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1 Vector fields

Definition 1. Let U be an open subest of Rn. A tangent vector in U is a

pair (p, v) ∈ U × Rn. We think of (p, v) as consisting of a vector v ∈ Rn lying

at the point p ∈ U . Often, we denote a tangent vector by vp instead of (p, v).

For p ∈ U , the set of all tangent vectors at p is denoted by Tp(U). The set of

all tangent vectors in U is denoted T (U)

For a fixed point p ∈ U , the set Tp(U) is a vector space with addition and

scalar multiplication defined by vp + wp = (v + w)p and αvp = (αv)p. Note

that as a vector space, Tp(U) is isomorphic to Rn.

Definition 2. A vector field on U is a function X : U → T (Rn) satisfying

X(p) ∈ Tp(U).

Remark 1. Notice that any function f : U → Rn defines a vector field X by

the rule X(p) = f(p)p. Denote the set of vector fields on U by Vect(U).

Note that Vect(U) is a vector space with addition and scalar multiplication

defined pointwise (which makes sense since Tp(U) is a vector space):

(X + Y )(p) := X(p) + Y (p) and (αX)(p) = α(X(p)).

Definition 3. Denote the set of functions on the set U by Fun(U) = {f :

U → R}. Let C1(U) be the subset of Fun(U) consisting of functions with

continuous derivatives and let C∞(U) be the subset of Fun(U) consisting of

smooth functions, i.e., infinitely differentiable functions.
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In a sense, Vect(U) is like a vector space over Fun(U) in that there is a

map

Fun(U)×Vect(U)→ Vect(U)

defined by (f ×X)(p) = f(p)X(p) that works like scalar multiplication. Be-

cause in this case the “scalars” are functions instead of real numbers, the

correct terminology is that Vect(U) is a module over Fun(U)—the expression

“vector space” only applies if the scalars have multiplicative inverses, which

functions do not always have. Still, as a module, Vect(U) has a nice Fun(U)

basis.

Definition 4. Let Ui ∈ Vect(U) be defined by

U1(p) := (1, 0, . . . , 0)p

U2(p) := (0, 1, . . . , 0)p
...

Un(p) := (0, . . . , 0, 1)p.

Then, for any vector field X ∈ Vect(U), there exist unique functions

f1, . . . , fn ∈ Fun(Rn) so that

X = f1U1 + f2U2 + · · ·+ fnUn.

Now, we defined the directional derivative of a function f at a point p in

the direction v. It is more efficient to define the derivative a function f with

respect to a tangent vector vp.

Definition 5. Let vp ∈ Tp(U) and f ∈ C1(U) ⊂ Fun(U). We define vp[f ] to

be the directional derivative of f at the point p in the direction v, provided it

exists.

This definition gives a way for a vector field to act on a function.

Definition 6. Let X ∈ Vect(U) and f ∈ C1(U). We define X(f) ∈ Fun(U)

by X(f)(p) = X(p)[f ].

So, there is a map

Vect(U)× C1(U)→ Fun(U)

X, f 7→ X(f)

as defined above.
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Problem 1. Let X, Y ∈ Vect(U), f, g, h ∈ C1(U), α, β ∈ R. Prove that

(a) (fX + gY )[h] = fX[h] + gY [h]

(b) X[αf + βg] = αX[f ] + βX[g]

(c) X[fg] = X[f ] · g + fX[g]

(d) X =
∑

iX[xi]Ui.

One can (and maybe should!) think of vector fields as functions C1(U)→
Fun(U) satisfying properties (a), (b), and (c) above.

Note that Ui[f ] = ∂f
∂xi

. For this reason, the vector field Ui is sometimes

denoted by “ ∂
∂xi
.”

Definition 7. Suppose F : U → Rk is differentiable. We define

F∗ : TU → TRk

vp 7→ F∗(vp)

by F∗(vp) := (DpF (v))F (p).

Then, we have nice theorems such as

Inverse Function Theorem. Let F : U → Rn and suppose that F∗p : TpU →
TF (p)Rn is an isomorphism at some point p. Then there exists a neighborhood

U containing p and a neighborhood V containing F (p), such that F : U → V is

a diffeomorphism (i.e., a differentiable bijection with a differentiable inverse).

and nice problems such as

Problem 2. Show that F∗ “preserves velocity vectors.” That is, let U ⊂ Rn

and let I ⊂ R be open sets. Suppose α : I → U is a curve in U ⊂ Rn and

F : U → Rk. Let β = F ◦ α : R→ Rk be the image of α under F . Prove that

F∗(α
′) = β′. Here, we interpret α′ as a tangent vector α′(t)α(t).

2 One-forms

For any real vector space V , the vector space V ∗ = hom(V,R) is called the

dual space of V . The dual space consists of all linear functions from V to the

ground field R.
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Definition 8. A cotangent vector in U is a pair (p, v∗) ∈ U × (Rn)∗. We think

of (v∗, p) as consisting of a linear functional v∗ : Rn → R at the point p. Often,

we denote a cotangent vector by v∗p instead of (p, v∗). For p ∈ U , the set of all

cotangent vectors at p is denoted by T ∗p (U). The set of all cotangent vectors

in U is denoted T ∗(U)

For a fixed point p, T ∗p (U) is a vector space with addition and scalar mul-

tiplication defined pointwise. The vector space T ∗p (U) is naturally isomorphic

to (Tp(U))∗.

Definition 9. A 1-form on U is a function φ : U → T ∗(U) satisfying φ(p) ∈
T ∗p (U) for all p ∈ U .

Just as with vector fields, the space of 1-forms defines a module over

Fun(U): for a function f ∈ Fun(U) and a 1-form φ, we define a 1-form fφ by

fφ(p) = f(p)φ(p).

One may think of a 1-form as a function φ : T (U)→ R satisfying φ(αvp +

βwp) = αφ(vp) + βφ(wp) for all α, β ∈ R, vp, wp ∈ Tp(U). Here, for simplicity,

we’ve written φ(vp) instead of φ(p)(vp). In this sense, one forms are dual to

vector fields. We have a map

{1 forms } ×Vect→ Fun

(φ,X) 7→ φ(X)

where φ(X)(p) := φp(X(p)).

Definition 10. Given a function f ∈ C1(U), we define a 1-form df by df(vp) =

vp[f ] for all vp ∈ T (U).

Just as with vector fields, at each point p ∈ Rn, the cotangent space T ∗p (U)

is naturally a vector space and is naturally isomorphic to (Tp(U))∗. So, you

can add one forms and get one forms and multiply functions by one forms to

get one forms. This makes the space of 1-forms into a module over Fun(U),

which means

f(gφ) = (fg)φ and (f + g)φ = fφ+ gφ and f(φ+ ψ) = fφ+ fψ

for functions f, g and 1-forms φ, ψ.

For the functions x1, . . . , xn, the one forms dx1, . . . , dxn are dual to the

vector fields U1, . . . , Un. As the next problem shows, {dx1, . . . , dxn} define a

Fun(Rn) basis for the space of 1-forms.
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Problem 3. Show that for any 1-form φ, there exist unique functions f1, . . . , fn
with φ = f1dx1 + · · · fndxn.

Problem 4. Prove that if f ∈ Fun(U) is differentiable, then df =
∑
i

∂f

∂xi
dxi.

Problem 5. Let f, g ∈ Fun(U), let h : R→ R be differentiable. Prove that

(a) d(f + g) = df + dg

(b) d(fg) = (df)(g) + f(dg)

(c) d(h ◦ f) = (h′ ◦ f)df

Definition 11. Let F : U → Rk be differentiable. We define a map, called

the pullback,

F ∗ : {1− forms on Rk} → {1− forms on U}
φ 7→ F ∗(φ)

where F ∗(φ)(vp) = φF (p)(F∗(vp)).

Problem 6. Let F : R3 → R2 be defined by F (x, y, z) = (2x2y2, xye4z). Let

φ = x3ydx + sin(xy)dy and f : R2 → R be given by f(x, y) = x2 + y2 + 2xy.

Compute F ∗(df) and F ∗(φ).

Problem 7. Prove that

(a) F ∗(φ+ ψ) = F ∗(φ) + F ∗(ψ)

(b) F ∗(df) = d(f(F ))

Now we can define the integral of a one form over a curve.

Definition 12. Let α : [a, b]→ U ⊂ Rn be a curve and φ be a one form in U .

We define ∫
α

φ =

∫
α∗(φ).

This definition summarizes, quite neatly, the concept of line integral that

appeared in the textbook (and supplies meaning for the mysterious “dt” that

appears throughout calculus). To explain the connection between the inte-

gral of a one-form (Definition 12) and the definition of a line integral (defined
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in Apostol, Vol II, on page 324), one should first understand how the pull-

back works in coordinates. Suppose α : [a, b] → Rn is defined by α(t) =

(α1(t), . . . , αn(t) and φ = f1dx1 + · · · + fndxn. Then the pullback α∗(φ) is a

one form on R. Therefore, it must have the form g(t)dt for some function g(t).

To determine g(t), apply α∗(φ) to the vector field ∂
∂t

:

α∗(φ)

(
∂

∂t

)
= φ

(
α∗

(
∂

∂t

))
= φ(α′(t)).

Therefore, in coordinates, we have

α∗(φ) = (f1(α1(t), . . . , αn(t))α′1(t) + · · ·+ fn(α1(t), . . . , αn(t))α′n(t)) dt. (1)

So, by definition of
∫
α
φ, we have∫

α

φ =

∫
[a,b]

α∗(φ) =

∫
[a,b]

f(α(t)) · α′(t)dt.

Which is precisely the definition of the line integral
∫
α
f where f is the vector

field defined by the function (f1, . . . , fn) : Rn → Rn.

Example 1. Let’s do an example in R2 (well, in R2 \{0, 0}). Let α : [0, 2π]→
R2 be the unit circle α(t) = (cos(t), sin(t)). Consider the 1-form

φ = − y

x2 + y2
dx+

x

x2 + y2
dy.

Then α∗(φ) will be a 1-form in R which by Equation (1) is given by

α∗(φ) = − sin(t)

cos2(t) + sin2(t)
(− sin(t)dt) +

cos(t)

cos2(t) + sin2(t)
(cos(t)dt) = dt.

Thus, ∫
α

φ =

∫
[0,2π]

α∗(φ) =

∫ 2π

0

dt = 2π.

In particular, we have the following beautiful theorem.

Theorem 1. If φ = df for some function f , then∫
α

φ = f(q)− f(p)

where p = α(a) and q = α(b).
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Proof.∫
α

φ =

∫
α

df =

∫ b

a

α∗(df) =

∫ b

a

d(f ◦ α)

=

∫ b

a

∂(f ◦ α)

∂t
dt = f(α(b))− f(α(a)) = f(q)− f(p).

Corollary 1. If φ = df and α is a closed curve, then
∫
α
φ = 0.

3 The exterior algebra

Before defining a k-form, I will review a little bit about linear algebra. Let V

be a finite dimensional vector space. There exist larger algebraic structures in

which V fits. Here we define ΛV , the free exterior algebra of V .

Without getting into too much detail, here is the universal mapping prop-

erty defining ΛV .

Definition 13. The exterior algebra of V is defined to be the unital, as-

sociative algebra ΛV with an inclusion i : V → ΛV having the following

universal property: for every algebra A and every linear map σ : V → A

with σ(v)σ(v) = 0 for all v ∈ V , there exists a unique algebra homomorphism

σ′ : ΛV → A with σ′ ◦ i = σ.

In practical terms, the exterior algebra ΛV consists of elements that are

linear combinations of “wedge” products of vectors in V , where the following

rules hold: For all u, v, w ∈ V and α ∈ k, we have

• linearity over scalar multiplication: αv ∧ w = α(v ∧ w) = v ∧ (αw)

• linearity over addition: v ∧ (w + u) = v ∧ w + v ∧ u.

• associativity: (v ∧ w) ∧ u = v ∧ (w ∧ u)

• skew-symmetry: v ∧ v = 0.

Problem 8. Show that v ∧ v = 0 for all v ∈ V implies that

(a) v1 ∧ · · · vk = 0 if v1, . . . , vk are linearly dependent.
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(b) v ∧ u = −u ∧ v

Computations in the exterior algebra can be handled conveniently using a basis

of V . First, for 1 ≤ k ≤ n, we define the k-fold exterior product of V , which is

a vector space ΛkV , of dimension
(
n
k

)
. If V has basis {e1, . . . , en}, then ΛkV is

a vector space with basis {ei1∧ei2∧· · ·∧eik} where 1 ≤ i1 < i2 < · · · < ik ≤ n.

It is sometimes helpful to use a mutli-index notation. If I is the multi-index

I = {i1 < i2 < · · · < ik}, then we may abbreviate ei1 ∧ · · · ∧ eik by eI . For

example, e1 ∧ e2 ∧ e5 might be abbreviated by e1,2,5.

Example 2. Suppose V is a four dimensional vector space with basis {e1, e2, e3, e4},
then ΛkV is a vector space with bases:

Λ1V = span{e1, e2, e3, e4}
Λ2V = span{e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4}
Λ3V = span{e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ e4, e1 ∧ e3 ∧ e4, e2 ∧ e3 ∧ e4}
Λ4V = span{e1 ∧ e2 ∧ e3 ∧ e4}.

Now, the wedge product defines a bilinear map, determined on bases by,

∧ : ΛkV × ΛlV → Λk+lV

where one uses the alternation rule ei ∧ ej = −ej ∧ ei to reorder the result in

terms of the basis of Λk+lV . All together we set the exterior algebra to be the

sum of the k-fold exterior products

ΛV = k ⊕ Λ1V ⊕ Λ2V ⊕ · · · ⊕ ΛnV

and the wedge product

∧ : ΛV × ΛV → ΛV

so that ΛV becomes an associated algebra over k. It is the “most general”

skew-symmetric algebra containing V (this is the meaning of the universal

property defining it).

Example 3. Here’s a sample computation:

(3e1 ∧ e3 + 5e1 ∧ e2) ∧ (2e1 ∧ e2 − e2 + 2e3) = −3e1 ∧ e3 ∧ e2 + 10e1 ∧ e2 ∧ e3
= 3e1 ∧ e2 ∧ e3 + 10e1 ∧ e2 ∧ e3
= 13e1 ∧ e2 ∧ e3.
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Problem 9. Prove that ∧ is associative and graded commutative. That is,

prove that

(a) (φ ∧ ψ) ∧ η = φ ∧ (ψ ∧ η) for all φ, ψ, η ∈ ΛV

(b) φ ∧ ψ = (−1)klψ ∧ φ if φ ∈ ΛkV and ψ ∈ ΛlV .

3.1 Bilinear and multilinear functions

Let V be a vector space. A bilinear form on V is a function f : V × V → k

that is linear in each component. That is,

f(au+ v, w) = af(u,w) + f(v, w) and f(u, av + w) = af(u, v) + f(u,w).

A bilinear form is called symmetric if f(u, v) = f(v, u) for all u, v and is called

skew-symmetric if f(v, v) = 0 for all v (which implies that f(u, v) = f(v, u)).

In general, a multilinear form is a function f : V ×n → k that is linear in

each component. A multilinear form is called symmetric if f(v1, . . . , vn) =

f(vσ(1), . . . , vσ(n)) for every permutation σ ∈ Sn. A multilinear form is called

alternating if f(v1, . . . , vn) = 0 if vi = vj for any i 6= j (which implies that

f(v1, . . . , vi, vi+1, . . . vn) = −f(v1, . . . , vi+1, vi, . . . vn).)

Now suppose that V is finite dimensional with basis {e1, . . . , en}. There is

a bijection between alternating multilinear forms on V and elements of ΛV ∗.

The correspondence

{f : V ⊗n → V is an alternating k-linear form } ←→ ΛkV ∗

f ↔ ω

where ω = 1
k!

∑
i1,...,ik

f(ei1 , . . . , eik)ei1∧· · ·∧eik . So, for example if V is 4 dimen-

sional and f : V ×V ×V → k is an alternating form defined by f(e,1e2, e3) = 10,

f(e1, e3, e4) = 0, f(e1, e2, e4) = 0, f(e2, e3, e4) = 0, then we can associate f to

the element 1
3!

(10e∗1 ∧ e∗2 ∧ e∗3 − 10e∗1 ∧ e∗3 ∧ e∗2 + · · · ) = 10e∗1 ∧ e∗2 ∧ e∗3. Likewise,

the element

φ = 7e∗1 ∧ e∗2 ∧ e∗4 ∈ Λ3V ∗

acts as a tri-linear form on V by

ω(u, v, w) = 7u1v2w4 − 7u2v1w4 + 7u2v4w1 − 7u4v2w1 + 7u4v1w2 − 7u1v4w2.
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Problem 10. (a) Let B =

 0 3 −2

−3 0 1

2 −1 0

 . Define a bilinear form f :

R3 → R3 by f(v, w) = vtBw. Check that f is bilinear and alternat-

ing. Write down the associated element of Λ2((R2)∗) corresponding to

f

(b) Let V be the vector space of real polynomials of degree 5 or smaller.

Define b : V × V → R by b(p, q) = p′(1)− q′(1). Check that b is bilinear

and alternating. Choose a basis (wisely) for V and right down an element

of Λ2V ∗ corresponding to b.

4 Differential forms

For a fixed point p, the space T ∗p (Rn) is a vector space and we form the k-

fold exterior power ΛkT ∗p (Rn). We set ΛkT ∗(Rn) = {(p, w) : p ∈ Rn and w ∈
ΛkT ∗p (Rn)}.

Definition 14. A k-form on Rn is a function φ : Rn → ΛkT ∗(Rn) satisfying

φ(p) ∈ ΛkT ∗p (Rn) for all p ∈ Rn. Let us denote the set of k-forms by Ωk(Rn).

A differential form is a sum of k-forms and we denote the set of differential

forms by Ω•(Rn).

Alternatively, one could define a k-form on Rn to be a function that assigns

to each point p ∈ Rn a k-linear function function φp : (TpRn)×k → R. Or, taken

over all points at once, a k-form defines a function

φ : Vect(Rn)×k → Fun(Rn)

by

φ(X1, . . . , Xk)(p) = φp(X1(p), . . . , Xk(p).

Since φp is multilinear and alternating for each p, the k-form φ is multlinear

over Fun(Rn). So, one has the alternative

Definition 15. A k-form φ is a function

φ : Vect(Rn)×k → Fun(Rn)

satisfying
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• φ(X1, . . . , fXi, . . . , Xk) = fφ(X1, . . . , Xi, . . . , Xk) for all functions f ∈
Fun(Rn).

• φ(X1, . . . , Xi+Yi, . . . , Xk) = φ(X1, . . . , Yi, . . . , Xk)+φ(X1, . . . , Yi, . . . , Xk)

for all vector fields X1, . . . , Xk ∈ Vect(Rn).

• φ(X1, . . . , Xk) = 0 whenever Xi = Xj for i 6= j.

Since at each point ΛkT ∗p (Rn) is a vector space, Ωk(Rn) and Ω•(Rn) become

a module over Fun(Rn) (just as with vector fields and one-forms). In addi-

tion, Ω•(Rn) becomes an associative algebra with the wedge product defined

pointwise.

We already have a convenient Fun(Rn) basis for one forms. Every k-form

can be expressed uniquely as a linear combination
∑

I fIdxI , where the sum is

over all multi-indices I = {i1 < i2 < · · · < ik}. For example, every φ ∈ Ω2(R3)

has a unique expression

φ = fdx ∧ dy + gdx ∧ dz + hdy ∧ dz

for functions f, g, h. Sometimes it’s handy, for example, to express the form

fdx ∧ dy as −fdy ∧ dx.

For any differentiable function f , we have defined a 1-form df . The function

d extends to give a map

d : Ωk(Rn)→ Ωk+1(Rn).

The property determining the extension is

d(φ ∧ ψ) = dφ ∧ ψ + (−1)kφ ∧ dψ if ψ ∈ ΩkV.

But, to be concrete, we make the following definition:

Definition 16. The exterior derivative is the linear map

d : Ωk(Rn)→ Ωk+1

defined by

d

(∑
I

fIdxI

)
=
∑
I

dfI ∧ dxI =
∑
I

(∑
j

∂fI
∂xj

dxj

)
∧ dxI .
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Example 4. Let φ = exydx+ z2x2y3dy ∈ Ω1(Rn). Then

dφ = xexydy ∧ dx+ 2z2xy3dx ∧ dy + 2zx2y3dz ∧ dy
= (−xexydy + 2z2xy3)dx ∧ dy − 2zx2y3dy ∧ dz.

Problem 11. Check, using the definition above, that d(φ ∧ ψ) = dφ ∧ ψ +

(−1)kφ ∧ dψ if φ ∈ ΩkV.

Problem 12. Check explicitly that d(df) = 0 for any function f , d(dφ) = 0

for any one form φ, and d(dω) = 0 for any differential form ω.

By the problem above,

Theorem 2. The exterior derivative d satisfies d2 = 0.

Definition 17. Differential forms in ker(d) are called closed, forms in im(d)

are called exact. In other words, we call φ closed iff dφ = 0 and we call φ exact

if there exists a differential form η with dη = φ.

Since d2 = 0, im(d) ⊂ ker(d). That is, if φ is exact, then φ is closed. This

is the content of theorem 10.6 in Apostol Vol II. However, not all closed forms

are exact. For example, the differential form

φ = − y

x2 + y2
dx+

x

x2 + y2
dy

is closed and not exact. (Why?) The question as to whether a closed form is

exact depends importantly on the topology of the set on which φ is defined.

Theorems 10.9 and 11.11 in Apostol Vol II begin to answer the question. The

starting point is the following important theorem

The Poincare Lemma. If φ is a C1 one form defined in an open rectange

containing the origin, then φ is closed iff φ is exact.

Proof. We give the proof for a one form in R2. Let φ = gdx+hdy and suppose

dφ = 0. Since dφ = ∂g
∂y
dy ∧ dx+ ∂h

∂x
dx ∧ dy, dφ = 0 means

∂g

∂y
=
∂h

∂x
.

We define a function f : R2 → R as follows. For (x, y) ∈ R2, define α : [0, 2] :→
R2 by

α(t) =

{
(xt, 0) for 0 ≤ x ≤ 1,

(x, (t− 1)y) for 1 < t ≤ 2.
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Then, set f(x, y) =
∫
α
φ. Now we compute df = ∂f

∂x
dx + ∂f

∂y
dy (in order to

see that df = φ). First, Use the definition of
∫
α
φ and some one variable

substitutions to write

f(x, y) =

∫ 1

0

g(tx, 0)xdt+

∫ 2

1

h(x, (t−1)y)ydt =

∫ x

0

g(u, 0)du+

∫ y

0

h(x, u)du.

∂f

∂x
=

∂

∂x

∫ x

0

g(u, 0)du+
∂

∂x

∫ y

0

h(x, u)du

= g(x, 0) +

∫ y

0

∂h(x, u)

∂x
du

= g(x, 0) +

∫ y

0

∂g(x, u)

∂u
du

= g(x, 0) + g(x, y)− g(x, 0)

= g(x, y).

and

∂f

∂y
=

∂

∂y

∫ x

0

g(u, 0)du+
∂

∂y

∫ y

0

h(x, u)du

= h(x, y).

So, we have df = g(x, y)dx+ h(x, y)dy = φ, completing the proof.

4.1 Surface integrals

Just as we define integrals of one forms over curves, we can define integrals

of two forms over surfaces, integrals of three forms over 3-dimensional solids,

etc...

First, we need to define the pullback of a j-form by a differentiable function.

This definition naturally extends the definition for the pullback of a 1-form.

Definition 18. Let F : Rn → Rk be differentiable. We define a map, called

the pullback,

F ∗ : Ωj(Rk)→ Ωj(Rn)

φ 7→ F ∗(φ)

where F ∗(φ)((v1)p, . . . , (vj)p) = φF (p)(F∗(v1)p, . . . , F∗(vj)p).
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Problem 13. Suppose that F : Rn → Rk and φ, ψ be differential forms on

Rk.

(a) F ∗(φ+ ψ) = F ∗(φ) + F ∗(ψ)

(b) F ∗(φ ∧ ψ) = F ∗(φ) ∧ F ∗(ψ)

(c) F ∗(dφ) = d(F ∗φ).

Definition 19. Let β : [a1, b1]× · · · × [ak, bk]→ Rn be differentiable and let η

be an k-form. We define ∫
β

η =

∫
R

β∗(η)

where R is the k-dimensional box [a1, b1]× · · · × [ak, bk] ⊂ Rk.

Let us analyze this definition for the integral of a two form over a surface

in R3. Suppose β : [a, b]× [c, d]→ R3 is defined by

β(s, t) = (f(s, t), g(s, t), h(s, t))

and ω is the two form defined by

ω = Fdx ∧ dy +Gdx ∧ dz +Hdy ∧ dz.

Then,∫
β

ω =

∫
R

β∗ω =

∫
R

F (x, y, z)

(
∂f

∂s
ds+

∂f

∂t
dt

)
∧
(
∂g

∂s
ds+

∂g

∂t
dt

)
+G(x, y, z)

(
∂f

∂s
ds+

∂f

∂t
dt

)
∧
(
∂h

∂s
ds+

∂h

∂t
dt

)
+H(x, y, z)

(
∂g

∂s
ds+

∂g

∂t
dt

)
∧
(
∂h

∂s
ds+

∂h

∂t
dt

)
. (2)

Problem 14. Verify the formula in equation (2). Hint: You know that β∗ω

must have the form r(s, t)ds ∧ dt for some r(s, t). To determine r, note that

r(s, t)ds∧ dt
(
∂
∂s
, ∂
∂t

)
= r(s, t) So, look at β∗ω

(
∂
∂s
, ∂
∂t

)
= ω

(
β∗
(
∂
∂s

)
, β∗
(
∂
∂t

))
=

and keep going...

Problem 15. Consider the surface β : [0, 2π]×
[
−π

2
, π
2

]
defined by

β(s, t) = (cos(s) cos(t), sin(s) cos(t), sin(t)).
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The image of β is the unit sphere in R3. Compute∫
β

xz(dy ∧ dz) + yz(dz ∧ dx) + x2(dx ∧ dy).

(This is basically problem 7 on page 437 from the textbook).

And now we have the main theorem.

Stokes Theorem. If φ is a 1 form and β : [a, b] × [c, d] → Rn is a surface.

Then ∫
β

dφ =

∫
dβ

φ.

Let me make a couple of remarks before the proof. In the case that n = 2,

that is, β is a surface in R2, this theorem is sometimes called Green’s theorem.

That’s theorem 11.10 in Apostol Vol II. For n = 3 (surface integrals in R3) it

appears in Apostol as theorem 12.3. I didn’t state the more general version

that asserts that
∫
β
dφ =

∫
∂β
φ for any k − 1 form φ and any k-dimensional

surface β. It’s not hard to prove, it’s just hard to define d β with the correct

signs. For a parametrized two dimensional surface:

β : [a, b]× [c, d]→ Rn

we define d β = α1 + α2 + α3 + α4 where

α1 : [c, d]→ Rn is defined by α1(t) = β(b, t)

α2 : [a, b]→ Rn is defined by α2(s) = β(b+ a− s), d)

α3 : [c, d]→ Rn is defined by α3(t) = β(a, d+ c− t)
α4 : [a, b]→ Rn is defined by α4(s) = β(s, c)

Problem 16. Sketch a picture of β and d β

Now we prove Stokes theorem.

Proof. ∫
β

dφ =

∫
R

β∗(dφ)

=

∫
R

dβ∗(φ)

=

∫
R

(
∂φ(∂β

∂t
)

∂s
−
∂φ(∂β

∂s
)

∂t

)
ds ∧ dt.

15



Let’s compute the first term:∫ d

c

(∫ b

a

∂φ(∂β
∂t

)

∂s
ds

)
dt =

∫ d

c

φ

(
∂β(b, t)

∂t

)
− φ

(
∂β(a, t)

∂t

)
dt

=

∫
α1

φ+

∫
α3

φ.

Similarly, the second term gives

−
∫ b

a

(∫ d

c

∂φ(∂β
∂s

)

∂t
dt

)
ds =

∫
α2

φ+

∫
α4

φ.

We have the expected corollary

Corollary 2. If ω is exact then
∫
β
ω = 0 for all closed surfaces β.

And (although we don’t have time to prove it this semester!) we also have

the Poincare Lemma for n forms.

The Poincare Lemma. If φ is a C1 form defined in an open, convex set

contining the origin, the φ is closed iff φ is exact.

4.2 Connections with vector calculus

Finally, I’ll supply a little dictionary between the language of differential forms

and the language of vector calculus in R3.

First, there are two correspondences to be aware of. First, I’ll state the cor-

respondence here simply, without worrying about what kind of correspondence

each is.

vector field differential form

correspondence A f i + gj + hk fdx+ gdy + hdz

correspondence B f i + gj + hk hdy ∧ dz − gdx ∧ dz + fdy ∧ dz

In vector calculus one has the following three notions:
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• Gradient. Given a function f : R3 → R, one has the gradient vector

field

∇(f) =
∂f

∂xi
Ui.

• Curl. Given a vector field X =
∑

i fiUi, one has a vector field called the

curl of X:

curl(X) =

(
∂f3
∂x2
− ∂f2
∂x3

)
U1 +

(
∂f1
∂x3
− ∂f3
∂x1

)
U2 +

(
∂f2
∂x1
− ∂f1
∂x2

)
U3.

• Divergence. Given a vector field X =
∑

i fiUi one has a function called

the divergence of X

Div(X) =
∂f1
∂x1

+
∂f2
∂x2

+
∂f3
∂x3

.

Problem 17. Express these three concepts in terms of the exterior derivatives

and the two correspondences in the table.
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