Problem 1. Use a Monte Carlo method to approximate

$$
\int_{R} x e^{\cos (x y z)}
$$

where the region R is defined by

$$
x y z \leq 1, \quad 0 \leq x \leq 5, \quad 0 \leq y \leq 5, \quad 0 \leq z \leq 5
$$

(a) Generate n points in the cube $0 \leq x, y, z \leq 5$ and form a sum, weighted by $x e^{\cos (x y z)}$ for each point $(x, y, z) \in R$. Divide by n and multiply by the volume of the cube. Generate estimates using $n=10,000$ points and $n=1,000,000$ points. Determine the standard deviation in each case.
(b) How many points are needed to be 95% certain that your answer is accurate to .05 ?

Problem 2. Example 3 from section 12.7 in Apostol. Let $S=r(T)$ be a simple parametric surface defined by a smooth function r defined on a region T in the $u-v$ plane and let F be a smooth vector field defined and bounded on S. At each point of S let n denote the unit normal

$$
n=\frac{\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}}{\left\|\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}\right\|}
$$

(a) Prove that if the vector field $F=U \mathbf{i}+V \mathbf{j}+W \mathbf{k}$, then

$$
\iint_{r(T)} F \cdot n d S=\int_{r(T)} \omega
$$

where on the left hand side $\iint_{r(T)} F \cdot n d S$ is Apostol's surface integral (Section 12.7) and on the right had side ω is the two-form $U d y \wedge d z-V d x \wedge d z+W d x \wedge d y$ and $\int_{r(T)} \omega$ is the ordinary integral $\int_{T} r^{*}(\omega)$ defined in the $u-v$ plane.
(b) Apostol defines the divergence of a vector field $F=U \mathbf{i}+V \mathbf{j}+W \mathbf{k}$ to be the function

$$
\operatorname{Div}(F)=\frac{\partial U}{\partial x}+\frac{\partial V}{\partial y}+\frac{\partial W}{\partial z}
$$

Use the equation in part (a) and the differential form version of Stoke's theorem to prove (easily!) the Divergence Theorem which states that

$$
\iint_{r(T)} F \cdot n d S=\iiint_{V} \operatorname{Div}(F) d x d y d z
$$

where V is the the solid whose boundary is the surface S.

Problem 2. Continued.

(c) The Wikipedia article on Divergence begins:

In vector calculus, divergence is a vector operator that measures the magnitude of a vector field's source or sink at a given point, in terms of a signed scalar. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.

If we consider a vector field F as defining the flux density flow of a fluid (think of velocity vectors of moving air particles), then the total mass of fluid flowing out of a sphere S in a unit time is given by

$$
\int_{S} F \cdot n d S
$$

where n is the outward pointing unit vector perpendicular to the sphere S and dividing by the volume of the sphere $|V|$ defines the mass flowing out per unit volume per unit time. The divergence according to the Wikipedia definition of a vector field F at a point p is this infinitesimal change in volume:

$$
\operatorname{Div}(F)(p)=\lim _{t \rightarrow 0} \frac{1}{|V(t)|} \int_{S(t)} F \cdot n d S
$$

where $V(t)$ is a solid sphere of radius $t>0$ centered at $p, S(t)$ is the boundary of the sphere. Prove it.

Problem 3. Let

$$
\omega=\left(x z-\frac{1}{3}\right) d y \wedge d z+\left(y z-2 z e^{x^{2}+y^{2}+z^{2}}\right) d x \wedge d z+\left(\frac{1}{3}-2 y e^{x^{2}+y^{2}+z^{2}}\right) d x \wedge d y
$$

and H be the northern hemisphere of the unit sphere in \mathbb{R}^{3}. Compute $\int_{H} \omega$ four ways:
(a) Directly from the definition.
(b) Use Stokes theorem.
(c) Identify the two-form ω with a vector field F as in the previous problem and use Apostol's formula for $\int_{H} F \cdot n d S$.
(d) Identify the two-form ω with a vector field F as in the previous problem and use Apostol's formula for $\int_{D} F \cdot n d S$ where D is the unit disc in the $x y$-plane. Note the formula for the normal n is quite simple.

EXAM

Final Exam

Math 208
May 20, 2015

- This exam is due at 8:00 am on Thursday, May 21.
- Neatness counts! Make sure your answers are clearly and carefully written.
- Document any resources you use.

Success!

