# EXAM

\_

Exam 1

Math 157

Thursday, October 3, 2013

\_\_\_\_

# ANSWERS

**Problem 1.** Let  $S = \{\heartsuit, \diamondsuit, \clubsuit, \clubsuit\}$  and define two binary operations + and × as follows:

| +            | $\heartsuit$ | $\diamond$   | +            | ¢            | ] | $\times$     | $\heartsuit$ | $\diamond$   | ÷            |              |
|--------------|--------------|--------------|--------------|--------------|---|--------------|--------------|--------------|--------------|--------------|
| $\heartsuit$ | $\heartsuit$ | $\diamond$   | +            | <b></b>      |   | $\heartsuit$ | $\heartsuit$ | $\heartsuit$ | $\heartsuit$ | $\heartsuit$ |
| $\diamond$   | $\diamond$   | $\heartsuit$ | ¢            | ÷            |   | $\diamond$   | $\heartsuit$ | $\diamond$   | $\heartsuit$ | $\diamond$   |
| *            | ÷            | •            | $\heartsuit$ | $\diamond$   |   | *            | $\heartsuit$ | $\heartsuit$ | ÷            | +            |
| <b></b>      | •            | ÷            | $\diamond$   | $\heartsuit$ | ] | <b></b>      | $\heartsuit$ | $\diamond$   | ÷            |              |

(a) Which element of S is an identity for the operation +?

#### Answer:

 $\heartsuit$  is an identity for +. You can see this from the first row and column of the + table.

(b) Solve the equation  $\Diamond x + \clubsuit = \blacklozenge$  for x.

# Answer:

Since  $\Diamond$  is the only element that when added to  $\clubsuit$  results in  $\blacklozenge$ , we must have  $\Diamond x = \Diamond$ . Looking at the multiplication table reveals that  $\Diamond x = \Diamond$  if and only if  $x = \Diamond$  or  $x = \blacklozenge$ .

(c) Only one of the field axioms is not satisfied by S with + and  $\times$ . Which one?

# Answer:

Note that  $\blacklozenge$  is an identity for  $\times$ . However,  $\diamondsuit$  is a nonzero (i.e., not  $\heartsuit$ ) element of S that has no multiplicative inverse—there's no element of S that when multiplied by  $\diamondsuit$  yields  $\blacklozenge$ .

*Remark:* Note that if  $\diamondsuit$  had an inverse, call it  $\diamondsuit^{-1}$ , then the equation  $\diamondsuit x + \clubsuit = \clubsuit$  would have a unique solution  $x = \diamondsuit^{-1}(\clubsuit + -\clubsuit)$ .

#### **Problem 2.** Let A, B and C be sets.

- (a) One of the following conditions is sufficient for  $(A \setminus B) \setminus C = A \setminus (B \setminus C)$ . Which one?
  - $A \subset (B \cup C)$
  - $(B \cup C) \subset A$
  - $A \cap B \cap C = \emptyset$
  - $C \subset (B \setminus A)$
  - $\bullet \ A \cap B = C \cap B$

(b) Prove that the condition you identified implies that  $(A \setminus B) \setminus C = A \setminus (B \setminus C)$ .

#### Answer:

The condition  $C \subset (B \setminus A)$  is sufficient for  $(A \setminus B) \setminus C = A \setminus (B \setminus C)$ . That is, for all sets A, B, and C with  $C \subset (B \setminus A)$ , we have  $(A \setminus B) \setminus C = A \setminus (B \setminus C)$ .

*Proof.* First we prove that for all sets A, B, C

$$(A \setminus B) \setminus C \subseteq A \setminus (B \setminus C).$$

Let  $a \in (A \setminus B) \setminus C$ . This means  $a \in A \setminus B$  and  $a \notin C$ . The fact that  $a \in A \setminus B$  implies that  $a \in A$  and  $a \notin B$ . Since  $a \notin B$ , it follows that  $a \notin B \setminus C$ . Hence  $a \in A \setminus (B \setminus C)$ . Now we prove that for all sets A, B, C with  $C \subset (B \setminus A)$ ,

$$4 \setminus (B \setminus C) \subseteq (A \setminus B) \setminus C.$$

So suppose  $C \subset (B \setminus A)$  and let  $a \in A \setminus (B \setminus C)$ . So,  $a \in A$  and  $a \notin B \setminus C$ . The fact that  $a \notin B \setminus C$  means that

$$a \notin B$$
 or  $a \in C$ .

But since  $C \subset (B \setminus A)$ , it's impossible for  $a \in C$  since  $a \in C$  implies  $a \notin A$  and we know  $a \in A$ . Therefore, we have  $a \in A$ ,  $a \notin B$ , and  $a \notin C$ . That is  $a \in (A \setminus B) \setminus C$ .

(c) Give an example to show that the identified condition is not *necessary* for  $A \setminus B = A \setminus C$ .

### Answer:

Let  $A = \{1, 2, 3, 4\}, B = \{1, 2, 5, 6, 7\}$ , and  $C = \{6, 7, 8, 9\}$ . Note that C is not a subset of  $B \setminus A = \{5, 6, 7\}$ . We do have

$$(A \setminus B) \setminus C = \{3, 4\} \setminus C = \{3, 4\} \text{ and } A \setminus (B \setminus C) = A \setminus \{1, 2, 5\} = \{3, 4\}.$$

Problem 3. True or False. Give brief, but conclusive evidence, to support your answer.

(a) For all sets S and for all  $A \subseteq S$  there exists a unique set  $B \subseteq S$  with  $A \cup B = S$ .

# Answer:

False. Let  $S = \{1, 2, 3, 4\}$  and  $A = \{1, 3\}$ . Note that  $B = \{2, 4\}$  and  $B' = \{1, 2, 4\}$  are different sets with the property that  $A \cup B = S$ .

(b) For all sets  $A \subseteq \mathbb{R}$ , either A or  $\mathbb{R} \setminus A$  is bounded above.

# Answer:

False. Let  $A = \mathbb{N}$ . Note A is not bounded above, and  $\mathbb{R} \setminus \mathbb{N}$  is not bounded above.

(c) For all  $x, y \in \mathbb{R}$ , if  $x^2 < y^2$  then either x < y or -x < y.

# Answer:

False. Let x = 3 and y = -4. Then  $x^2 = 9 < 16 = y^2$ . However, neither 3 < -4 nor -3 < -4 are true.

(d) For all  $x \in \mathbb{R}$  and for all  $n \in \mathbb{N}\left(|2x-6| < \frac{1}{n} \Rightarrow x = 3\right)$ .

# Answer:

True. If  $|2x-6| < \frac{1}{n}$  for all  $n \in \mathbb{N}$ , then 2x-6 = 0, which implies that x = 3.

# Problem 4.

(a) Use mathematical induction to prove that  $\sum_{k=1}^{n} k^3 = \frac{(n)^2(n+1)^2}{4}$  for all  $n \in \mathbb{N}$ .

Answer:

To prove that  $\sum_{k=1}^{n} k^3 = \frac{(n)^2(n+1)^2}{4}$  for all  $n \in \mathbb{N}$ , note that for n = 1, the statement is  $1 = \frac{(1^2)(2^2)}{4}$ , which is true. Now suppose that  $\sum_{k=1}^{m} k^3 = \frac{(m)^2(m+1)^2}{4}$  for some  $m \in \mathbb{N}$  and consider  $\sum_{k=1}^{m} k^3$   $\sum_{k=1}^{m+1} k^3 = \left(\sum_{k=1}^{m} k^3\right) + (m+1)^3$   $= \frac{(m)^2(m+1)^2}{4} + (m+1)^3$   $= \frac{(m)^2(m+1)^2}{4} + \frac{4(m+1)^2(m+1)}{4}$   $= \frac{(m+1)^2(m^2+4(m+1))}{4}$   $= \frac{(m+1)^2(m^2+4m+4)}{4}$  $= \frac{(m+1)^2(m+2)^2}{4}$ 

This proves that if the statement is true for n = m then it's true for n = m + 1. Since the statement is true for n = 1, and true for m implies true for m + 1, the principle of mathematical induction, says it's true for all  $n \in \mathbb{N}$ .

# Problem 4.

(b) Use this result to compute the area of the region pictured below (the vertical distance between the point *b* units from 0 is  $\frac{1}{2}b^3$ ).



### Answer:

To compute the area of the region in question, we bound it by two rectangular regions obtained by inscribing n rectangles of equal width and circumscribing n rectangles of equal width, as pictured below:



Let  $s_n$  be the area of the inscribed rectangular region, let A be the area of the curved region, and  $S_n$  be the area of the circumscribed rectangular region.

$$s_n < A < S_n.$$

We express the areas of the rectangular regions  $s_n$  as a sum, the *i*-th terms of which is the area of an inscribed rectangle of width  $\frac{1}{n}$  and height  $\frac{1}{2} \left(\frac{i-1}{n}\right)^3$ .

$$s_n = \frac{1}{n} \left( \frac{1}{2} (0)^3 \right) + \frac{1}{n} \left( \frac{1}{2} \left( \frac{1}{n} \right)^3 \right) + \frac{1}{n} \left( \frac{1}{2} \left( \frac{2}{n} \right)^3 \right) + \dots + \frac{1}{n} \left( \frac{1}{2} \left( \frac{(n-1)}{n} \right)^3 \right)$$
$$= \frac{1}{2n^4} \left( 1^3 + 2^3 + \dots (n-1)^3 \right)$$

Similarly, we express the areas of the rectangular regions  $S_n$  as a sum, the *i*-th terms of which is the the area of a circumscribed rectangle of width  $\frac{1}{n}$  and height  $\frac{1}{2} \left(\frac{i}{n}\right)^3$ .

$$s_n = \frac{1}{n} \left( \frac{1}{2} (1)^3 \right) + \frac{1}{n} \left( \frac{1}{2} \left( \frac{2}{n} \right)^3 \right) + \dots + \frac{1}{n} \left( \frac{1}{2} \left( \frac{(n-1)}{n} \right)^3 \right) + \frac{1}{n} \left( \frac{1}{2} \left( \frac{n}{n} \right)^3 \right)$$
$$= \frac{1}{2n^4} \left( 1^3 + 2^3 + \dots + (n)^3 \right)$$

By the inequalities proved above, we have

$$s_n = \left(\frac{1}{2n^4}\right) \left(\frac{(n-1)^2(n)^2}{4}\right) = \frac{1}{8} \left(1 - \frac{1}{n}\right)^2 \text{ and } S_n = \left(\frac{1}{2n^4}\right) \left(\frac{(n)^2(n+1)^2}{4}\right) = \frac{1}{8} \left(1 + \frac{1}{n}\right)^2$$

So, for every  $n \in \mathbb{N}$ , we have

$$s_n < \frac{1}{8} < S_n$$
 and  $s_n < A < S_n$ .

Since  $S_n - s_n = \frac{1}{2n}$ , we have  $|A - \frac{1}{8}| \le \frac{1}{2n}$  for every  $n \in \mathbb{N}$ . Thus,  $|A - \frac{1}{8}| = 0$ , and we conclude

$$4 = \frac{1}{8}$$