Problem 1. Curves in \mathbb{R}^3

(a) Give an example of a curve with constant curvature that is not a circle.

(b) Prove that if a curve in \mathbb{R}^3 lies on a sphere and has constant curvature, then it is part of a circle.

Problem 2. Integrate. Verify your answers on a computer.

(a) Compute
\[\int_{\alpha} \left(y^2 + 3ze^{3xz} \right) dx + (2xy)dy + (3xe^{3xz})dz \]
where $\alpha : [0, 2\pi] \to \mathbb{R}^3$ is the helix given by $\alpha(t) = (\cos(t), \sin(t), t)$.

(b) Compute
\[\int_{\alpha} (3y + 3x)dx + (2y - x)dy + z^2dz \]
where $\alpha : [0, 2\pi] \to \mathbb{R}^3$ is the circle given by $\alpha(t) = (\cos(t), \sin(t), 3)$.

(c) Compute
\[\int_{\alpha} 3x \ dy \wedge dz - 2y \ dx \wedge dz \]
where $r : \left[\frac{-\pi}{2}, \frac{\pi}{2} \right] \times [0, 2\pi] \to \mathbb{R}^3$ is the sphere given by
\[r(u, v) = (3\cos(u)\cos(v), 3\cos(u)\sin(v), 3\sin(u)). \]

Problem 3. Let M_{22} be the space of 2×2 real matrices. By identifying $M_{22} \simeq \mathbb{R}^4$, we can discuss functions to and from M_{22} as being continuous, differentiable, etc...

(a) Consider the function $F : M_{22} \to \mathbb{R}$ defined by $F(A) = \det(A)$. Show that F has one critical point and investigate its nature (find the eigenvalues and and eigenvectors of the Hessian and determine whether the critical point is an extremum).

(b) Given a matrix A, one may ask whether A has a square root. That is, whether there exists a matrix B with $A = B^2$. Consider the following variation. Given a matrix A, does there exist a matrix B with $A = B^2 + B$. Your problem: use the Inverse Function Theorem to prove that there exists a neighborhood of the 2×2 zero matrix so that for every $A \in U$, there exists a matrix B with $A = B^2 + B$.

Problem 4. The second order Taylor approximation:

(a) Let U be an open subset of \mathbb{R}^n and suppose that $f : U \to \mathbb{R}$ is smooth function. Fix a point $p \in U$. Prove that for any $x \in U$, there exists a number $t \in [0, 1]$ so that

$$f(x) = f(p) + D_p(x - p) + \frac{1}{2}(x - p)^T(H_c)(x - p)$$

where D_p is the derivative of f at p, c is the point $c = tp + (1 - t)x$ on the segment between p and x, and H_c is the Hessian of f at c.

(b) Use the fact that $f(x) \approx f(p) + D_p(x - p) + \frac{1}{2}(x - p)^T(H_p)(x - p)$ to approximate $1.05^{2.02}$.

Problem 5. Consider the surface $S \subset \mathbb{R}^3$ defined by

$$S = \{(x, y, z) \in \mathbb{R}^3 : 2x^2 + 2y^2 + z^2 - 8xz + z + 8 = 0\}.$$

For most points on this surface, S is locally the graph of a function. Find all the critical points of the function z defined implicitly by S and classify them as either a local max, a local min, or neither. Here’s a sketch of the surface S.
This exam is due in class on Tuesday, April 14.

Neatness counts! Make sure your answers are clearly and carefully written.

Document any resources you use.

Success!