EXAM

Midterm
Math 208
April 15, 2015

ANSWERS

Problem 1. Curves in \mathbb{R}^{3}

(a) Give an example of a curve with constant curvature that is not a circle.

Answer:

The helix $\alpha:[0,2 \pi] \rightarrow \mathbb{R}^{3}$ defined by $\alpha(t)=\frac{1}{\sqrt{2}}(\cos (t), \sin (t), t)$ is a unit speed curve. A quick computation shows that the curvature $\kappa(t)=\frac{1}{\sqrt{2}}$, which is constant.
(b) Prove that if a curve in \mathbb{R}^{3} lies on a sphere and has constant curvature, then it is part of a circle.

Answer:

Let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a curve that lies on a sphere or radius r and has constant curvature. Without loss of generality, assume that α has unit speed. The condition that α lies on the sphere means that $\alpha(t) \cdot \alpha(t)=r^{2} \Rightarrow \alpha^{\prime}(t) \cdot \alpha(t)=0$. We conclude that

$$
\begin{equation*}
T \cdot \alpha=0 . \tag{1}
\end{equation*}
$$

We differentiate again to get $T^{\prime} \cdot \alpha+T \cdot \alpha^{\prime}=\kappa N \cdot \alpha+1=0$. We conclude that

$$
\begin{equation*}
-1=\kappa N \cdot \alpha . \tag{2}
\end{equation*}
$$

Differentiating again, assuming the curvature κ is constant, gives

$$
0=\kappa N^{\prime} \cdot \alpha+\kappa N \cdot T=\kappa(-\kappa T+\tau B) \cdot \alpha+0=0 .
$$

We already know $T \cdot \alpha=0$, so we conclude that

$$
\begin{equation*}
\alpha \cdot B=0 . \tag{3}
\end{equation*}
$$

Since T, N, B form an orthonormal basis for $T_{\alpha(t)} \mathbb{R}^{3}$ for each t, equations (1), (2), (3) imply that

$$
\begin{equation*}
\alpha=-\frac{1}{\kappa} N . \tag{4}
\end{equation*}
$$

Since $N^{\prime}=-\kappa T+\tau B$ from the Frenet formulas, and equation (4) implies that $N^{\prime}=$ $-\kappa T$, we conclude that $\tau=0$. This says that α is a plane curve. Therefore, α lies on the intersection of a plane and a sphere, which means it lies on a circle.

Problem 2. Integrate. Verify your answers on a computer.
(a) Compute

$$
\int_{\alpha}\left(y^{2}+3 z e^{3 x z}\right) d x+(2 x y) d y+\left(3 x e^{3 x z}\right) d z
$$

where $\alpha:[0,2 \pi] \rightarrow \mathbb{R}^{3}$ is the helix given by $\alpha(t)=(\cos (t), \sin (t), t)$.
Answer:
Note that $\left(y^{2}+3 z e^{3 x z}\right) d x+(2 x y) d y+\left(3 x e^{3 x z}\right) d z=d f$ where $f(x, y, z)=x y^{2}+e^{3 x z}$. Thus, by Stokes theorem the answer is

$$
\begin{aligned}
\int_{\alpha}\left(y^{2}+3 z e^{3 x z}\right) d x+(2 x y) d y+\left(3 x e^{3 x z}\right) d z & =\int_{\alpha} d f \\
=\int_{\partial \alpha} f & =f(\alpha(2 \pi))-f(\alpha(0))=e^{6 \pi}-1
\end{aligned}
$$

(b) Compute

$$
\int_{\alpha}(3 y+3 x) d x+(2 y-x) d y+z^{2} d z
$$

where $\alpha:[0,2 \pi] \rightarrow \mathbb{R}^{3}$ is the circle given by $\alpha(t)=(\cos (t), \sin (t), 3)$.
Answer:
Notice that $d\left((3 y+3 x) d x+(2 y-x) d y+z^{2} d z\right)=3 d y \wedge d x-1 d x \wedge d y=-4 d x \wedge d y$ and that α parametrizes the boundary of D, a disc of radius 1. Therefore by Stokes theorem:

$$
\int_{r}\left((3 y+3 x) d x+(2 y-x) d y+z^{2} d z\right)=\int_{C}-4 d x \wedge d y=-4 \pi .
$$

(c) Compute

$$
\int_{r} 3 x d y \wedge d z-2 y d x \wedge d z
$$

where $r:[0,2 \pi] \times\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbb{R}^{3}$ is the sphere given by

$$
r(u, v)=(3 \cos (v) \cos (u), 3 \cos (v) \sin (u), 3 \sin (v)) .
$$

Answer:

Note that $d(3 x d y \wedge d z-2 y d x \wedge d z)=5 d x \wedge d y \wedge d z$ and r parametrizes the boundary of the solid sphere V of radius 3 centered at the origin. So, by Stokes theorem

$$
\left.\begin{array}{rl}
\int_{r} 3 x d y \wedge d z-2 y d x \wedge d z=\int_{V} 5 d x \wedge d x & \wedge d y \wedge d z= \\
& 5 \int_{V} d x
\end{array}\right) d x \wedge d y \wedge d z=5\left(\frac{4}{3} \pi 3^{3}\right)=180 \pi .
$$

Problem 3. Let M_{22} be the space of 2×2 real matrices. By identifying $M_{22} \simeq \mathbb{R}^{4}$, we can discuss functions to and from M_{22} as being continuous, differentiable, etc...
(a) Consider the function $F: M_{22} \rightarrow \mathbb{R}$ defined by $F(A)=\operatorname{det}(A)$. Show that F has one critical point and investigate its nature (find the eigenvalues and and eigenvectors of the Hessian and determine whether the critical point is an extremum).

Answer:

By identifying $M_{22} \simeq \mathbb{R}^{4}$ via

$$
\left[\begin{array}{ll}
x & y \\
z & u
\end{array}\right] \longleftrightarrow(x, y, z, u)
$$

we have $F(x, y, z, u)=x u-y z$. We compute the derivative and Hessian

$$
D=[u,-z,-y, x] \text { and } H=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

We see there is one critical point of F at $(0,0,0,0)$ and a quick computation gives the characteristic polynomial

$$
\begin{aligned}
\chi_{H}(\lambda) & =\operatorname{det}(H-\lambda I) \\
& =\operatorname{det}\left[\begin{array}{cccc}
-\lambda & 0 & 0 & 1 \\
0 & -\lambda & -1 & 0 \\
0 & -1 & -\lambda & 0 \\
1 & 0 & 0 & -\lambda
\end{array}\right] \\
& =\lambda^{2}\left(\lambda^{2}-1\right)-1\left(\lambda^{2}-1\right) \\
& =(\lambda-1)^{2}(\lambda+1)^{2}
\end{aligned}
$$

yields the eigenvalues $\lambda=-1$ and $\lambda=1$. Since one is positive and one is negative, the critical point is a saddle point, neither a max nor a min. The eigenvectors are:

$$
\{(-1,0,0,1),(0,1,1,0),(0,-1,1,0),(1,0,0,1)\} .
$$

The first two correspond to $\lambda=-1$ and the second two to $\lambda=1$. So, the function curves

Problem 3.

(b) Given a matrix A, one may ask whether A has a square root. That is, whether there exists a matrix B with $A=B^{2}$. Consider the following variation. Given a matrix A, does there exist a matrix B with $A=B^{2}+B$. Your problem: use the Inverse Function Theorem to prove that there exists a neighborhood of the 2×2 zero matrix so that for every $A \in \mathcal{U}$, there exists a matrix B with $A=B^{2}+B$.

Answer:

Let $F: M_{22} \rightarrow M_{22}$ be defined by $F(B)=B^{2}+B$. we express $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ by

$$
F(x, y, z, u)=\left(x+x^{2}+y z, y+u y+x y, z+u z+x z, u+u^{2}+y z\right)
$$

We compute the derivative of F and get

$$
D=\left[\begin{array}{cccc}
1+2 x & z & y & 0 \\
y & 1+u+x & 0 & y \\
z & 0 & 1+u+x & z \\
0 & z & y & 1+2 u
\end{array}\right]
$$

Notice that at the two by two zero matrix $(x, y, z, u)=(0,0,0,0)$, we have

$$
D=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

which is invertible. Therefore, the inverse function theorem says there exists a neighbor$\operatorname{hood} \mathcal{U}$ of $(0,0,0,0)$ (in the domain) and a neighborhood \mathcal{V} of $F(0,0,0,0)=(0,0,0,0)$ (in the range) so that $F: \mathcal{U} \rightarrow \mathcal{V}$ is bijective and the inverse, call it $G: \mathcal{V} \rightarrow \mathcal{U}$ is differentiable, with derivative $D_{F(A)} G=\left(D_{A} F\right)^{-1}$. Therefor, for each $A \in \mathcal{V}$, there exists a $B=G(A) \in \mathcal{U}$ so that $F(G(B))=A$. That is, $A=B^{2}+B$.

Problem 4. The second order Taylor approximation:
(a) Let U be an open subset of \mathbb{R}^{n} and suppose that $f: U \rightarrow \mathbb{R}$ is smooth function. Fix a point $p \in U$. Prove that for any $x \in U$, there exists a number $t \in[0,1]$ so that

$$
f(x)=f(p)+D_{p}(x-p)+\frac{1}{2}(x-p)^{t}\left(H_{c}\right)(x-p)
$$

where D_{p} is the derivative of f at p, c is the point $c=t p+(1-t) x$ on the segment between p and x, and H_{c} is the Hessian of f at c.

Answer:

Let x be given. Consider the function $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by $g(s)=f(s p+(1-s) x)$.
Taylor's theorem for one variable functions says that there is a point $t \in(0, s)$ so that

$$
g(s)=g(0)+g^{\prime}(0) s+\frac{1}{2} g^{\prime \prime}(t) .
$$

To finish the problem, express the right hand side in terms of f. We'll have to use the chain rule to differentiate g, so look at g as the composition:

$$
\begin{aligned}
& \mathbb{R} \xrightarrow{\phi} U \xrightarrow{f} \mathbb{R} \\
& s \longmapsto s x+(1-s) p \longmapsto f(s x+(1-s) p)
\end{aligned}
$$

So, $g^{\prime}(s)=D f_{s x+(1-s) p}(x-p) \Rightarrow g^{\prime}(0)=D_{p}(x-p)$ and $g^{\prime \prime}(s)=(x-$ $p)^{T} H f_{s x+(1-s) p}(x-p)$, which proves the result.
(b) Use the fact that $f(x) \approx f(p)+D_{p}(x-p)+\frac{1}{2}(x-p)^{t}\left(H_{p}\right)(x-p)$ to approximate $1.05^{2.02}$.

Answer:

Let $f(x, y)=x^{y}$. We have

$$
f(1.05,2.02) \approx f(1,2)+D_{(1,2)}\left[\begin{array}{l}
.05 \\
.02
\end{array}\right]+\frac{1}{2}\left[\begin{array}{ll}
.05 & .02] H_{(1,2)}\left[\begin{array}{l}
.05 \\
.02
\end{array}\right] ~
\end{array}\right.
$$

We compute

$$
D_{(x, y)}=\left[\begin{array}{ll}
y x^{y-1} & \log (x) x^{y}
\end{array}\right] \Rightarrow D_{(1,2)}=\left[\begin{array}{ll}
2 & 0
\end{array}\right] .
$$

and

$$
H_{(x, y)}=\left[\begin{array}{cc}
y(y-1) x^{y-2} & x^{y-1}+\log (x) y x^{y-1} \\
x^{y-1}+\log (x) y x^{y-1} & (\log (x))^{2} x^{y}
\end{array}\right] \Rightarrow H_{(1,2)}=\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right]
$$

This gives gives $1.05^{2.02} \approx 1^{2}+0.1+\frac{1}{2}(0.007)=1.1035$

Problem 5. Consider the surface $S \subset \mathbb{R}^{3}$ defined by

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: 2 x^{2}+2 y^{2}+z^{2}-8 x z+z+8=0\right\}
$$

For most points on this surface, S is locally the graph of a function. Find all the critical points of the function z defined implicitly by S and classify them as either a local max, a local min, or neither. Here's a sketch of the surface S.

Problem 5.

Answer:

Let $F(x, y, z)=2 x^{2}+2 y^{2}+z^{2}-8 x z+z+8$. Then, we assume $F(x, y, z)=0$ defines z implicitly as a function of x and y. Then $0=F(x, y, z)$ implies

$$
0=\frac{\partial F}{\partial x}=4 x+2 z \frac{\partial z}{\partial x}-8 z-8 x \frac{\partial z}{\partial x}+\frac{\partial z}{\partial x} \text { and } 0=\frac{\partial F}{\partial y}=4 y+2 z \frac{\partial z}{\partial y}-8 x \frac{\partial z}{\partial y}+\frac{\partial z}{\partial y}
$$

So, for the function z defined implicitly, we have the derivative

$$
D z=\left[\begin{array}{ll}
\frac{\partial z}{\partial x} & \frac{\partial z}{\partial y}
\end{array}\right]=\left[\begin{array}{cc}
\frac{-4 x+8 z}{2 z-8 x+1} & \frac{-4 y}{2 z-8 x+1} \tag{5}
\end{array}\right]
$$

Note that we have critical points where

$$
D z=0 \Rightarrow-4 x+8 z=0 \text { and }-4 y=0
$$

That is, we have critical points at the points on S where $(2 z, 0, z)$. To find these points, we solve

$$
F(2 z, 0, z)=0 \Rightarrow 8 z^{2}+z^{2}-16 z^{2}+z+8=0 \Rightarrow-7 z^{2}+z+8=0 \Rightarrow z=-1, \frac{8}{7}
$$

Therefore, we have two critical points at

$$
p=(-2,0,-1) \text { and } q=\left(\frac{16}{7}, 0, \frac{8}{7}\right)
$$

To classify these points, we look at the second derivative of z by differentiating the expression for $D z$ in Equation (5):

$$
\begin{gathered}
\frac{\partial^{2} z}{\partial x^{2}}=\frac{(2 z-8 x+1)\left(-4+8 \frac{\partial z}{\partial x}\right)-(-4 x+8 z)\left(2 \frac{\partial z}{\partial x}\right)}{(2 z-8 x+1)^{2}} \\
\frac{\partial^{2} z}{\partial y \partial x} \frac{(2 z-8 x+1)\left(8 \frac{\partial z}{\partial y}\right)-(-4 x+8 z)\left(2 \frac{\partial z}{\partial y}\right)}{(2 z-8 x+1)^{2}} \\
\frac{\partial^{2} z}{\partial x \partial y}=\frac{(2 z-8 x+1)(0)-(-4 y)\left(2 \frac{\partial z}{\partial y}\right)}{(2 z-8 x+1)^{2}} \\
\frac{\partial^{2} z}{\partial y^{2}}=\frac{(2 z-8 x+1)(-4)-(-4 y)\left(2 \frac{\partial z}{\partial y}\right)}{(2 z-8 x+1)^{2}}
\end{gathered}
$$

which, at the critical points of z simplifies since $\frac{\partial z}{\partial x}=\frac{\partial z}{\partial y}=0$, giving

$$
H z=\frac{1}{(2 z-8 x+1)}\left[\begin{array}{cc}
-4 & 0 \\
0 & -4
\end{array}\right]
$$

Finally, we have

$$
H_{p}=\left[\begin{array}{cc}
-\frac{4}{15} & 0 \\
0 & -\frac{4}{15}
\end{array}\right] \text { and } H_{q}=\left[\begin{array}{cc}
\frac{4}{15} & 0 \\
0 & \frac{4}{15}
\end{array}\right]
$$

The conclusion is that $p=(-2,0,-1)$ is a local maximum and $q=\left(\frac{16}{7}, 0, \frac{8}{7}\right)$ is a local minimum.

