Problem 1. Let $S=\{\varrho, \diamond, \boldsymbol{\mu}, \boldsymbol{\uparrow}\}$ and define two binary operations + and \times as follows:

+	\bigcirc	\diamond	\%	-
\bigcirc	\bigcirc	\diamond	\%	¢
\diamond	\diamond	\bigcirc	¢	$\%$
\%	\%	-	\bigcirc	\diamond
¢	\dagger	$\%$	\diamond	\bigcirc

\times	\bigcirc	\diamond	$\%$	¢
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\diamond	\bigcirc	\diamond	\bigcirc	\diamond
\%	\bigcirc	\bigcirc	\%	$\%$
¢	\bigcirc	\diamond	$\%$	-

(a) Which element of S is an identity for the operation + ?
(b) Solve the equation $\diamond x+\boldsymbol{\mu}=\boldsymbol{\phi}$ for x.
(c) Only one of the field axioms is not satisfied by S with + and \times. Which one?

Problem 2. Let A, B and C be sets.
(a) One of the following conditions is sufficient for $(A \backslash B) \backslash C=A \backslash(B \backslash C)$. Which one?

- $A \subset(B \cup C)$
- $(B \cup C) \subset A$
- $A \cap B \cap C=\emptyset$
- $C \subset(B \backslash A)$
- $A \cap B=C \cap B$
(b) Prove that the condition you identified implies that $(A \backslash B) \backslash C=A \backslash(B \backslash C)$.
(c) Give an example to show that the identified condition is not necessary for $A \backslash B=A \backslash C$.

Problem 3. True or False. Give brief, but conclusive evidence, to support your answer.
(a) For all sets S and for all $A \subseteq S$ there exists a unique set $B \subseteq S$ with $A \cup B=S$.
(b) For all sets $A \subseteq \mathbb{R}$, either A or $\mathbb{R} \backslash A$ is bounded above.
(c) For all $x, y \in \mathbb{R}$, if $x^{2}<y^{2}$ then either $x<y$ or $-x<y$.
(d) For all $x \in \mathbb{R}$ and for all $n \in \mathbb{N}\left(|2 x-6|<\frac{1}{n} \Rightarrow x=3\right)$.

Problem 4.

(a) Use mathematical induction to prove that $\sum_{k=1}^{n} k^{3}=\frac{(n)^{2}(n+1)^{2}}{4}$ for all $n \in \mathbb{N}$.

Problem 4.

(b) Use this result to compute the area of the region pictured below (the vertical distance between the point b units from 0 is $\frac{1}{2} b^{3}$).

EXAM

Exam 1

Math 157
Thursday, October 3, 2013

- This exam is due at the beginning of class on Tuesday, October 8.
- You are allowed to use your book or your notes, but you may not consult with any person about the exam, or use the internet as a resource for the exam.
- Each part of each problem is worth one point for a total of twelve possible points.

