Problem 1. Let $x \geq-1$. Prove that for all $n \in \mathbb{N}$ we have $(1+x)^{n} \geq 1+x n$. Answer:

Problem 2. Let X and Y be sets and $f: X \rightarrow Y$ be a function. Consider the following argument:

Suppose that $f: X \rightarrow Y$ is not injective. Then there exist elements $x, z \in X$ with $f(x)=f(z)$ and $x \neq z$. Let $A=\{x\}$. Note that $z \in X \backslash A$ so

$$
f(z) \in f(X \backslash A)
$$

Since $x \in A, f(x) \in f(A)$, so

$$
f(x) \notin Y \backslash f(A)
$$

Since $f(x)=f(z)$, we've found an element in $f(X \backslash A)$ that is not in $Y \backslash f(A)$. Therefore, $f(X \backslash A) \nsubseteq Y \backslash f(A)$.

Which of the following propositions does the argument above prove?
(a) If f is injective, then for all $A \subseteq X$ we have $f(X \backslash A) \subseteq Y \backslash f(A)$.
(b) If f is injective, then there exists a set $A \subseteq X$ with $f(X \backslash A) \subseteq Y \backslash f(A)$.
(c) If for all subsets $A \subseteq X$ we have $f(X \backslash A) \subseteq Y \backslash f(A)$, then f is injective.
(d) If f is injective, then for all $A \subseteq X$ we have $Y \backslash f(A) \subseteq f(X \backslash A)$.
(e) If for all sets $A \subseteq X$ we have $Y \backslash f(A) \subseteq f(X \backslash A)$, then f is injective.
(f) If f is not injective, then for all $A \subseteq X$ we have $f(X \backslash A) \nsubseteq Y \backslash f(A)$.

Problem 3. Give an example of a function $f: X \rightarrow Y$ and a set $A \subseteq X$ for which

$$
f^{-1}(f(A)) \neq A
$$

Answer:

Problem 4. True or False. Right answer +1 , wrong answer -1 , no answer 0 .
(a) The field axioms of \mathbb{R} imply that $1+1 \neq 0$.
(b) For all functions $f: X \rightarrow Y$ and for all sets $C \subseteq Y$, we have $f^{-1}(Y \backslash C)=X \backslash f^{-1}(C)$.
(c) For all functions $f: X \rightarrow Y$ and for all sets $C \subseteq Y$, we have $f\left(f^{-1}(C)\right)=C$.
(d) For all injective functions $f: X \rightarrow Y$ and for all sets $A \subseteq X$ we have $f^{-1}(f(A))=A$.

EXAM

Exam 2

Math 157
Thursday, October 17, 2013

- You have one hour to complete this exam.
- Problems 1 and 4 are worth 4 points, Problem 2 and Problem 3 are worth 2 points for a total of 12 possible points. For a bonus point, define "lapidate."

Success!

