EXAM

Exam 1

Math 157
Thursday, October 3, 2013

ANSWERS

Problem 1. Let $S=\{\triangle, \diamond, \boldsymbol{\infty}, \boldsymbol{\uparrow}\}$ and define two binary operations + and \times as follows:

$+$	\bigcirc	\diamond	4	¢
0	\bigcirc	\diamond	8	¢
\diamond	\diamond	\bigcirc	¢	$\%$
\%	$\%$	-	\bigcirc	\diamond
¢	¢	$\%$	\diamond	\bigcirc

\times	\bigcirc	\diamond	4	-
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\diamond	\bigcirc	\diamond	\bigcirc	\diamond
$\%$	\bigcirc	\bigcirc	\%	9
¢	\bigcirc	\diamond	\%	-

(a) Which element of S is an identity for the operation + ?

Answer:

\bigcirc is an identity for + . You can see this from the first row and column of the + table.
(b) Solve the equation $\diamond x+\boldsymbol{\phi}=\boldsymbol{\phi}$ for x.

Answer:

Since \diamond is the only element that when added to $\boldsymbol{\&}$ results in $\boldsymbol{\uparrow}$, we must have $\diamond x=\diamond$. Looking at the multiplication table reveals that $\diamond x=\diamond$ if and only if $x=\diamond$ or $x=\boldsymbol{\oplus}$.
(c) Only one of the field axioms is not satisfied by S with + and \times. Which one?

Answer:

Note that $\boldsymbol{\phi}$ is an identity for \times. However, \diamond is a nonzero (i.e., not \bigcirc) element of S that has no multiplicative inverse-there's no element of S that when multiplied by \diamond yields

Remark: Note that if \diamond had an inverse, call it \diamond^{-1}, then the equation $\diamond x+\boldsymbol{\phi}=\boldsymbol{\phi}$ would have a unique solution $x=\diamond^{-1}(\boldsymbol{\omega}+-\boldsymbol{\rho})$.

Problem 2. Let A, B and C be sets.
(a) One of the following conditions is sufficient for $(A \backslash B) \backslash C=A \backslash(B \backslash C)$. Which one?

- $A \subset(B \cup C)$
- $(B \cup C) \subset A$
- $A \cap B \cap C=\emptyset$
- $C \subset(B \backslash A)$
- $A \cap B=C \cap B$
(b) Prove that the condition you identified implies that $(A \backslash B) \backslash C=A \backslash(B \backslash C)$.

Answer:

The condition $C \subset(B \backslash A)$ is sufficient for $(A \backslash B) \backslash C=A \backslash(B \backslash C)$. That is, for all sets A, B, and C with $C \subset(B \backslash A)$, we have $(A \backslash B) \backslash C=A \backslash(B \backslash C)$.
Proof. First we prove that for all sets A, B, C

$$
(A \backslash B) \backslash C \subseteq A \backslash(B \backslash C)
$$

Let $a \in(A \backslash B) \backslash C$. This means $a \in A \backslash B$ and $a \notin C$. The fact that $a \in A \backslash B$ implies that $a \in A$ and $a \notin B$. Since $a \notin B$, it follows that $a \notin B \backslash C$. Hence $a \in A \backslash(B \backslash C)$.
Now we prove that for all sets A, B, C with $C \subset(B \backslash A)$,

$$
A \backslash(B \backslash C) \subseteq(A \backslash B) \backslash C
$$

So suppose $C \subset(B \backslash A)$ and let $a \in A \backslash(B \backslash C)$. So, $a \in A$ and $a \notin B \backslash C$. The fact that $a \notin B \backslash C$ means that

$$
a \notin B \text { or } a \in C .
$$

But since $C \subset(B \backslash A)$, it's impossible for $a \in C$ since $a \in C$ implies $a \notin A$ and we know $a \in A$. Therefore, we have $a \in A, a \notin B$, and $a \notin C$. That is $a \in(A \backslash B) \backslash C$.
(c) Give an example to show that the identified condition is not necessary for $A \backslash B=A \backslash C$.

Answer:

Let $A=\{1,2,3,4\}, B=\{1,2,5,6,7\}$, and $C=\{6,7,8,9\}$. Note that C is not a subset of $B \backslash A=\{5,6,7\}$. We do have

$$
(A \backslash B) \backslash C=\{3,4\} \backslash C=\{3,4\} \text { and } A \backslash(B \backslash C)=A \backslash\{1,2,5\}=\{3,4\}
$$

Problem 3. True or False. Give brief, but conclusive evidence, to support your answer.
(a) For all sets S and for all $A \subseteq S$ there exists a unique set $B \subseteq S$ with $A \cup B=S$.

Answer:

False. Let $S=\{1,2,3,4\}$ and $A=\{1,3\}$. Note that $B=\{2,4\}$ and $B^{\prime}=\{1,2,4\}$ are different sets with the property that $A \cup B=S$.
(b) For all sets $A \subseteq \mathbb{R}$, either A or $\mathbb{R} \backslash A$ is bounded above.

Answer:

False. Let $A=\mathbb{N}$. Note A is not bounded above, and $\mathbb{R} \backslash \mathbb{N}$ is not bounded above.
(c) For all $x, y \in \mathbb{R}$, if $x^{2}<y^{2}$ then either $x<y$ or $-x<y$.

Answer:

False. Let $x=3$ and $y=-4$. Then $x^{2}=9<16=y^{2}$. However, neither $3<-4$ nor $-3<-4$ are true.
(d) For all $x \in \mathbb{R}$ and for all $n \in \mathbb{N}\left(|2 x-6|<\frac{1}{n} \Rightarrow x=3\right)$.

Answer:

True. If $|2 x-6|<\frac{1}{n}$ for all $n \in \mathbb{N}$, then $2 x-6=0$, which implies that $x=3$.

Problem 4.

(a) Use mathematical induction to prove that $\sum_{k=1}^{n} k^{3}=\frac{(n)^{2}(n+1)^{2}}{4}$ for all $n \in \mathbb{N}$.

Answer:

To prove that $\sum_{k=1}^{n} k^{3}=\frac{(n)^{2}(n+1)^{2}}{4}$ for all $n \in \mathbb{N}$, note that for $n=1$, the statement is $1=\frac{\left(1^{2}\right)\left(2^{2}\right)}{4}$, which is true.
Now suppose that $\sum_{k=1}^{m} k^{3}=\frac{(m)^{2}(m+1)^{2}}{4}$ for some $m \in \mathbb{N}$ and consider $\sum_{k=1}^{m} k^{3}$

$$
\begin{aligned}
\sum_{k=1}^{m+1} k^{3} & =\left(\sum_{k=1}^{m} k^{3}\right)+(m+1)^{3} \\
& =\frac{(m)^{2}(m+1)^{2}}{4}+(m+1)^{3} \\
& =\frac{(m)^{2}(m+1)^{2}}{4}+\frac{4(m+1)^{2}(m+1)}{4} \\
& =\frac{(m+1)^{2}\left(m^{2}+4(m+1)\right)}{4} \\
& =\frac{(m+1)^{2}\left(m^{2}+4 m+4\right)}{4} \\
& =\frac{(m+1)^{2}(m+2)^{2}}{4}
\end{aligned}
$$

This proves that if the statement is true for $n=m$ then it's true for $n=m+1$.
Since the statement is true for $n=1$, and true for m implies true for $m+1$, the principle of mathematical induction, says it's true for all $n \in \mathbb{N}$.

Problem 4.

(b) Use this result to compute the area of the region pictured below (the vertical distance between the point b units from 0 is $\frac{1}{2} b^{3}$).

Answer:

To compute the area of the region in question, we bound it by two rectangular regions obtained by inscribing n rectangles of equal width and circumscribing n rectangles of equal width, as pictured below:

Let s_{n} be the area of the inscribed rectangular region, let A be the area of the curved region, and S_{n} be the area of the circumscribed rectangular region.

$$
s_{n}<A<S_{n}
$$

We express the areas of the rectangular regions s_{n} as a sum, the i-th terms of which is the area of an inscribed rectangle of width $\frac{1}{n}$ and height $\frac{1}{2}\left(\frac{i-1}{n}\right)^{3}$.

$$
\begin{aligned}
s_{n} & =\frac{1}{n}\left(\frac{1}{2}(0)^{3}\right)+\frac{1}{n}\left(\frac{1}{2}\left(\frac{1}{n}\right)^{3}\right)+\frac{1}{n}\left(\frac{1}{2}\left(\frac{2}{n}\right)^{3}\right)+\cdots+\frac{1}{n}\left(\frac{1}{2}\left(\frac{(n-1)}{n}\right)^{3}\right) \\
& =\frac{1}{2 n^{4}}\left(1^{3}+2^{3}+\cdots(n-1)^{3}\right)
\end{aligned}
$$

Similarly, we express the areas of the rectangular regions S_{n} as a sum, the i-th terms of which is the the area of a circumscribed rectangle of width $\frac{1}{n}$ and height $\frac{1}{2}\left(\frac{i}{n}\right)^{3}$.

$$
\begin{aligned}
s_{n} & =\frac{1}{n}\left(\frac{1}{2}(1)^{3}\right)+\frac{1}{n}\left(\frac{1}{2}\left(\frac{2}{n}\right)^{3}\right)+\cdots+\frac{1}{n}\left(\frac{1}{2}\left(\frac{(n-1)}{n}\right)^{3}\right)+\frac{1}{n}\left(\frac{1}{2}\left(\frac{n}{n}\right)^{3}\right) \\
& =\frac{1}{2 n^{4}}\left(1^{3}+2^{3}+\cdots(n)^{3}\right)
\end{aligned}
$$

By the inequalities proved above, we have

$$
s_{n}=\left(\frac{1}{2 n^{4}}\right)\left(\frac{(n-1)^{2}(n)^{2}}{4}\right)=\frac{1}{8}\left(1-\frac{1}{n}\right)^{2} \text { and } S_{n}=\left(\frac{1}{2 n^{4}}\right)\left(\frac{(n)^{2}(n+1)^{2}}{4}\right)=\frac{1}{8}\left(1+\frac{1}{n}\right)^{2}
$$

So, for every $n \in \mathbb{N}$, we have

$$
s_{n}<\frac{1}{8}<S_{n} \text { and } s_{n}<A<S_{n}
$$

Since $S_{n}-s_{n}=\frac{1}{2 n}$, we have $\left|A-\frac{1}{8}\right| \leq \frac{1}{2 n}$ for every $n \in \mathbb{N}$. Thus, $\left|A-\frac{1}{8}\right|=0$, and we conclude

$$
A=\frac{1}{8}
$$

