Vector Calculus and Differential Forms

John Terilla

Math 208 Spring 2015

1 Vector fields

Definition 1. Let U be an open subest of \mathbb{R}^{n}. A tangent vector in U is a pair $(p, v) \in U \times \mathbb{R}^{n}$. We think of (p, v) as consisting of a vector $v \in \mathbb{R}^{n}$ lying at the point $p \in U$. Often, we denote a tangent vector by v_{p} instead of (p, v). For $p \in U$, the set of all tangent vectors at p is denoted by $T_{p}(U)$. The set of all tangent vectors in U is denoted $T(U)$

For a fixed point $p \in U$, the set $T_{p}(U)$ is a vector space with addition and scalar multiplication defined by $v_{p}+w_{p}=(v+w)_{p}$ and $\alpha v_{p}=(\alpha v)_{p}$. Note that as a vector space, $T_{p}(U)$ is isomorphic to \mathbb{R}^{n}.

Definition 2. A vector field on U is a function $X: U \rightarrow T\left(\mathbb{R}^{n}\right)$ satisfying $X(p) \in T_{p}(U)$.

Remark 1. Notice that any function $f: U \rightarrow \mathbb{R}^{n}$ defines a vector field X by the rule $X(p)=f(p)_{p}$. Denote the set of vector fields on U by $\mathfrak{V e c t}(U)$.

Note that $\mathfrak{V e c t}(U)$ is a vector space with addition and scalar multiplication defined pointwise (which makes sense since $T_{p}(U)$ is a vector space):

$$
(X+Y)(p):=X(p)+Y(p) \text { and }(\alpha X)(p)=\alpha(X(p))
$$

Definition 3. Denote the set of functions on the set U by $\mathfrak{F u n}(U)=\{f$: $U \rightarrow \mathbb{R}\}$. Let $C^{1}(U)$ be the subset of $\mathfrak{F u n}(U)$ consisting of functions with continuous derivatives and let $C^{\infty}(U)$ be the subset of $\mathfrak{F u n}(U)$ consisting of smooth functions, i.e., infinitely differentiable functions.

In a sense, $\mathfrak{V e c t}(U)$ is like a vector space over $\mathfrak{F u n}(U)$ in that there is a map

$$
\mathfrak{F u n}(U) \times \mathfrak{V} \mathfrak{e c t}(U) \rightarrow \mathfrak{V} \mathfrak{e c t}(U)
$$

defined by $(f \times X)(p)=f(p) X(p)$ that works like scalar multiplication. Because in this case the "scalars" are functions instead of real numbers, the correct terminology is that $\mathfrak{V e c t}(U)$ is a module over $\mathfrak{F u n}(U)$-the expression "vector space" only applies if the scalars have multiplicative inverses, which functions do not always have. Still, as a module, $\mathfrak{V e c t}(U)$ has a nice $\mathfrak{F u n}(U)$ basis.

Definition 4. Let $U_{i} \in \mathfrak{V e c t}(U)$ be defined by

$$
\begin{aligned}
U_{1}(p) & :=(1,0, \ldots, 0)_{p} \\
U_{2}(p) & :=(0,1, \ldots, 0)_{p} \\
& \vdots \\
U_{n}(p) & :=(0, \ldots, 0,1)_{p} .
\end{aligned}
$$

Then, for any vector field $X \in \mathfrak{V e c t}(U)$, there exist unique functions $f_{1}, \ldots, f_{n} \in \mathfrak{F u n}\left(\mathbb{R}^{n}\right)$ so that

$$
X=f_{1} U_{1}+f_{2} U_{2}+\cdots+f_{n} U_{n}
$$

Now, we defined the directional derivative of a function f at a point p in the direction v. It is more efficient to define the derivative a function f with respect to a tangent vector v_{p}.
Definition 5. Let $v_{p} \in T_{p}(U)$ and $f \in C^{1}(U) \subset \mathfrak{F u n}(U)$. We define $v_{p}[f]$ to be the directional derivative of f at the point p in the direction v, provided it exists.

This definition gives a way for a vector field to act on a function.
Definition 6. Let $X \in \mathfrak{V e c t}(U)$ and $f \in C^{1}(U)$. We define $X(f) \in \mathfrak{F u n}(U)$ by $X(f)(p)=X(p)[f]$.

So, there is a map

$$
\begin{aligned}
\mathfrak{V e c t}(U) \times C^{1}(U) & \rightarrow \mathfrak{F u n}(U) \\
X, f & \mapsto X(f)
\end{aligned}
$$

as defined above.

Problem 1. Let $X, Y \in \mathfrak{V e c t}(U), f, g, h \in C^{1}(U), \alpha, \beta \in \mathbb{R}$. Prove that
(a) $(f X+g Y)[h]=f X[h]+g Y[h]$
(b) $X[\alpha f+\beta g]=\alpha X[f]+\beta X[g]$
(c) $X[f g]=X[f] \cdot g+f X[g]$
(d) $X=\sum_{i} X\left[x_{i}\right] U_{i}$.

One can (and maybe should!) think of vector fields as functions $C^{1}(U) \rightarrow$ $\mathfrak{F u n}(U)$ satisfying properties (a), (b), and (c) above.

Note that $U_{i}[f]=\frac{\partial f}{\partial x_{i}}$. For this reason, the vector field U_{i} is sometimes denoted by " $\frac{\partial}{\partial x_{i}}$."

Definition 7. Suppose $F: U \rightarrow \mathbb{R}^{k}$ is differentiable. We define

$$
\begin{aligned}
F_{*}: T U & \rightarrow T \mathbb{R}^{k} \\
v_{p} & \mapsto F_{*}\left(v_{p}\right)
\end{aligned}
$$

by $F_{*}\left(v_{p}\right):=\left(D_{p} F(v)\right)_{F(p)}$.
Then, we have nice theorems such as
Inverse Function Theorem. Let $F: U \rightarrow \mathbb{R}^{n}$ and suppose that $F_{* p}: T_{p} U \rightarrow$ $T_{F(p)} \mathbb{R}^{n}$ is an isomorphism at some point p. Then there exists a neighborhood \mathcal{U} containing p and a neighborhood \mathcal{V} containing $F(p)$, such that $F: \mathcal{U} \rightarrow \mathcal{V}$ is a diffeomorphism (i.e., a differentiable bijection with a differentiable inverse).
and nice problems such as
Problem 2. Show that F_{*} "preserves velocity vectors." That is, let $U \subset \mathbb{R}^{n}$ and let $I \subset \mathbb{R}$ be open sets. Suppose $\alpha: I \rightarrow U$ is a curve in $U \subset \mathbb{R}^{n}$ and $F: U \rightarrow \mathbb{R}^{k}$. Let $\beta=F \circ \alpha: \mathbb{R} \rightarrow \mathbb{R}^{k}$ be the image of α under F. Prove that $F_{*}\left(\alpha^{\prime}\right)=\beta^{\prime}$. Here, we interpret α^{\prime} as a tangent vector $\alpha^{\prime}(t)_{\alpha(t)}$.

2 One-forms

For any real vector space V, the vector space $V^{*}=\operatorname{hom}(V, \mathbb{R})$ is called the dual space of V. The dual space consists of all linear functions from V to the ground field \mathbb{R}.

Definition 8. A cotangent vector in U is a pair $\left(p, v^{*}\right) \in U \times\left(\mathbb{R}^{n}\right)^{*}$. We think of $\left(v^{*}, p\right)$ as consisting of a linear functional $v^{*}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at the point p. Often, we denote a cotangent vector by v_{p}^{*} instead of $\left(p, v^{*}\right)$. For $p \in U$, the set of all cotangent vectors at p is denoted by $T_{p}^{*}(U)$. The set of all cotangent vectors in U is denoted $T^{*}(U)$

For a fixed point $p, T_{p}^{*}(U)$ is a vector space with addition and scalar multiplication defined pointwise. The vector space $T_{p}^{*}(U)$ is naturally isomorphic to $\left(T_{p}(U)\right)^{*}$.

Definition 9. A 1-form on U is a function $\phi: U \rightarrow T^{*}(U)$ satisfying $\phi(p) \in$ $T_{p}^{*}(U)$ for all $p \in U$.

Just as with vector fields, the space of 1-forms defines a module over $\mathfrak{F u n}(U)$: for a function $f \in \mathfrak{F u n}(U)$ and a 1-form ϕ, we define a 1-form $f \phi$ by $f \phi(p)=f(p) \phi(p)$.

One may think of a 1-form as a function $\phi: T(U) \rightarrow \mathbb{R}$ satisfying $\phi\left(\alpha v_{p}+\right.$ $\left.\beta w_{p}\right)=\alpha \phi\left(v_{p}\right)+\beta \phi\left(w_{p}\right)$ for all $\alpha, \beta \in \mathbb{R}, v_{p}, w_{p} \in T_{p}(U)$. Here, for simplicity, we've written $\phi\left(v_{p}\right)$ instead of $\phi(p)\left(v_{p}\right)$. In this sense, one forms are dual to vector fields. We have a map

$$
\begin{aligned}
\{1 \text { forms }\} \times \mathfrak{V e c t} & \rightarrow \mathfrak{F u n} \\
(\phi, X) & \mapsto \phi(X)
\end{aligned}
$$

where $\phi(X)(p):=\phi_{p}(X(p))$.
Definition 10. Given a function $f \in C^{1}(U)$, we define a 1 -form $d f$ by $d f\left(v_{p}\right)=$ $v_{p}[f]$ for all $v_{p} \in T(U)$.

Just as with vector fields, at each point $p \in \mathbb{R}^{n}$, the cotangent space $T_{p}^{*}(U)$ is naturally a vector space and is naturally isomorphic to $\left(T_{p}(U)\right)^{*}$. So, you can add one forms and get one forms and multiply functions by one forms to get one forms. This makes the space of 1-forms into a module over $\mathfrak{F u n}(U)$, which means

$$
f(g \phi)=(f g) \phi \text { and }(f+g) \phi=f \phi+g \phi \text { and } f(\phi+\psi)=f \phi+f \psi
$$

for functions f, g and 1-forms ϕ, ψ.
For the functions x_{1}, \ldots, x_{n}, the one forms $d x_{1}, \ldots, d x_{n}$ are dual to the vector fields U_{1}, \ldots, U_{n}. As the next problem shows, $\left\{d x_{1}, \ldots, d x_{n}\right\}$ define a $\mathfrak{F u n}\left(\mathbb{R}^{n}\right)$ basis for the space of 1-forms.

Problem 3. Show that for any 1-form ϕ, there exist unique functions f_{1}, \ldots, f_{n} with $\phi=f_{1} d x_{1}+\cdots f_{n} d x_{n}$.
Problem 4. Prove that if $f \in \mathfrak{F u n}(U)$ is differentiable, then $d f=\sum_{i} \frac{\partial f}{\partial x_{i}} d x_{i}$.
Problem 5. Let $f, g \in \mathfrak{F u n}(U)$, let $h: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable. Prove that
(a) $d(f+g)=d f+d g$
(b) $d(f g)=(d f)(g)+f(d g)$
(c) $d(h \circ f)=\left(h^{\prime} \circ f\right) d f$

Definition 11. Let $F: U \rightarrow \mathbb{R}^{k}$ be differentiable. We define a map, called the pullback,

$$
\begin{aligned}
F^{*}:\left\{1-\text { forms on } \mathbb{R}^{k}\right\} & \rightarrow\{1-\text { forms on } U\} \\
\phi & \mapsto F^{*}(\phi)
\end{aligned}
$$

where $F^{*}(\phi)\left(v_{p}\right)=\phi_{F(p)}\left(F_{*}\left(v_{p}\right)\right)$.
Problem 6. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined by $F(x, y, z)=\left(2 x^{2} y^{2}, x y e^{4 z}\right)$. Let $\phi=x^{3} y d x+\sin (x y) d y$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=x^{2}+y^{2}+2 x y$. Compute $F^{*}(d f)$ and $F^{*}(\phi)$.

Problem 7. Prove that
(a) $F^{*}(\phi+\psi)=F^{*}(\phi)+F^{*}(\psi)$
(b) $F^{*}(d f)=d(f(F))$

Now we can define the integral of a one form over a curve.
Definition 12. Let $\alpha:[a, b] \rightarrow U \subset \mathbb{R}^{n}$ be a curve and ϕ be a one form in U. We define

$$
\int_{\alpha} \phi=\int \alpha^{*}(\phi) .
$$

This definition summarizes, quite neatly, the concept of line integral that appeared in the textbook (and supplies meaning for the mysterious " $d t$ " that appears throughout calculus). To explain the connection between the integral of a one-form (Definition 12) and the definition of a line integral (defined
in Apostol, Vol II, on page 324), one should first understand how the pullback works in coordinates. Suppose $\alpha:[a, b] \rightarrow \mathbb{R}^{n}$ is defined by $\alpha(t)=$ $\left(\alpha_{1}(t), \ldots, \alpha_{n}(t)\right.$ and $\phi=f_{1} d x_{1}+\cdots+f_{n} d x_{n}$. Then the pullback $\alpha^{*}(\phi)$ is a one form on \mathbb{R}. Therefore, it must have the form $g(t) d t$ for some function $g(t)$. To determine $g(t)$, apply $\alpha^{*}(\phi)$ to the vector field $\frac{\partial}{\partial t}$:

$$
\alpha^{*}(\phi)\left(\frac{\partial}{\partial t}\right)=\phi\left(\alpha_{*}\left(\frac{\partial}{\partial t}\right)\right)=\phi\left(\alpha^{\prime}(t)\right) .
$$

Therefore, in coordinates, we have

$$
\begin{equation*}
\alpha^{*}(\phi)=\left(f_{1}\left(\alpha_{1}(t), \ldots, \alpha_{n}(t)\right) \alpha_{1}^{\prime}(t)+\cdots+f_{n}\left(\alpha_{1}(t), \ldots, \alpha_{n}(t)\right) \alpha_{n}^{\prime}(t)\right) d t \tag{1}
\end{equation*}
$$

So, by definition of $\int_{\alpha} \phi$, we have

$$
\int_{\alpha} \phi=\int_{[a, b]} \alpha^{*}(\phi)=\int_{[a, b]} f(\alpha(t)) \cdot \alpha^{\prime}(t) d t
$$

Which is precisely the definition of the line integral $\int_{\alpha} f$ where f is the vector field defined by the function $\left(f_{1}, \ldots, f_{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

Example 1. Let's do an example in $\mathbb{R}^{2}\left(\right.$ well, in $\left.\mathbb{R}^{2} \backslash\{0,0\}\right)$. Let $\alpha:[0,2 \pi] \rightarrow$ \mathbb{R}^{2} be the unit circle $\alpha(t)=(\cos (t), \sin (t))$. Consider the 1-form

$$
\phi=-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y
$$

Then $\alpha^{*}(\phi)$ will be a 1 -form in \mathbb{R} which by Equation (1) is given by

$$
\alpha^{*}(\phi)=-\frac{\sin (t)}{\cos ^{2}(t)+\sin ^{2}(t)}(-\sin (t) d t)+\frac{\cos (t)}{\cos ^{2}(t)+\sin ^{2}(t)}(\cos (t) d t)=d t
$$

Thus,

$$
\int_{\alpha} \phi=\int_{[0,2 \pi]} \alpha^{*}(\phi)=\int_{0}^{2 \pi} d t=2 \pi
$$

In particular, we have the following beautiful theorem.
Theorem 1. If $\phi=d f$ for some function f, then

$$
\int_{\alpha} \phi=f(q)-f(p)
$$

where $p=\alpha(a)$ and $q=\alpha(b)$.

Proof.

$$
\begin{aligned}
& \int_{\alpha} \phi=\int_{\alpha} d f=\int_{a}^{b} \alpha^{*}(d f)=\int_{a}^{b} d(f \circ \alpha) \\
&=\int_{a}^{b} \frac{\partial(f \circ \alpha)}{\partial t} d t=f(\alpha(b))-f(\alpha(a))=f(q)-f(p) .
\end{aligned}
$$

Corollary 1. If $\phi=d f$ and α is a closed curve, then $\int_{\alpha} \phi=0$.

3 The exterior algebra

Before defining a k-form, I will review a little bit about linear algebra. Let V be a finite dimensional vector space. There exist larger algebraic structures in which V fits. Here we define ΛV, the free exterior algebra of V.

Without getting into too much detail, here is the universal mapping property defining ΛV.

Definition 13. The exterior algebra of V is defined to be the unital, associative algebra ΛV with an inclusion $i: V \rightarrow \Lambda V$ having the following universal property: for every algebra A and every linear map $\sigma: V \rightarrow A$ with $\sigma(v) \sigma(v)=0$ for all $v \in V$, there exists a unique algebra homomorphism $\sigma^{\prime}: \Lambda V \rightarrow A$ with $\sigma^{\prime} \circ i=\sigma$.

In practical terms, the exterior algebra ΛV consists of elements that are linear combinations of "wedge" products of vectors in V, where the following rules hold: For all $u, v, w \in V$ and $\alpha \in k$, we have

- linearity over scalar multiplication: $\alpha v \wedge w=\alpha(v \wedge w)=v \wedge(\alpha w)$
- linearity over addition: $v \wedge(w+u)=v \wedge w+v \wedge u$.
- associativity: $(v \wedge w) \wedge u=v \wedge(w \wedge u)$
- skew-symmetry: $v \wedge v=0$.

Problem 8. Show that $v \wedge v=0$ for all $v \in V$ implies that
(a) $v_{1} \wedge \cdots v_{k}=0$ if v_{1}, \ldots, v_{k} are linearly dependent.
(b) $v \wedge u=-u \wedge v$

Computations in the exterior algebra can be handled conveniently using a basis of V. First, for $1 \leq k \leq n$, we define the k-fold exterior product of V, which is a vector space $\Lambda^{k} V$, of dimension $\binom{n}{k}$. If V has basis $\left\{e_{1}, \ldots, e_{n}\right\}$, then $\Lambda^{k} V$ is a vector space with basis $\left\{e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{k}}\right\}$ where $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$. It is sometimes helpful to use a mutli-index notation. If I is the multi-index $I=\left\{i_{1}<i_{2}<\cdots<i_{k}\right\}$, then we may abbreviate $e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}$ by e_{I}. For example, $e_{1} \wedge e_{2} \wedge e_{5}$ might be abbreviated by $e_{1,2,5}$.

Example 2. Suppose V is a four dimensional vector space with basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$, then $\Lambda^{k} V$ is a vector space with bases:

$$
\begin{aligned}
& \Lambda^{1} V=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\} \\
& \Lambda^{2} V=\operatorname{span}\left\{e_{1} \wedge e_{2}, e_{1} \wedge e_{3}, e_{1} \wedge e_{4}, e_{2} \wedge e_{3}, e_{2} \wedge e_{4}, e_{3} \wedge e_{4}\right\} \\
& \Lambda^{3} V=\operatorname{span}\left\{e_{1} \wedge e_{2} \wedge e_{3}, e_{1} \wedge e_{2} \wedge e_{4}, e_{1} \wedge e_{3} \wedge e^{4}, e_{2} \wedge e_{3} \wedge e^{4}\right\} \\
& \Lambda^{4} V=\operatorname{span}\left\{e_{1} \wedge e_{2} \wedge e_{3} \wedge e_{4}\right\}
\end{aligned}
$$

Now, the wedge product defines a bilinear map, determined on bases by,

$$
\wedge: \Lambda^{k} V \times \Lambda^{l} V \rightarrow \Lambda^{k+l} V
$$

where one uses the alternation rule $e_{i} \wedge e_{j}=-e_{j} \wedge e_{i}$ to reorder the result in terms of the basis of $\Lambda^{k+l} V$. All together we set the exterior algebra to be the sum of the k-fold exterior products

$$
\Lambda V=k \oplus \Lambda^{1} V \oplus \Lambda^{2} V \oplus \cdots \oplus \Lambda^{n} V
$$

and the wedge product

$$
\wedge: \Lambda V \times \Lambda V \rightarrow \Lambda V
$$

so that ΛV becomes an associated algebra over k. It is the "most general" skew-symmetric algebra containing V (this is the meaning of the universal property defining it).

Example 3. Here's a sample computation:

$$
\begin{aligned}
\left(3 e_{1} \wedge e_{3}+5 e_{1} \wedge e_{2}\right) \wedge\left(2 e_{1} \wedge e_{2}-e_{2}+2 e_{3}\right) & =-3 e_{1} \wedge e_{3} \wedge e_{2}+10 e_{1} \wedge e_{2} \wedge e_{3} \\
& =3 e_{1} \wedge e_{2} \wedge e_{3}+10 e_{1} \wedge e_{2} \wedge e_{3} \\
& =13 e_{1} \wedge e_{2} \wedge e_{3}
\end{aligned}
$$

Problem 9. Prove that \wedge is associative and graded commutative. That is, prove that
(a) $(\phi \wedge \psi) \wedge \eta=\phi \wedge(\psi \wedge \eta)$ for all $\phi, \psi, \eta \in \Lambda V$
(b) $\phi \wedge \psi=(-1)^{k l} \psi \wedge \phi$ if $\phi \in \Lambda^{k} V$ and $\psi \in \Lambda^{l} V$.

3.1 Bilinear and multilinear functions

Let V be a vector space. A bilinear form on V is a function $f: V \times V \rightarrow k$ that is linear in each component. That is,

$$
f(a u+v, w)=a f(u, w)+f(v, w) \text { and } f(u, a v+w)=a f(u, v)+f(u, w) .
$$

A bilinear form is called symmetric if $f(u, v)=f(v, u)$ for all u, v and is called skew-symmetric if $f(v, v)=0$ for all v (which implies that $f(u, v)=f(v, u)$). In general, a multilinear form is a function $f: V^{\times n} \rightarrow k$ that is linear in each component. A multilinear form is called symmetric if $f\left(v_{1}, \ldots, v_{n}\right)=$ $f\left(v_{\sigma(1)}, \ldots, v_{\sigma(n)}\right)$ for every permutation $\sigma \in S_{n}$. A multilinear form is called alternating if $f\left(v_{1}, \ldots, v_{n}\right)=0$ if $v_{i}=v_{j}$ for any $i \neq j$ (which implies that $f\left(v_{1}, \ldots, v_{i}, v_{i+1}, \ldots v_{n}\right)=-f\left(v_{1}, \ldots, v_{i+1}, v_{i}, \ldots v_{n}\right)$.)

Now suppose that V is finite dimensional with basis $\left\{e_{1}, \ldots, e_{n}\right\}$. There is a bijection between alternating multilinear forms on V and elements of ΛV^{*}. The correspondence

$$
\begin{aligned}
\left\{f: V^{\otimes n} \rightarrow V \text { is an alternating } k \text {-linear form }\right\} & \longleftrightarrow \Lambda^{k} V^{*} \\
f & \leftrightarrow \omega
\end{aligned}
$$

where $\omega=\frac{1}{k!} \sum_{i_{1}, \ldots, i_{k}} f\left(e_{i_{1}}, \ldots, e_{i_{k}}\right) e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}$. So, for example if V is 4 dimensional and $f: V \times V \times V \rightarrow k$ is an alternating form defined by $f\left(e_{1}^{\prime} e_{2}, e_{3}\right)=10$, $f\left(e_{1}, e_{3}, e_{4}\right)=0, f\left(e_{1}, e_{2}, e_{4}\right)=0, f\left(e_{2}, e_{3}, e_{4}\right)=0$, then we can associate f to the element $\frac{1}{3!}\left(10 e_{1}^{*} \wedge e_{2}^{*} \wedge e_{3}^{*}-10 e_{1}^{*} \wedge e_{3}^{*} \wedge e_{2}^{*}+\cdots\right)=10 e_{1}^{*} \wedge e_{2}^{*} \wedge e_{3}^{*}$. Likewise, the element

$$
\phi=7 e_{1}^{*} \wedge e_{2}^{*} \wedge e_{4}^{*} \in \Lambda^{3} V^{*}
$$

acts as a tri-linear form on V by

$$
\omega(u, v, w)=7 u_{1} v_{2} w_{4}-7 u_{2} v_{1} w_{4}+7 u_{2} v_{4} w_{1}-7 u_{4} v_{2} w_{1}+7 u_{4} v_{1} w_{2}-7 u_{1} v_{4} w_{2} .
$$

Problem 10. (a) Let $B=\left[\begin{array}{ccc}0 & 3 & -2 \\ -3 & 0 & 1 \\ 2 & -1 & 0\end{array}\right]$. Define a bilinear form f : $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $f(v, w)=v^{t} B w$. Check that f is bilinear and alternating. Write down the associated element of $\Lambda^{2}\left(\left(\mathbb{R}^{2}\right)^{*}\right)$ corresponding to f
(b) Let V be the vector space of real polynomials of degree 5 or smaller. Define $b: V \times V \rightarrow \mathbb{R}$ by $b(p, q)=p^{\prime}(1)-q^{\prime}(1)$. Check that b is bilinear and alternating. Choose a basis (wisely) for V and right down an element of $\Lambda^{2} V^{*}$ corresponding to b.

4 Differential forms

For a fixed point p, the space $T_{p}^{*}\left(\mathbb{R}^{n}\right)$ is a vector space and we form the k fold exterior power $\Lambda^{k} T_{p}^{*}\left(\mathbb{R}^{n}\right)$. We set $\Lambda^{k} T^{*}\left(\mathbb{R}^{n}\right)=\left\{(p, w): p \in \mathbb{R}^{n}\right.$ and $w \in$ $\left.\Lambda^{k} T_{p}^{*}\left(\mathbb{R}^{n}\right)\right\}$.

Definition 14. A k-form on \mathbb{R}^{n} is a function $\phi: \mathbb{R}^{n} \rightarrow \Lambda^{k} T^{*}\left(\mathbb{R}^{n}\right)$ satisfying $\phi(p) \in \Lambda^{k} T_{p}^{*}\left(\mathbb{R}^{n}\right)$ for all $p \in \mathbb{R}^{n}$. Let us denote the set of k-forms by $\Omega^{k}\left(\mathbb{R}^{n}\right)$. A differential form is a sum of k-forms and we denote the set of differential forms by $\Omega^{\bullet}\left(\mathbb{R}^{n}\right)$.

Alternatively, one could define a k-form on \mathbb{R}^{n} to be a function that assigns to each point $p \in \mathbb{R}^{n}$ a k-linear function function $\phi_{p}:\left(T_{p} \mathbb{R}^{n}\right)^{\times k} \rightarrow \mathbb{R}$. Or, taken over all points at once, a k-form defines a function

$$
\phi: \mathfrak{V e c t}\left(\mathbb{R}^{n}\right)^{\times k} \rightarrow \mathfrak{F} \mathfrak{u n}\left(\mathbb{R}^{n}\right)
$$

by

$$
\phi\left(X_{1}, \ldots, X_{k}\right)(p)=\phi_{p}\left(X_{1}(p), \ldots, X_{k}(p) .\right.
$$

Since ϕ_{p} is multilinear and alternating for each p, the k-form ϕ is multlinear over $\mathfrak{F u n}\left(\mathbb{R}^{n}\right)$. So, one has the alternative

Definition 15. A k-form ϕ is a function

$$
\phi: \mathfrak{V e c t}\left(\mathbb{R}^{n}\right)^{\times k} \rightarrow \mathfrak{F u n}\left(\mathbb{R}^{n}\right)
$$

satisfying

- $\phi\left(X_{1}, \ldots, f X_{i}, \ldots, X_{k}\right)=f \phi\left(X_{1}, \ldots, X_{i}, \ldots, X_{k}\right)$ for all functions $f \in$ $\mathfrak{F u n}\left(\mathbb{R}^{n}\right)$.
- $\phi\left(X_{1}, \ldots, X_{i}+Y_{i}, \ldots, X_{k}\right)=\phi\left(X_{1}, \ldots, Y_{i}, \ldots, X_{k}\right)+\phi\left(X_{1}, \ldots, Y_{i}, \ldots, X_{k}\right)$ for all vector fields $X_{1}, \ldots, X_{k} \in \mathfrak{V e c t}\left(\mathbb{R}^{n}\right)$.
- $\phi\left(X_{1}, \ldots, X_{k}\right)=0$ whenever $X_{i}=X_{j}$ for $i \neq j$.

Since at each point $\Lambda^{k} T_{p}^{*}\left(\mathbb{R}^{n}\right)$ is a vector space, $\Omega^{k}\left(\mathbb{R}^{n}\right)$ and $\Omega^{\bullet}\left(\mathbb{R}^{n}\right)$ become a module over $\mathfrak{F u n}\left(\mathbb{R}^{n}\right)$ (just as with vector fields and one-forms). In addition, $\Omega^{\bullet}\left(\mathbb{R}^{n}\right)$ becomes an associative algebra with the wedge product defined pointwise.

We already have a convenient $\mathfrak{F u n}\left(\mathbb{R}^{n}\right)$ basis for one forms. Every k-form can be expressed uniquely as a linear combination $\sum_{I} f_{I} d x_{I}$, where the sum is over all multi-indices $I=\left\{i_{1}<i_{2}<\cdots<i_{k}\right\}$. For example, every $\phi \in \Omega^{2}\left(\mathbb{R}^{3}\right)$ has a unique expression

$$
\phi=f d x \wedge d y+g d x \wedge d z+h d y \wedge d z
$$

for functions f, g, h. Sometimes it's handy, for example, to express the form $f d x \wedge d y$ as $-f d y \wedge d x$.

For any differentiable function f, we have defined a 1-form $d f$. The function d extends to give a map

$$
d: \Omega^{k}\left(\mathbb{R}^{n}\right) \rightarrow \Omega^{k+1}\left(\mathbb{R}^{n}\right)
$$

The property determining the extension is

$$
d(\phi \wedge \psi)=d \phi \wedge \psi+(-1)^{k} \phi \wedge d \psi \text { if } \psi \in \Omega^{k} V
$$

But, to be concrete, we make the following definition:
Definition 16. The exterior derivative is the linear map

$$
d: \Omega^{k}\left(\mathbb{R}^{n}\right) \rightarrow \Omega^{k+1}
$$

defined by

$$
d\left(\sum_{I} f_{I} d x_{I}\right)=\sum_{I} d f_{I} \wedge d x_{I}=\sum_{I}\left(\sum_{j} \frac{\partial f_{I}}{\partial x_{j}} d x_{j}\right) \wedge d x_{I}
$$

Example 4. Let $\phi=e^{x y} d x+z^{2} x^{2} y^{3} d y \in \Omega^{1}\left(\mathbb{R}^{n}\right)$. Then

$$
\begin{aligned}
d \phi & =x e^{x y} d y \wedge d x+2 z^{2} x y^{3} d x \wedge d y+2 z x^{2} y^{3} d z \wedge d y \\
& =\left(-x e^{x y} d y+2 z^{2} x y^{3}\right) d x \wedge d y-2 z x^{2} y^{3} d y \wedge d z
\end{aligned}
$$

Problem 11. Check, using the definition above, that $d(\phi \wedge \psi)=d \phi \wedge \psi+$ $(-1)^{k} \phi \wedge d \psi$ if $\phi \in \Omega^{k} V$.

Problem 12. Check explicitly that $d(d f)=0$ for any function $f, d(d \phi)=0$ for any one form ϕ, and $d(d \omega)=0$ for any differential form ω.

By the problem above,
Theorem 2. The exterior derivative d satisfies $d^{2}=0$.
Definition 17. Differential forms in $\operatorname{ker}(d)$ are called closed, forms in $\operatorname{im}(d)$ are called exact. In other words, we call ϕ closed iff $d \phi=0$ and we call ϕ exact if there exists a differential form η with $d \eta=\phi$.

Since $d^{2}=0, \operatorname{im}(d) \subset \operatorname{ker}(d)$. That is, if ϕ is exact, then ϕ is closed. This is the content of theorem 10.6 in Apostol Vol II. However, not all closed forms are exact. For example, the differential form

$$
\phi=-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y
$$

is closed and not exact. (Why?) The question as to whether a closed form is exact depends importantly on the topology of the set on which ϕ is defined. Theorems 10.9 and 11.11 in Apostol Vol II begin to answer the question. The starting point is the following important theorem

The Poincare Lemma. If ϕ is a C^{1} one form defined in an open rectange containing the origin, then ϕ is closed iff ϕ is exact.

Proof. We give the proof for a one form in \mathbb{R}^{2}. Let $\phi=g d x+h d y$ and suppose $d \phi=0$. Since $d \phi=\frac{\partial g}{\partial y} d y \wedge d x+\frac{\partial h}{\partial x} d x \wedge d y, d \phi=0$ means

$$
\frac{\partial g}{\partial y}=\frac{\partial h}{\partial x}
$$

We define a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ as follows. For $(x, y) \in \mathbb{R}^{2}$, define $\alpha:[0,2]: \rightarrow$ \mathbb{R}^{2} by

$$
\alpha(t)= \begin{cases}(x t, 0) & \text { for } 0 \leq x \leq 1 \\ (x,(t-1) y) & \text { for } 1<t \leq 2\end{cases}
$$

Then, set $f(x, y)=\int_{\alpha} \phi$. Now we compute $d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y$ (in order to see that $d f=\phi)$. First, Use the definition of $\int_{\alpha} \phi$ and some one variable substitutions to write

$$
\begin{aligned}
& f(x, y)=\int_{0}^{1} g(t x, 0) x d t+\int_{1}^{2} h(x,(t-1) y) y d t=\int_{0}^{x} g(u, 0) d u+\int_{0}^{y} h(x, u) d u . \\
& \frac{\partial f}{\partial x}=\frac{\partial}{\partial x} \int_{0}^{x} g(u, 0) d u+\frac{\partial}{\partial x} \int_{0}^{y} h(x, u) d u \\
& =g(x, 0)+\int_{0}^{y} \frac{\partial h(x, u)}{\partial x} d u \\
& =g(x, 0)+\int_{0}^{y} \frac{\partial g(x, u)}{\partial u} d u \\
& =g(x, 0)+g(x, y)-g(x, 0) \\
& =g(x, y) \text {. }
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y} \int_{0}^{x} g(u, 0) d u+\frac{\partial}{\partial y} \int_{0}^{y} h(x, u) d u \\
& =h(x, y)
\end{aligned}
$$

So, we have $d f=g(x, y) d x+h(x, y) d y=\phi$, completing the proof.

4.1 Surface integrals

Just as we define integrals of one forms over curves, we can define integrals of two forms over surfaces, integrals of three forms over 3-dimensional solids, etc...

First, we need to define the pullback of a j-form by a differentiable function. This definition naturally extends the definition for the pullback of a 1-form.

Definition 18. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ be differentiable. We define a map, called the pullback,

$$
\begin{aligned}
F^{*}: \Omega^{j}\left(\mathbb{R}^{k}\right) & \rightarrow \Omega^{j}\left(\mathbb{R}^{n}\right) \\
\phi & \mapsto F^{*}(\phi)
\end{aligned}
$$

where $F^{*}(\phi)\left(\left(v_{1}\right)_{p}, \ldots,\left(v_{j}\right)_{p}\right)=\phi_{F(p)}\left(F_{*}\left(v_{1}\right)_{p}, \ldots, F_{*}\left(v_{j}\right)_{p}\right)$.

Problem 13. Suppose that $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ and ϕ, ψ be differential forms on \mathbb{R}^{k}.
(a) $F^{*}(\phi+\psi)=F^{*}(\phi)+F^{*}(\psi)$
(b) $F^{*}(\phi \wedge \psi)=F^{*}(\phi) \wedge F^{*}(\psi)$
(c) $F^{*}(d \phi)=d\left(F^{*} \phi\right)$.

Definition 19. Let $\beta:\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{k}, b_{k}\right] \rightarrow \mathbb{R}^{n}$ be differentiable and let η be an k-form. We define

$$
\int_{\beta} \eta=\int_{R} \beta^{*}(\eta)
$$

where R is the k-dimensional box $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{k}, b_{k}\right] \subset \mathbb{R}^{k}$.
Let us analyze this definition for the integral of a two form over a surface in \mathbb{R}^{3}. Suppose $\beta:[a, b] \times[c, d] \rightarrow \mathbb{R}^{3}$ is defined by

$$
\beta(s, t)=(f(s, t), g(s, t), h(s, t))
$$

and ω is the two form defined by

$$
\omega=F d x \wedge d y+G d x \wedge d z+H d y \wedge d z
$$

Then,

$$
\begin{array}{rl}
\int_{\beta} \omega=\int_{R} \beta^{*} \omega=\int_{R} & F(x, y, z)\left(\frac{\partial f}{\partial s} d s+\frac{\partial f}{\partial t} d t\right) \wedge\left(\frac{\partial g}{\partial s} d s+\frac{\partial g}{\partial t} d t\right) \\
+G(x, y, z)\left(\frac{\partial f}{\partial s} d s+\frac{\partial f}{\partial t} d t\right) \wedge\left(\frac{\partial h}{\partial s} d s+\frac{\partial h}{\partial t} d t\right) \\
& +H(x, y, z)\left(\frac{\partial g}{\partial s} d s+\frac{\partial g}{\partial t} d t\right) \wedge\left(\frac{\partial h}{\partial s} d s+\frac{\partial h}{\partial t} d t\right) \tag{2}
\end{array}
$$

Problem 14. Verify the formula in equation (2). Hint: You know that $\beta^{*} \omega$ must have the form $r(s, t) d s \wedge d t$ for some $r(s, t)$. To determine r, note that $r(s, t) d s \wedge d t\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right)=r(s, t)$ So, look at $\beta^{*} \omega\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right)=\omega\left(\beta_{*}\left(\frac{\partial}{\partial s}\right), \beta_{*}\left(\frac{\partial}{\partial t}\right)\right)=$ and keep going...

Problem 15. Consider the surface $\beta:[0,2 \pi] \times\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ defined by

$$
\beta(s, t)=(\cos (s) \cos (t), \sin (s) \cos (t), \sin (t))
$$

The image of β is the unit sphere in \mathbb{R}^{3}. Compute

$$
\int_{\beta} x z(d y \wedge d z)+y z(d z \wedge d x)+x^{2}(d x \wedge d y)
$$

(This is basically problem 7 on page 437 from the textbook).
And now we have the main theorem.
Stokes Theorem. If ϕ is a 1 form and $\beta:[a, b] \times[c, d] \rightarrow \mathbb{R}^{n}$ is a surface. Then

$$
\int_{\beta} d \phi=\int_{\mathfrak{o} \beta} \phi
$$

Let me make a couple of remarks before the proof. In the case that $n=2$, that is, β is a surface in \mathbb{R}^{2}, this theorem is sometimes called Green's theorem. That's theorem 11.10 in Apostol Vol II. For $n=3$ (surface integrals in \mathbb{R}^{3}) it appears in Apostol as theorem 12.3. I didn't state the more general version that asserts that $\int_{\beta} d \phi=\int_{\partial \beta} \phi$ for any $k-1$ form ϕ and any k-dimensional surface β. It's not hard to prove, it's just hard to define $\mathfrak{d} \beta$ with the correct signs. For a parametrized two dimensional surface:

$$
\beta:[a, b] \times[c, d] \rightarrow \mathbb{R}^{n}
$$

we define $\mathfrak{d} \beta=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$ where

$$
\begin{gathered}
\alpha_{1}:[c, d] \rightarrow \mathbb{R}^{n} \text { is defined by } \alpha_{1}(t)=\beta(b, t) \\
\left.\alpha_{2}:[a, b] \rightarrow \mathbb{R}^{n} \text { is defined by } \alpha_{2}(s)=\beta(b+a-s), d\right) \\
\alpha_{3}:[c, d] \rightarrow \mathbb{R}^{n} \text { is defined by } \alpha_{3}(t)=\beta(a, d+c-t) \\
\alpha_{4}:[a, b] \rightarrow \mathbb{R}^{n} \text { is defined by } \alpha_{4}(s)=\beta(s, c)
\end{gathered}
$$

Problem 16. Sketch a picture of β and $\mathfrak{d} \beta$
Now we prove Stokes theorem.
Proof.

$$
\begin{aligned}
\int_{\beta} d \phi & =\int_{R} \beta^{*}(d \phi) \\
& =\int_{R} d \beta^{*}(\phi) \\
& =\int_{R}\left(\frac{\partial \phi\left(\frac{\partial \beta}{\partial t}\right)}{\partial s}-\frac{\partial \phi\left(\frac{\partial \beta}{\partial s}\right)}{\partial t}\right) d s \wedge d t .
\end{aligned}
$$

Let's compute the first term:

$$
\begin{aligned}
\int_{c}^{d}\left(\int_{a}^{b} \frac{\partial \phi\left(\frac{\partial \beta}{\partial t}\right)}{\partial s} d s\right) d t & =\int_{c}^{d} \phi\left(\frac{\partial \beta(b, t)}{\partial t}\right)-\phi\left(\frac{\partial \beta(a, t)}{\partial t}\right) d t \\
& =\int_{\alpha_{1}} \phi+\int_{\alpha_{3}} \phi
\end{aligned}
$$

Similarly, the second term gives

$$
-\int_{a}^{b}\left(\int_{c}^{d} \frac{\partial \phi\left(\frac{\partial \beta}{\partial s}\right)}{\partial t} d t\right) d s=\int_{\alpha_{2}} \phi+\int_{\alpha_{4}} \phi
$$

We have the expected corollary
Corollary 2. If ω is exact then $\int_{\beta} \omega=0$ for all closed surfaces β.
And (although we don't have time to prove it this semester!) we also have the Poincare Lemma for n forms.

The Poincare Lemma. If ϕ is a C^{1} form defined in an open, convex set contining the origin, the ϕ is closed iff ϕ is exact.

4.2 Connections with vector calculus

Finally, I'll supply a little dictionary between the language of differential forms and the language of vector calculus in \mathbb{R}^{3}.

First, there are two correspondences to be aware of. First, I'll state the correspondence here simply, without worrying about what kind of correspondence each is.

	vector field	differential form
correspondence A	$f \mathbf{i}+g \mathbf{j}+h \mathbf{k}$	$f d x+g d y+h d z$
correspondence B	$f \mathbf{i}+g \mathbf{j}+h \mathbf{k}$	$h d y \wedge d z-g d x \wedge d z+f d y \wedge d z$

In vector calculus one has the following three notions:

- Gradient. Given a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, one has the gradient vector field

$$
\nabla(f)=\frac{\partial f}{\partial x_{i}} U_{i}
$$

- Curl. Given a vector field $X=\sum_{i} f_{i} U_{i}$, one has a vector field called the curl of X :

$$
\operatorname{curl}(X)=\left(\frac{\partial f_{3}}{\partial x_{2}}-\frac{\partial f_{2}}{\partial x_{3}}\right) U_{1}+\left(\frac{\partial f_{1}}{\partial x_{3}}-\frac{\partial f_{3}}{\partial x_{1}}\right) U_{2}+\left(\frac{\partial f_{2}}{\partial x_{1}}-\frac{\partial f_{1}}{\partial x_{2}}\right) U_{3}
$$

- Divergence. Given a vector field $X=\sum_{i} f_{i} U_{i}$ one has a function called the divergence of X

$$
\operatorname{Div}(X)=\frac{\partial f_{1}}{\partial x_{1}}+\frac{\partial f_{2}}{\partial x_{2}}+\frac{\partial f_{3}}{\partial x_{3}}
$$

Problem 17. Express these three concepts in terms of the exterior derivatives and the two correspondences in the table.

