondence depends on the choice of ordered basis B, and that dependence is reflected in the notation $\operatorname{Rep}_{B}(v)$.

Problem 1. Let V be the space of polynomials of degree less than or equal to four. The set

$$
B=\left\{1+x, 1-x, 1-2 x^{2}, 1+x-x^{3}, x^{2}-x^{4}\right\}
$$

is a basis for V. Use the ordered basis B to obtain a correspondence between $V \leftrightarrow \mathbb{R}^{5}$.
(a) Give the polynomials in V that correspond to the vectors

$$
\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
0
\end{array}\right), \text { and }\left(\begin{array}{c}
1 \\
0 \\
-2 \\
-1 \\
1
\end{array}\right)
$$

Answer.

$$
\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right) \text { means } 1 e_{1}=1+x
$$

$$
\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
0
\end{array}\right) \text { means } 1 e_{1}-1 e_{4}=1+x-\left(1+x-x^{3}\right)=x^{3}
$$

$\left(\begin{array}{c}1 \\ 0 \\ -2 \\ -1 \\ 1\end{array}\right)$ means $1 e_{1}-2 e_{3}-e_{4}+e_{5}=1+x-2\left(1-2 x^{2}\right)-\left(1+x-x^{3}\right)+x^{2}-x^{4}=-2+5 x^{2}+x^{3}-x^{4}$.
(b) Give the vectors in \mathbb{R}^{5} that correspond to the polynomials

$$
x^{3}, \quad 3 x^{2}, \quad 2 x^{4}-7, \text { and } 4 x^{4}-14
$$

Answer. From above, we know

$$
x^{3} \leftrightarrow\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
0
\end{array}\right)
$$

To find the vector that corresponds to $3 x^{2}$, write

$$
\begin{aligned}
3 x^{2} & =\alpha_{1} e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3}+\alpha_{4} e_{4}+\alpha_{5} e_{5} \\
& =\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\left(\alpha 1-\alpha 2+\alpha_{4}\right) x+\left(\alpha_{5}-2 \alpha_{3}\right) x^{2}-\alpha_{4} x^{3}-\alpha_{5} x^{4}
\end{aligned}
$$

Since $3 x^{2}$ has no x^{3} or x^{4} terms, $\alpha_{5}=\alpha_{4}=0$. So

$$
3 x^{2}=\alpha_{1}+\alpha_{2}+\alpha_{3}+(\alpha 1-\alpha 2) x-2 \alpha_{3} x^{2}
$$

So, $3=-2 \alpha_{3} \Rightarrow \alpha_{3}=-\frac{3}{2}$. Then, setting the constant and linear terms equal to zero yields

$$
\alpha_{1}+\alpha_{2}=-\frac{3}{2}=0 \text { and } \alpha_{1}-\alpha_{2}=0 \Rightarrow \alpha_{1}=\frac{3}{4} \text { and } \alpha_{2}=\frac{3}{4}
$$

So,

$$
3 x^{2} \leftrightarrow\left(\begin{array}{c}
\frac{3}{4} \\
\frac{3}{4} \\
-\frac{3}{2} \\
0 \\
0
\end{array}\right)
$$

To express $2 x^{4}-7=\alpha_{1} e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3}+\alpha_{4} e_{4}+\alpha_{5} e_{5}$, note that $-2 e_{5}-e_{3}=2 x^{4}-1$. Also note that $\left.\left(e_{1}+e_{2}\right)=2 \Rightarrow-3 e_{1}-3 e_{2}\right)=-6$. So, $-2 e_{5}-e_{3}-3 e_{1}-3 e_{2}=2 x^{4}-7$.

So,

$$
2 x^{4}-7 \leftrightarrow\left(\begin{array}{c}
-3 \\
-3 \\
-1 \\
0 \\
-2
\end{array}\right)
$$

Finally, since $4 x^{4}-14=2\left(2 x^{4}-7\right)$, we have

$$
4 x^{4}-14 \leftrightarrow\left(\begin{array}{c}
-6 \\
-6 \\
-2 \\
0 \\
-4
\end{array}\right)
$$

Using ordered bases to represent linear transformations as a matrix of scalars

Given an ordered basis $B_{V}=\left\{v_{1}, \ldots, v_{k}\right\}$ of a vector space V and an ordered basis $B_{W}=$ $\left\{w_{1}, \ldots, w_{n}\right\}$ of W, there's a bijective correspondence between linear transformations T : $V \rightarrow W$ and $n \times k$ matrices of scalars, defined as follows:

Given a linear transformation $T: V \rightarrow W$, define a matrix $\operatorname{Rep}_{B_{V}, B_{W}}(T)$ by setting the i-th column to be $\operatorname{Rep}_{B_{W}}\left(T\left(v_{i}\right)\right)$.

To put it another way, for each basis vector $v_{i} \in B_{V}$, the vector $T\left(v_{i}\right)$ is an element of W and so it can be expressed uniquely in terms of the basis B_{W} :

$$
T\left(v_{i}\right)=\sum_{j=1}^{n} a_{i j} w_{j}
$$

The numbers $a_{i j}$ for $i=1, \ldots, k$ and $j=1, \ldots, n$ define the $n \times k$ matrix

$$
\operatorname{Rep}_{B_{V}, B_{W}}(T)=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 k} \\
a_{21} & a_{22} & \cdots & a_{2 k} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n k}
\end{array}\right)
$$

Notice, the i-th column of the matrix $\operatorname{Rep}_{B_{V}, B_{W}}(T)$ is the column of scalars

$$
\left(\begin{array}{c}
a_{i 1} \\
a_{i 2} \\
\vdots \\
a_{i n}
\end{array}\right)=\operatorname{Rep}_{B_{W}}\left(T\left(v_{i}\right)\right)
$$

Problem 2. As before, let V be the space of polynomials of degree less than or equal to four and let

$$
B=\left\{1+x, 1-x, 1-2 x^{2}, 1+x-x^{3}, x^{2}-x^{4}\right\}
$$

be a basis for V. The function $T: V \rightarrow V$ defined by $T(p)=p^{\prime}(t)+p(0)$ defines a linear transformation.
(a) Using the correspondence $V \longleftrightarrow \mathbb{R}^{5}$, express T as a matrix $\operatorname{Rep}_{B, B}(T)$.

Answer. Compute T of each basis vector:

$$
\begin{aligned}
& T e_{1}=2=e_{1}+e_{2} \\
& T e_{2}=0 \\
& T e_{3}=-4 x+1=\frac{3}{2} e_{1}-\frac{5}{2} e_{2} \\
& T e_{4}=2-3 x^{2}=\frac{1}{4} e_{1}+\frac{1}{4} e_{2}+\frac{3}{2} e_{3} \\
& T e_{5}=2 x-4 x^{3}=-3 e_{1}-e_{2}+4 e_{4}
\end{aligned}
$$

Thus,

$$
\operatorname{Rep}_{B, B}(T)=\left(\begin{array}{ccccc}
1 & 0 & \frac{3}{2} & \frac{1}{4} & -3 \\
1 & 0 & -\frac{5}{2} & \frac{1}{4} & -1 \\
0 & 0 & 0 & \frac{3}{2} & 0 \\
0 & 0 & 0 & 0 & - \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(b) Compute the polynomial $T\left(x^{3}\right)$ and compute the following product of a matrix with a vector:

$$
\operatorname{Rep}_{B, B}(T)\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
0
\end{array}\right)
$$

Answer. First, note that $T\left(x^{3}\right)=3 x^{2}$. Also that $\operatorname{Rep}_{B}\left(x^{3}\right)=\left(\begin{array}{c}1 \\ 0 \\ 0 \\ -1 \\ 0\end{array}\right)$. Computing the product

$$
\operatorname{Rep}_{B, B}(T)\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 0 & \frac{3}{2} & \frac{1}{4} & -3 \\
1 & 0 & -\frac{5}{2} & \frac{1}{4} & -1 \\
0 & 0 & 0 & \frac{3}{2} & 0 \\
0 & 0 & 0 & 0 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{c}
\frac{3}{4} \\
\frac{3}{4} \\
-\frac{3}{2} \\
0 \\
0
\end{array}\right)
$$

Note that the result $\left(\begin{array}{c}\frac{3}{4} \\ \frac{3}{4} \\ -\frac{3}{2} \\ 0 \\ 0\end{array}\right)$ is the vector that corresponds to $3 x^{2}$. That is,

$$
\operatorname{Rep}_{B, B}(T) \operatorname{Rep}_{B}\left(x^{3}\right)=\operatorname{Rep}_{B}\left(T\left(x^{3}\right)\right)
$$

(c) Let $B^{\prime}=\left\{1, t, t^{2}, t^{3}, t^{4}\right\}$ and compute the matrix $\operatorname{Rep}_{B, B^{\prime}}(T)$. Here, let $\left\{1, t, t^{2}, t^{3}, t^{4}\right\}=$ $\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\}$ and express

$$
\begin{aligned}
T e_{1} & =2=2 b_{1} \\
T e_{2} & =0 \\
T e_{3} & =1-4 x=b_{1}-4 b_{2} \\
T e_{4} & =2-3 x^{2}=2 b_{1}-3 b_{3} \\
T e_{5} & =2 x-4 x^{3}=2 b_{2}-4 b_{4} \\
\operatorname{Rep}_{B, B^{\prime}}(T) & =\left(\begin{array}{ccccc}
2 & 0 & 1 & 2 & 0 \\
0 & 0 & -4 & 0 & 2 \\
0 & 0 & 0 & -3 & 0 \\
0 & 0 & 0 & 0 & -4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

As a consistency check, we compute

$$
\operatorname{Rep}_{B, B^{\prime}}(T)\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{ccccc}
2 & 0 & 1 & 2 & 0 \\
0 & 0 & -4 & 0 & 2 \\
0 & 0 & 0 & -3 & 0 \\
0 & 0 & 0 & 0 & -4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
3 \\
0 \\
0
\end{array}\right)
$$

which is the representatative of $3 x^{2}$ in the basis B^{\prime}. Thus,

$$
\operatorname{Rep}_{B, B^{\prime}}(T) \operatorname{Rep}_{B}\left(x^{3}\right)=\operatorname{Rep}_{B^{\prime}}\left(T\left(x^{3}\right)\right)
$$

as expected.
(d) Find a basis $B^{\prime \prime}$ of V so that the matrix $\operatorname{Rep}_{B, B^{\prime \prime}}(T)$ is diagonal with either 1 or 0 on the diagonal.

Answer. Here's one solution. Let $B^{\prime \prime}=\left\{2, x^{4}, 1-4 x, 2-3 x^{2}, 4 x^{3}\right\}$ then

$$
\operatorname{Rep}_{B, B^{\prime \prime}}(T)=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Composition of linear transformations

Problem 3. This is a variation of problems 28 and 29 in section 2.8 of the Apostol's book. Let V be the space of all real polynomials. Define linear transformations by

$$
\begin{array}{rlrl}
D: V & \rightarrow V & S: V & \rightarrow V \\
p(t) & \mapsto p^{\prime}(t) & p(t) & \mapsto t p(t)
\end{array}
$$

(a) Let $p(t)=2+3 t-t^{2}+4 t^{3}$ Determine the image of p under

$$
D, S, T, D T, T D, D S, S D, S T, T S, D T-T D, T^{2} D^{2}-D^{2} T^{2}
$$

Answer. For $S D$ and $D S$, see the part (d) of this problem. For the others, here are some computations:

$$
\begin{aligned}
& \qquad D p=3-2 t+12 t^{2}, \quad S p=2 t+3 t^{2}-t^{3}+4 t^{4}, \quad T p=3 t-2 t^{2}+12 t^{3} . \\
& D T p=D\left(3 t-2 t^{2}+12 t^{3}\right)=3-4 t+36 t^{2}, \quad T D p=T\left(3-2 t+12 t^{2}\right)=t(-2+24 t)=-2 t+24 t^{2} \\
& D S p=D\left(2 t+3 t^{2}-t^{3}+4 t^{4}\right)=2+6 t-3 t^{2}+16 t^{3}, \quad S D p=S\left(3-2 t+12 t^{2}\right)=3 t-2 t^{2}+12 t^{3} . \\
& \text { et cetera. Note that } D T-T D=\left(3-4 t+36 t^{2}\right)-\left(-2 t+24 t^{2}\right)=3-2 t+12 t^{2}=D p . \\
& \text { For the last one: }
\end{aligned}
$$

$$
\begin{aligned}
\left(T^{2} D^{2}-D^{2} T^{2}\right) p & =T^{2} D^{2} p-D^{2} T^{2} p \\
& =T^{2} p^{\prime \prime}-D^{2} T\left(t p^{\prime}\right) \\
& =T\left(t p^{\prime \prime \prime}\right)-D^{2}\left(t\left(p^{\prime}+t p^{\prime \prime}\right)\right) \\
& =T\left(t p^{\prime \prime \prime}\right)-D^{2}\left(t p^{\prime}+t^{2} p^{\prime \prime}\right) \\
& =t\left(p^{\prime \prime \prime}+t^{2} p^{\prime \prime \prime \prime}\right)-D\left(p^{\prime}+t p^{\prime \prime}+2 t p^{\prime \prime}+t^{2} p^{\prime \prime \prime}\right) \\
& =t p^{\prime \prime \prime}+t^{3} p^{\prime \prime \prime \prime}-\left(p^{\prime \prime}+p^{\prime \prime}+t p^{\prime \prime \prime}+2 p^{\prime \prime}+2 t p^{\prime \prime \prime}+2 t p^{\prime \prime \prime}+t^{3} p^{\prime \prime \prime \prime}\right) \\
& =-4 p^{\prime \prime}-4 t p^{\prime \prime \prime}
\end{aligned}
$$

So

$$
\left(T^{2} D^{2}-D^{2} T^{2}\right)\left(2+3 t-t^{2}+4 t^{3}\right)=-4(-2+24 t)-4 t(24)=8-192 t
$$

(b) Find the kernel of $T, T-\mathrm{Id}$, and $D T-2 D$.

Answer. If $p \in \operatorname{ker}(T)$ then $t p^{\prime}=0 \Rightarrow p^{\prime}=0 \Rightarrow p=c$ for some constant c. Thus $\operatorname{ker}(T)$ is the space of constant polynomials.

If $p \in \operatorname{ker}(T-\mathrm{Id})$ then $t p^{\prime}-p=0 \Rightarrow t p^{\prime}=p \Rightarrow p(t)=c t$ for some constant t. Thus, $\operatorname{ker}(T-\mathrm{Id})$ is the one dimensional subspace of polynomials of the form $c t$ for some constant c; i.e., the span of $\{t\}$.
A quick check reveals that $(D T-2 D)(p)=t p^{\prime \prime}-p^{\prime}$, so to determine for which polynomials p, we have $(D T-2 D)(p)=0$, write $p(t)=c_{0}+c_{1} t+c 2_{t}^{2}+\cdots+c_{n} t^{n}$. Then

$$
\begin{aligned}
t p^{\prime \prime}(t)-p^{\prime}(t) & =2 c_{2} t+6 c_{3} t^{2}+\cdots(n)(n-1) c_{n} t^{n-1}-\left(c_{1}+2 c_{2} t+3 c_{3} t^{2}+\cdots+n c_{n} t^{n-1}\right) \\
& =-c_{1}+3 c_{2} t^{2}+\cdots+(n)(n-2) c_{n} t^{n-1}
\end{aligned}
$$

Setting $t p^{\prime \prime}(t)-p^{\prime}(t)=0 \Leftrightarrow c_{1}=c_{3}=\cdots=c_{n}=0$. Thus, the kernel of $D T-2 D$ consists of all polynomials of the form $p(t)=c_{0}+c_{2} t^{2}$; i.e. the span of $\left\{1, t^{2}\right\}$.
(c) Does D have a left inverse or a right inverse?

Answer. Since D has a nontrivial kernel, it does not have a left inverse. To see this, let p be the constant polynomial $p(t)=1$. For any linear map $F: V \rightarrow V$, we have

$$
F D(p)=F(0)=0 \neq p
$$

and so $F D \neq$ Id for any linear $F: V \rightarrow V$.
The map D does have a right inverse. Here's one: Let $I: V \rightarrow V$ be defined by $I(p)=\int_{0}^{t} p(s) d s$. Then

$$
D I(p(t))=D \int_{0}^{t} p(s) d s=p(t)
$$

The last equality follows from the fundamental theorem of calculus. So $D I=\mathrm{Id}$ and we see that I is a right inverse of D.
The fact that D has a set-theoretic right inverse says that D is onto; i.e. every polynomial is the derivative of another polynomial (certainly true - every polynomial has many antiderivatives). However, to say that D has a right inverse that is a linear transformation says that an antiderivative for each polynomial can be chosen so the totality of choices defines a linear map (this is only true if we choose the "constant of integration" to be zero).
(d) Let $S: V \rightarrow V$ be defined by $p(t) \mapsto t p(t)$. Compute $D S-S D$ and, more generally, $D S^{n}-S^{n} D$.

Answer. $D S(p)=D(t p)=p+t p^{\prime}, S D(p)=S\left(p^{\prime}\right)=t p^{\prime}$, and $(D S-S D)(p)=$ $p+t p^{\prime}-t p^{\prime}=p$. So $D S-S D=\mathrm{Id}$.
More generally, $D S^{n}(p)=t^{n} p=n t^{n-1} p+t^{n} p^{\prime}, S^{n} D(p)=S^{n}\left(p^{\prime}\right)=t^{n} p^{\prime}$, and $\left(D S^{n}-\right.$ $\left.S^{n} D\right)(p)=n t^{n-1} p$.

Inner products and best approximation

Problem 4. Let V be the space of polynomials of degree less than or equal to three and let

$$
\langle p, q\rangle=p(0) q(0)+p^{\prime}(0) q^{\prime}(0)+p(1) q(1)+p^{\prime}(1) q^{\prime}(1)
$$

(a) Prove that $\langle p, q\rangle$ defines an inner product on V. In particular, prove that if $\langle p, p\rangle=0$ then $p=0$. Hint: first prove the lemma that if p is a polynomial and a is a number for which $p(a)=0$ and $p^{\prime}(a)=0$, then there exists a polynomial q so that $p(x)=$ $(x-a)^{2} q(x)$.
Answer. It's straightforward to check that \langle,$\rangle as defined is symmetric and bilinear,$ and it's clear that as a sum of squares, $\langle p, p\rangle \geq 0$ for all $p \in V$. The one property that's not straightforward to check is that $\langle p, p\rangle=0$ only for the zero polynomial. To check this, we first prove the lemma in the hint.

Lemma. If p is a polynomial and a is a number for which $p(a)=0$ and $p^{\prime}(a)=0$, then there exists a polynomial q so that $p(t)=(t-a)^{2} q(t)$.

Proof. First, recall that if p is any polynomial and a is a number for which $p(a)=0$, then there exists a polynomial q so that that

$$
p(t)=(t-a) q(t)
$$

Now assume that for a particular polynomial p we have $p(a)=0$ and $p^{\prime}(a)=0$. Since $p(a)=0$ then there exists a polynomial q with $p(t)=(t-a) q(t)$. Note that $p^{\prime}(t)=(t-a) q^{\prime}(t)+q(t)$. Since $p^{\prime}(a)=0$ we have $0=p^{\prime}(a)=(a-a) q^{\prime}(a)+q(a)=q(a)$. Since q is a polynomial for which $q(a)=0$, there exists a polynomial r of degree so that $q(t)=(t-a) r(t)$. Therefore,

$$
p(t)=(t-a)^{2} r(t)
$$

Now suppose that $\langle p, p\rangle=0$. Then $p(0)^{2}+p^{\prime}(0)^{2}+p(1)^{2}+p^{\prime}(1)^{2}=0 \Rightarrow p(0)=$ $p^{\prime}(0)=p(1)=p^{\prime}(1)=0$. Since $p(0)=0$ and $p^{\prime}(0)=0$, we know $p(t)$ is divisible by t^{2}. Since $p(1)=p^{\prime}(1)=0$ we know $p(t)$ is divisible by $(t-1)^{2}$. The only polynomial of degree less than or equal to three that's divisible by both t^{2} and $(t-1)^{2}$ is zero.
(b) Compute the angle between the polynomials $2 t^{3}-3 t^{2}$ and 1 .

Answer. A quick computation gives

$$
\frac{\left\langle 2 x^{3}-3 x^{2}, 1\right\rangle}{\sqrt{\left\langle 2 x^{3}-3 x^{2}, 2 x^{3}-3 x^{2}\right\rangle} \sqrt{\langle 1,1\rangle}}=-\frac{1}{\sqrt{2}}
$$

So the angle between these two polynomials is

$$
\arccos \left(-\frac{1}{\sqrt{2}}\right)=\frac{3 \pi}{4}
$$

(c) Use Gram-Schmidt to replace the basis $\left\{1, t, t^{2}, t^{3}\right\}$ by an orthogonormal set.

Answer. There's a lot of computation to do this, the result is

$$
\left\{\frac{1}{\sqrt{2}}, \frac{2 t-1}{\sqrt{10}}, \frac{(t-1) t}{\sqrt{2}}, \frac{10 t^{3}-15 t^{2}+t+2}{\sqrt{10}}\right\}
$$

(d) The following polynomials form a very nice basis for V.

$$
\begin{gathered}
e_{1}=t(t-1)^{2} \\
e_{2}=t^{2}(t-1) \\
e_{3}=(2 t+1)(t-1)^{2} \\
e_{4}=t^{2}(1-2(t-1))
\end{gathered}
$$

Projecting an arbitrary differentiable function f onto V yields a linear combination of the basis vectors

$$
a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}+a_{4} e_{4}
$$

Describe (simply!) the coefficients a_{i} in terms of the function f. The simplicity of this description explains why $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is such a nice basis for V.

Answer. In general, for any orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of V, the projection of an any f onto V is obtained by

$$
\operatorname{Proj}_{V}(f)=\sum_{i=1}^{n}\left\langle f, e_{i}\right\rangle e_{i}
$$

Now, each term in the sum above $\left\langle f, e_{i}\right\rangle$ is a sum of four products

$$
e_{i}(0) f(0)+e_{i}^{\prime}(0) f^{\prime}(0)+e_{i}(1) f^{\prime}(1)+e_{i}^{\prime}(1) f^{\prime}(1)
$$

Now, here's what's so special about the given basis:

$$
\begin{aligned}
& e_{1}^{\prime}(0)=1 \text { and } e_{1}(0)=e_{1}(1)=e_{1}^{\prime}(1)=0 \\
& e_{2}^{\prime}(1)=1 \text { and } e_{2}(0)=e_{2}(1)=e_{2}^{\prime}(0)=0 \\
& e_{3}(0)=1 \text { and } e_{3}(1)=e_{3}^{\prime}(0)=e_{3}^{\prime}(1)=0 \\
& e_{4}(1)=1 \text { and } e_{4}(0)=e_{4}^{\prime}(0)=e_{4}^{\prime}(1)=0
\end{aligned}
$$

So, instead of a complicated express for $\left\langle f, e_{i}\right\rangle$, we have simply

$$
\left\langle f, e_{1}\right\rangle=f^{\prime}(0), \quad\left\langle f, e_{2}\right\rangle=f^{\prime}(1), \quad\left\langle f, e_{3}\right\rangle=f(0), \quad\left\langle f, e_{4}\right\rangle=f(1)
$$

So,

$$
\operatorname{Proj}_{V}(f)=f^{\prime}(0) e_{1}+f^{\prime}(1) e_{2}+f(0) e_{3}+f(1) e_{4}
$$

Problem 5. Each of the pictures below shows a polynomial approximation for $\cos (2 t)$. Five of them are degree four polynomials obtained by projection onto the subspace of quartic polynomials, using one of the following inner products.

$$
\begin{aligned}
\langle f, g\rangle_{1} & =f(2) g(2)+f^{\prime}(2) g^{\prime}(2)+f^{\prime \prime}(2) g^{\prime \prime}(2)+f^{\prime \prime \prime}(2) g^{\prime \prime \prime}(2) \\
\langle f, g\rangle_{2} & =\int_{0}^{4} f(t) g(t) d t \\
\langle f, g\rangle_{3} & =f(0) g(0)+f(1) g(1)+f(2) g(2)+f(3) g(3)+f(4) g(4) \\
\langle f, g\rangle_{4} & =f(0) g(0)+f(2) g(2)+f^{\prime}(2) g^{\prime}(2)+f^{\prime \prime}(2) g^{\prime \prime}(2)+f(4) g(4) \\
\langle f, g\rangle_{5} & =f(0) g(0)+f^{\prime}(0) g^{\prime}(0)+f(2) g(2)+f(4) g(4)+f^{\prime}(4) g^{\prime}(4)
\end{aligned}
$$

The sixth approximation is obtained by "gluing together" two degree two polynomials defined on $[0,2]$ and $[2,4]$, each determined by projection using, respectively, the inner products

$$
\begin{aligned}
& \langle f, g\rangle_{6}=f(0) g(0)+f(2) g(2)+f^{\prime}(2) g^{\prime}(2) \\
& \langle f, g\rangle_{7}=f(2) g(2)+f^{\prime}(2) g^{\prime}(2)+f(4) g(4)
\end{aligned}
$$

Answer. The answers are | 5 | 1 |
| :---: | :---: |
| 2 | 3 |
| $6 / 7$ | 4 |

$\int_{0}^{4} f(t) g(t) d t$

