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Let I be an open interval in R and let β : I → R3 be a smooth unit speed

curve. By smooth I mean that the component functions βi, i = 1, 2, 3, are

infinitely differentiable. By unit speed I mean that ‖β′(s)‖ = 1 for all s ∈ I.

Definition 1. We call β′ the tangent vector of β and denote it by T . The

fuction κ : I → R defined by κ(s) = ‖T ′(s)‖ = ‖β′′(s)‖ is called the curvature

of β.

The curvature κ measures how β differs from a straight line.

Theorem 1. β is a part of straight line iff κ = 0.

Proof. If κ = 0 then β′′
i (s) = 0 for each s ∈ I and i = 1, 2, 3. Therefore,

βi(s) = ai + bis for some fixed ai, bi ∈ R. Therefore, β = a + bs where

a = (a1, a1, a3) and b = (b1, b2, b3) and we see that β is part of the straight line

through the points a and b in R3.

Curves with κ = 0 are perfectly straight. If β is not part of a straight

line, then we may go on to define further invariants, such as the normal to the

curve. From now on, assume that κ > 0.

Definition 2. We call 1
κ
T ′ the normal vector of β and denote it by N . We

call T ×N the binormal vector of β and denote it by B.

For each s ∈ I, the vectors T (s), N(s), and B(s) define an orthonormal

basis of R3. The tangent vector T is assumed to be normal—that’s the meaning

of β being unit speed. Then N is defined to be the normalized derivative of

T . The normal N and tangent T are orthogonal since 〈T, T 〉 = 1⇒ 〈T ′, T 〉 =

0⇒ 〈N, T 〉 = 0. Because B is the cross-product of T and N , B is orthogonal
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to both T and N and since both T and N have unit length, so does B. Picture

the vectors T (s), N(s), and B(s) as defining an orthonormal basis of R3 at the

point β(s) and so as the parameter s varies, T , N , and B defines a moving

frame along the curve β.

It turns out that the derivatives of T, N , and B satisfy special conditions:

Theorem 2. There is a unique function τ : I → R, called the torsion of β,

so that
T ′ = κN

N ′ = −κT +τB

B′ = −τN

Sketch of proof. The way to get information is to differentiate the orthogonal-

ity equations and the normality equations. First show that B′ is a mutliple of

N . This defines τ . . .

The torsion τ measures how β twists in space, how near to planar β is.

Theorem 3. β is a plane curve line iff τ = 0.

Proof. First observe that a plane is determined by a point p ∈ R3 (which is in

the plane) and a unit vector v (which is orthogonal to the plane) via

q lies in the plane ⇐⇒ 〈p− q, v〉 = 0.

Now, suppose that β is a plane curve. Then there exist fixed p, v ∈ R3 with

‖v‖ = 1 so that 〈β(s) − p, v〉 = 0 for all s. Differentiating a couple of times

gives 〈β′(s), v〉 = 0 and 〈β′′(s), v〉 = 0. Therefore, v is orthogonal to T (s) and

N(s) for all s. This implies that v = B(s) or v = −B(s), either way we find

that B is constant. Therefore, B′(s) = 0⇒ τ(s) = 0.

Conversely, suppose that τ = 0. Then B′(s) = 0 and B is constant. Now,

fix one point β(a) on the curve β and look at the plane that contains β(a)

and is orthogonal to B. To show that β(s) is in the plane for all s, consider

〈β(s)−β(a), B〉. Differentiating with respect to sGive 〈β′(s), B〉 = 〈T,B〉 = 0.

Therefore, the scalar function 〈β(s)−β(a), B〉 is constant.. Since this constant

is zero when s = a, we must have 〈β(s)−β(a), B〉 = 0 for all s, as needed.

Theorem 4. Suppose τ = 0. Then β is part of a circle iff κ is constant.

Proof. Exercise.
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Theorem 5. Suppose that β1, β2 : I → R3 are two smooth, unit speed curves

for which κ1, κ2 > 0. Then, there exists a unique orthogonal transformation

O : R3 → R3 and a point p ∈ R3 such that β1 = O ◦ β2 + p iff κ1 = κ2 and

τ1 = ±τ2.

Lemma 1. Suppose that β1, β2 : I → R3 are two smooth, unit speed curves

that have the same curvature and the same torsion everywhere. If their Frenet

frames agree at one point, then they are identical everywhere.

Proof. To show that T1 = T2, N1 = N2, and B1 = B2, we differentiate

〈T1, T2〉+ 〈N1, N2〉+ 〈B1, B2〉 to get

〈T ′
1, T2〉+ 〈T1, T ′

2〉+ 〈N ′
1, N2〉+ 〈N1, N

′
2〉+ 〈B′

1, B2〉+ 〈B1, B
′
2〉

=κ〈N1, T2〉+ κ〈T1, N2〉 − κ〈T1, N2〉+ τ〈B1, N2〉
− κ〈N1, T2〉+ τ〈N1, B2〉 − τ〈N1, B2〉 − τ〈B1, N2〉

=0

This proves that the scalar function 〈T1, T2〉+ 〈N1, N2〉+ 〈B1, B2〉 is constant.

If T1(a) = T2(a), N1(a) = N2(a), and B1(a) = B2(a) for some point a ∈ I,

then 〈T1(a), T2(a)〉+ 〈N1(a), N2(a)〉+ 〈B1(a), B2(a)〉 = 3 and we must have

〈T1(s), T2(s)〉+ 〈N1(s), N2(s)〉+ 〈B1(s), B2(s)〉 = 3 for all s ∈ I.

The Schwarz inequality finishes the proof since, for example, 〈N1, N2〉 ≤
‖N1‖‖N2‖ = 1 with equality iff N1 = N2.

Proof of Theorem 5. First, some preliminaries. For any function f : R→ R3,

and any linear transformation S : R3 → R3, (S ◦ f)′ = S◦f ′. By definition, if S

is orthogonal, 〈S(v), S(w)〉 = 〈v, w〉. Note, in addition, that if S is orthogonal,

then ‖S(v)‖ = ‖v‖ and S(v × w) = ± (S(v)× S(w)).

Suppose that β1 = O ◦ β2 + p for an orthogonal linear transformation O

and a fixed p. Differentiating β1 = O ◦ β2 + p once gives

T1 = O(T2). (1)

Differentiating again gives

κ1N1 = κ2O(N2). (2)
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Because O is orthogonal, ‖O(N2)‖ = ‖N2|, implying that κ1 = κ2. Since

κ1, κ2 6= 0, Equation (2) says

N1 = O(N2). (3)

From this it follows that T1×N1 = O(T2)×O(N2) = ±O(T2×N2). Therefore

B1 = ±O(B2). (4)

Differentiating Equation 4 gives that τ1 = ±τ2.
Conversely, suppose κ1 = κ2 and τ1 = τ2. (The case that τ1 = −τ2 is

basically the same.) Let us call these common values κ and τ . In order to

find right orthogonal tranformation and the translation that sends β2 onto

β1, we pick one point a ∈ I and use the two Frenet frames at a to define an

orthogonal transformation, and translate so the images line up. The idea is

that we define the map correctly at one point and because the curvature and

torsion are the same, the lemma gaurantess that the map is correct at every

point. The details follow.

Fix a number a ∈ I. The linear tranformation O : R3 → R3 defined

by O(T2) = T1, O(N2) = N1, and O(B2) = B1 is orthogonal since both

{T2(a), N2(a), B2(a)} and {T1(a), N1(a), B1(a)} are orthonormal bases of R3.

Let p = β1(a)−O(β2(a)). We claim that

β1 = O ◦ β2 + p. (5)

From the first part of this proof, the curvature of O◦β2+p is κ, and the torsion

is either plus or minus τ (and we can assume it’s plus, for otherwise we can

just redefine O so that O(B2) = −B1). By construction, O(β2(a)) + p = β1(a)

and the Frenet frames of the curve O ◦ β2 + p and β1 are the same at a ∈ I.

Therefore, by the lemma, the Frenet frames of the O ◦ β2 + p and β1 agree

everywhere. In particular, the velocity vectors are the same for all s ∈ I,

which by Problem 7 proves our claim.

Problem 1. Prove Theorem 4 and complete the proof of Theorem 2.

Problem 2. Define β : (−1, 1)→ R3 by

β(s) =

(
(1 + s)

3
2

3
,
(1− s) 3

2

3
,
s√
2

)
.

Compute the Frenet frame. As a check, I get τ(0) = − 1
2
√
2

and τ
(
1
2

)
= − 1√

6
.

4



Problem 3. Let β : I → R3 is a smooth unit speed curve and suppose that

β(s) +N(s) = p for a fixed p ∈ R3. Prove that β is part of a circle.

Problem 4. Let β : R→ R2 be a smooth unit speed curve satisfying β(s) =

β(s + 1) for all s ∈ R. Prove that there is a point on the image of β that

is furthest, say distance d, from the origin. Prove that the curvature at this

point is at least 1
d
.

Problem 5. Consider the unit sphere S2 = {p ∈ R3 such that ‖p‖ = r}.
Prove that if β : I → S is a smooth unit speed curve, then κ ≥ 1

r
.

Problem 6. The curve α defined by

α(t) =
(
t+
√

3 sin(t), 2 cos(t),
√

3t− sin(t)
)

is a helix. Prove it. In fact, be explicit: find a unit speed curve β of the form

β(s) =

(
a cos

(s
c

)
, a sin

(s
c

)
,
bs

c

)
,

an orthogonal operator O, and a point p so that O ◦ α + p = β.

Problem 7. Prove that if α′(s) = β′(s) for all s ∈ I and for one particular

a ∈ I, α(a) = β(a), then α(s) = β(s) for all s.
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