Problem 1. Curves in \mathbb{R}^{3}

(a) Give an example of a curve with constant curvature that is not a circle.
(b) Prove that if a curve in \mathbb{R}^{3} lies on a sphere and has constant curvature, then it is part of a circle.

Problem 2. Integrate. Verify your answers on a computer.
(a) Compute

$$
\int_{\alpha}\left(y^{2}+3 z e^{3 x z}\right) d x+(2 x y) d y+\left(3 x e^{3 x z}\right) d z
$$

where $\alpha:[0,2 \pi] \rightarrow \mathbb{R}^{3}$ is the helix given by $\alpha(t)=(\cos (t), \sin (t), t)$.
(b) Compute

$$
\int_{\alpha}(3 y+3 x) d x+(2 y-x) d y+z^{2} d z
$$

where $\alpha:[0,2 \pi] \rightarrow \mathbb{R}^{3}$ is the circle given by $\alpha(t)=(\cos (t), \sin (t), 3)$.
(c) Compute

$$
\int_{r} 3 x d y \wedge d z-2 y d x \wedge d z
$$

where $r:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times[0,2 \pi] \rightarrow \mathbb{R}^{3}$ is the sphere given by

$$
r(u, v)=(3 \cos (u) \cos (v), 3 \cos (u) \sin (v), 3 \sin (u)) .
$$

Problem 3. Let M_{22} be the space of 2×2 real matrices. By identifying $M_{22} \simeq \mathbb{R}^{4}$, we can discuss functions to and from M_{22} as being continuous, differentiable, etc...
(a) Consider the function $F: M_{22} \rightarrow \mathbb{R}$ defined by $F(A)=\operatorname{det}(A)$. Show that F has one critical point and investigate its nature (find the eigenvalues and and eigenvectors of the Hessian and determine whether the critical point is an extremum).
(b) Given a matrix A, one may ask whether A has a square root. That is, whether there exists a matrix B with $A=B^{2}$. Consider the following variation. Given a matrix A, does there exist a matrix B with $A=B^{2}+B$. Your problem: use the Inverse Function Theorem to prove that there exists a neighborhood of the 2×2 zero matrix so that for every $A \in \mathcal{U}$, there exists a matrix B with $A=B^{2}+B$.

Problem 4. The second order Taylor approximation:
(a) Let U be an open subset of \mathbb{R}^{n} and suppose that $f: U \rightarrow \mathbb{R}$ is smooth function. Fix a point $p \in U$. Prove that for any $x \in U$, there exists a number $t \in[0,1]$ so that

$$
f(x)=f(p)+D_{p}(x-p)+\frac{1}{2}(x-p)^{T}\left(H_{c}\right)(x-p)
$$

where D_{p} is the derivative of f at p, c is the point $c=t p+(1-t) x$ on the segment between p and x, and H_{c} is the Hessian of f at c.
(b) Use the fact that $f(x) \approx f(p)+D_{p}(x-p)+\frac{1}{2}(x-p)^{T}\left(H_{p}\right)(x-p)$ to approximate $1.05^{2.02}$.

Problem 5. Consider the surface $S \subset \mathbb{R}^{3}$ defined by

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: 2 x^{2}+2 y^{2}+z^{2}-8 x z+z+8=0\right\} .
$$

For most points on this surface, S is locally the graph of a function. Find all the critical points of the function z defined implicitly by S and classify them as either a local max, a local min, or neither. Here's a sketch of the surface S.

EXAM

Midterm

Math 208

April 12, 2015

- This exam is due in class on Tuesday, April 14.
- Neatness counts! Make sure your answers are clearly and carefully written.
- Document any resources you use.

Success!

