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Problem 1. Curves in R3

(a)

(b)

Give an example of a curve with constant curvature that is not a circle.
Answer:
The helix « : [0, 27] — R3 defined by a(t) = %(cos(t), sin(t), t) is a unit speed curve.

1

=5 which is constant.

A quick computation shows that the curvature «(t)

Prove that if a curve in R lies on a sphere and has constant curvature, then it is part of a
circle.

Answer:

Let o : I — R3 be a curve that lies on a sphere or radius 7 and has constant curvature.
Without loss of generality, assume that « has unit speed. The condition that « lies on the
sphere means that a(t) - a(t) = r? = o/(t) - a(t) = 0. We conclude that

T -a=0. (1
We differentiate again to get 77 - o+ T - o/ = kN - a+ 1 = 0. We conclude that
—1=&kN"-q. )
Differentiating again, assuming the curvature « is constant, gives
0=ksN"-a+kN -T=~r(—kT+7B)-a+0=0.
We already know T" - o = 0, so we conclude that
a-B=0. 3)

Since T, N, B form an orthonormal basis for Ta(t)]R?’ for each ¢, equations (1), (2), (3)
imply that

1
a=——N. (€))
K
Since N’ = —kT + 7B from the Frenet formulas, and equation (4) implies that N/ =

—rT', we conclude that 7 = 0. This says that « is a plane curve. Therefore, « lies on the
intersection of a plane and a sphere, which means it lies on a circle.
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Problem 2. Integrate. Verify your answers on a computer.

(a)

(b)

©

Compute

/ (y2 + Sze?’“) dz + (2zy)dy + (SxeBmZ) dz
where « : [0,27] — R? is the helix given by a(t) = (cos(t),sin(t),t).

Answer:

Note that (y* + 32¢%7%) dz+ (2zy)dy+ (32¢37%) dz = df where f(z,y, z) = zy*+€377.
Thus, by Stokes theorem the answer is

/ (y* + 32€*"%) dx + (2zy)dy + (3z€***) dz = / df

= | £=fla2m) - flo(0) = 7 ~ 1.

Compute
/(By + 3x)dz + (2y — x)dy + 2°dz

where « : [0,27] — R? is the circle given by a(t) = (cos(t),sin(t), 3).

Answer:

Notice that d ((3y + 3z)dz + (2y — x)dy + 2°dz) = 3dy Adz — 1dz Ady = —4dz Ady
and that « parametrizes the boundary of D, a disc of radius 1. Therefore by Stokes
theorem:

/ ((3y + 3z)dz + (2y — 2)dy + 2%dz) = / —4dz N dy = —4m.
c

T

Compute
/3mdy ANdz —2ydx ANdz

r

where 7 : [0,27] x [~3, %] — R3 is the sphere given by

r(u,v) = (3cos(v) cos(u), 3 cos(v) sin(u), 3sin(v)).

Answer:

Note that d (3z dy A dz — 2y dx A dz) = 5dx A dy A dz and r parametrizes the boundary
of the solid sphere V' of radius 3 centered at the origin. So, by Stokes theorem

/31:dy/\dz—2ydx/\d2:/ Sdx Ndx Ndy Ndz =
r \%

4
5/ d:c/\dx/\dy/\dz:5<37r33> = 1807.
14
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Problem 3. Let Mss be the space of 2 x 2 real matrices. By identifying Moo ~ R*, we can
discuss functions to and from My, as being continuous, differentiable, etc...

(a) Consider the function F' : Mo — R defined by F/(A) = det(A). Show that F' has one
critical point and investigate its nature (find the eigenvalues and and eigenvectors of the
Hessian and determine whether the critical point is an extremum).

Answer:

By identifying Moy ~ R* via

r 'y
l:Z ’U,:| o (xvyaz7u)7

we have F'(z,y, z,u) = xu — yz. We compute the derivative and Hessian

0 O 0 1
O 0 -1 0
D =u,—z,—y,z]and H = 0 -1 0 0
1 0 0 0

We see there is one critical point of F" at (0,0,0,0) and a quick computation gives the
characteristic polynomial

Xz (\) = det(H — \I)

X0 0 1
0 —x -1 0
=det | g 7\ g
1 0 0 -\

=N\ -1) -1\ -1)
=A=12N+1)3

yields the eigenvalues A = —1 and A = 1. Since one is positive and one is negative, the
critical point is a saddle point, neither a max nor a min. The eigenvectors are:

{(-1,0,0,1),(0,1,1,0),(0,—1,1,0),(1,0,0,1)}.

The first two correspond to A = —1 and the second two to A = 1. So, the function curves
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Problem 3.

(b) Given a matrix A, one may ask whether A has a square root. That is, whether there exists
a matrix B with A = B2, Consider the following variation. Given a matrix A, does there
exist a matrix B with A = B? 4 B. Your problem: use the Inverse Function Theorem to
prove that there exists a neighborhood of the 2 x 2 zero matrix so that for every A € U,
there exists a matrix B with A = B2 + B.

Answer:

Let F' : Myy — Moo be defined by F/(B) = B? + B. we express F': R* —» R* by
F(z,y,z,u) = (x 4+ 2> +yz,y + uwy + 2y, 2 + uz + x2,u + u? + y2).

We compute the derivative of F' and get

14 2z z Y 0
Y l+u+z 0 Y
D=
z 0 l+u+z z
0 z Y 1+ 2u

Notice that at the two by two zero matrix (z, vy, z,u) = (0,0,0,0), we have

0

o o o=
OO = O
— o O O

0
1
0

which is invertible. Therefore, the inverse function theorem says there exists a neighbor-
hood U of (0,0,0,0) (in the domain) and a neighborhood V of F'(0,0,0,0) = (0,0,0,0)
(in the range) so that F' : U/ — V is bijective and the inverse, call it G : V — U is differ-
entiable, with derivative Dp(4\G = (DaF )~ L. Therefor, for each A € V), there exists a
B = G(A) € U so that F(G(B)) = A. Thatis, A = B + B.
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Problem 4. The second order Taylor approximation:

(a)

(b)

Let U be an open subset of R™ and suppose that f : U — R is smooth function. Fix a
point p € U. Prove that for any = € U, there exists a number ¢ € [0, 1] so that

£(2) = £) + Dy = p) + 5 (2 — p)(H)(w ~ p)

where D, is the derivative of f at p, ¢ is the point ¢ = tp + (1 — ¢)x on the segment
between p and x, and H. is the Hessian of f at c.

Answer:

Let x be given. Consider the function g : R — R defined by g(s) = f(sp + (1 — s)x).
Taylor’s theorem for one variable functions says that there is a point ¢ € (0, s) so that

9() = 9(0) + ¢ (0)s + 39" (1),

To finish the problem, express the right hand side in terms of f. We’ll have to use the
chain rule to differentiate g, so look at g as the composition:

¢ f

R U R

s+—— s+ (1—8)p —— f(sx+ (1—3s)p)

So, gl(s) = Dfs:v—i—(l—s)p(m - p) = g/(O) = Dp(x - p) and g”(s) = (x -
p)THfsmHl_s)p(x — p), which proves the result.

Use the fact that f(z) ~ f(p) + Dp(z — p) + 3(z — p)'(H,)(z — p) to approximate
1.05%02,

Answer:

Let f(z,y) = x¥Y. We have

05 1 .05
£(1.05,2.02) = f(1,2) + D1 9 ['02} +5[05.02] Hyy) [,02} :

We compute

Dy = [ymy_l log(az)wy] = D9 = [2 0] .
and
B y(y — l)xy_2 ¥l 4 log(x)yxy_l 21
Hew) = | 1 + log(z)yzy 1 (log(x))?xY = Han =11 ¢

This gives gives 1.05%92 &~ 12 + 0.1 4 £(0.007) = 1.1035
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Problem 5. Consider the surface S C R? defined by
S ={(z,y,2) € R?: 22* + 2y + 2% — 8zz + 2+ 8 = 0}.

For most points on this surface, S is locally the graph of a function. Find all the critical points
of the function z defined implicitly by .S and classify them as either a local max, a local min, or
neither. Here’s a sketch of the surface S.
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Problem 5.

Answer:
Let F(z,y,2) = 222 + 2y% + 2% — 8vz + 2 + 8. Then, we assume F(x,y,z) = 0 defines 2
implicitly as a function of « and y. Then 0 = F'(z, y, z) implies

oOF 0z 0z 0z oF 0z 0z 0Oz
0= s 4x+228—m—8z—8x8—+% dO—ay—4y+22—y—8x—+f.

So, for the function z defined implicitly, we have the derivative

Dy — [& @} _ [ —4x + 8z —4y . 5)

9= Oy 2z —8r+1 2z-8z+1
Note that we have critical points where
Dz=0= —4r+8z=0and —4y = 0.

That is, we have critical points at the points on .S where (2z, 0, z). To find these points, we solve

8
F(2z,0,z):0:>8z2+z2—1622+z+8202>—722+z+8:0:>z:—1,§.

Therefore, we have two critical points at

16 8
—(=2.0,—1)andg= [ —.0,2 ).
p=(-2,0,—1)and ¢ <7,,7>

To classify these points, we look at the second derivative of 2z by differentiating the expression
for Dz in Equation (5):

922 (22— 8w +1) (—4+85) — (—dz +82) (2&)

0x? (22 — 8z + 1)2
9z 9z
92, (22 =8z +1) (88y) — (—4z + 8z) (28y)
dyox (2z — 8z + 1)?
. (22—8e+1)(0) - (- 4y)< 2 )
0xdy (2z — 8z 4 1)?
o2 (22— 8r+1)(~4) - (~dy) (2%)
oy? (22 — 8z +1)2

which, at the critical points of z simplifies since a = g—; = 0, giving
1 -4 0
Hy= ——m— .
‘ (2z—8x+1)[0 —4]
Finally, we have
{4 R
15 _ |15
4 and H, = |: 4 :| .
0 = 1 0 %=
2,0,—

The conclusion is that p = 1) is a local maximum and ¢ = (m 0, %) is a local

minimum.




