Problem 1. In quantum mechanics one considers the three matrices σ^{x}, σ^{y}, and σ^{z}.

$$
\sigma^{x}=\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right] \quad \sigma^{y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \quad \sigma^{z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

In quantum computing theory, these matrices represent fundamental operations on a single quantum bit of quantum information. For example, σ^{x} is the "Quantum NOT" operation.
(a) Compute the eight products: $\sigma^{i} \sigma^{j}$ for $i, j=x, y, z$.
(b) Find the eigenvalues of σ^{x}, σ^{y}, and σ^{z}.

Problem 2. Consider the inner product space $(V,\langle\rangle$,$) where V$ is the space of all infinitely differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $f(x)=f(x+1)$ for all $x \in \mathbb{R}$ and $\langle f, g\rangle=$ $\int_{0}^{1} f(x) g(x) d x$. Let $\sigma: V \rightarrow V$ defined by $\sigma(f)=f^{\prime}$.
(a) Prove that σ is a skew-symmetric linear operator.
(b) Prove that σ^{2} is a negative semi-definite symmetric operator.

Recall: A linear operator τ on an inner product space V is negative semi-definite if and only if $\langle\tau(v), v\rangle \leq 0$ for all $v \in V$.

The Matrix Exponential

Definition 1. For any $n \times n$ complex matrix A, define the matrix e^{A} by

$$
\begin{equation*}
e^{A}=I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\cdots \tag{1}
\end{equation*}
$$

One can prove that the series defined above converges absolutely for all matrices A.
Problem 3. Compute e^{A} and e^{B} for

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
3 i & 0 & -2+i \\
3-2 i & -2 & 1+2 i \\
0 & 0 & 6
\end{array}\right]
$$

Problem 4. Prove that if A is similar to B then e^{A} is similar to e^{B}.
Problem 5. Prove that $e^{\operatorname{trace}(A)}=\operatorname{det}\left(e^{A}\right)$.

