Problem 1. Let $S = \{\heartsuit, \diamondsuit, \clubsuit, \clubsuit\}$ and define two binary operations + and \times as follows:

+	\heartsuit	\diamond	÷	¢	×	\heartsuit	\diamond	+	
\heartsuit	\heartsuit	\diamond	+	¢	\heartsuit	\heartsuit	\heartsuit	\heartsuit	(
\diamond	\diamond	\heartsuit	¢	÷	\diamond	\heartsuit	\diamond	\heartsuit	<
÷	÷	•	\heartsuit	\diamond	÷	\heartsuit	\heartsuit	÷	
٨	•	+	\diamond	\heartsuit		\heartsuit	\diamond	+	

(a) Which element of S is an identity for the operation +?

(b) Solve the equation $\diamondsuit x + \clubsuit = \blacklozenge$ for x.

(c) Only one of the field axioms is not satisfied by S with + and \times . Which one?

Problem 2. Let A, B and C be sets.

- (a) One of the following conditions is sufficient for $(A \setminus B) \setminus C = A \setminus (B \setminus C)$. Which one?
 - $A \subset (B \cup C)$
 - $(B \cup C) \subset A$
 - $A \cap B \cap C = \emptyset$
 - $C \subset (B \setminus A)$
 - $A \cap B = C \cap B$

(b) Prove that the condition you identified implies that $(A \setminus B) \setminus C = A \setminus (B \setminus C)$.

(c) Give an example to show that the identified condition is not *necessary* for $A \setminus B = A \setminus C$.

Problem 3. True or False. Give brief, but conclusive evidence, to support your answer. (a) For all sets S and for all $A \subseteq S$ there exists a unique set $B \subseteq S$ with $A \cup B = S$.

(b) For all sets $A \subseteq \mathbb{R}$, either A or $\mathbb{R} \setminus A$ is bounded above.

(c) For all $x, y \in \mathbb{R}$, if $x^2 < y^2$ then either x < y or -x < y.

(d) For all
$$x \in \mathbb{R}$$
 and for all $n \in \mathbb{N}\left(|2x-6| < \frac{1}{n} \Rightarrow x = 3\right)$.

Problem 4.

(a) Use mathematical induction to prove that
$$\sum_{k=1}^{n} k^3 = \frac{(n)^2(n+1)^2}{4}$$
 for all $n \in \mathbb{N}$.

Problem 4.

(b) Use this result to compute the area of the region pictured below (the vertical distance between the point *b* units from 0 is $\frac{1}{2}b^3$).

EXAM

Exam 1

Math 157

Thursday, October 3, 2013

- This exam is due at the beginning of class on Tuesday, October 8.
- You are allowed to use your book or your notes, but you may not consult with any person about the exam, or use the internet as a resource for the exam.
- Each part of each problem is worth one point for a total of twelve possible points.

Success!