
EXAM

Exam 2

Math 157

Thursday, October 17, 2013

ANSWERS

Problem 0. Bonus. "lapidate" means kill by throwing stones at.

Problem 1. Let $x \ge -1$. Prove that for all $n \in \mathbb{N}$ we have $(1+x)^n \ge 1+xn$.

Answer:

We use induction. When n=1, the statement $(1+x)^n \ge 1+xn$ is the statement

$$(1+x)^1 \ge 1+x,$$

which is true since both sides are equal.

Now, assume the statement is true for some natural number k. That is, assume

$$(1+x)^k \ge 1 + xk.$$

Consider $(1+x)^{k+1}$:

$$(1+x)^{k+1} = (1+x)^k (1+x)$$
 because $(1+x)^k \ge 1 + xk$ and $(1+x) \ge 0$
$$= 1 + (k+1)x + kx^2$$

$$\ge 1 + (k+1)x$$
 because $kx^2 \ge 0$.

This proves that if the statement is true for k, then the statement is true for k+1, completing our proof by induction.

Problem 2. Let X and Y be sets and $f: X \to Y$ be a function. Consider the following argument:

Suppose that $f: X \to Y$ is not injective. Then there exist elements $x, z \in X$ with f(x) = f(z) and $x \neq z$. Let $A = \{x\}$. Note that $z \in X \setminus A$ so

$$f(z) \in f(X \setminus A)$$
.

Since $x \in A$, $f(x) \in f(A)$, so

$$f(x) \notin Y \setminus f(A)$$
.

Since f(x) = f(z), we've found an element in $f(X \setminus A)$ that is not in $Y \setminus f(A)$. Therefore, $f(X \setminus A) \nsubseteq Y \setminus f(A)$.

Which of the following propositions does the argument above prove?

- (a) If f is injective, then for all $A \subseteq X$ we have $f(X \setminus A) \subseteq Y \setminus f(A)$.
- (b) If f is injective, then there exists a set $A \subseteq X$ with $f(X \setminus A) \subseteq Y \setminus f(A)$.
- (c) If for all subsets $A \subseteq X$ we have $f(X \setminus A) \subseteq Y \setminus f(A)$, then f is injective.
- (d) If f is injective, then for all $A \subseteq X$ we have $Y \setminus f(A) \subseteq f(X \setminus A)$.
- (e) If for all sets $A \subseteq X$ we have $Y \setminus f(A) \subseteq f(X \setminus A)$, then f is injective.
- (f) If f is not injective, then for all $A \subseteq X$ we have $f(X \setminus A) \nsubseteq Y \setminus f(A)$.

Answer:

(c). The argument proves that if f is not injective, there exists a set $A \subseteq X$ for which $f(X \setminus A) \nsubseteq Y \setminus f(A)$. This proves that if for all sets $A \subset X$ we have $f(X \setminus A) \nsubseteq Y \setminus f(A)$, then f is injective.

Problem 3. Give an example of a function $f: X \to Y$ and a set $A \subseteq X$ for which

$$f^{-1}(f(A)) \neq A$$
.

Answer:

Let $X = \{1, 2, 3, 4\}$ and $Y = \{a, b, c, d\}$ and define

$$f: X \to Y$$

$$1 \mapsto a$$

$$2 \mapsto b$$

$$3 \mapsto b$$

$$4 \mapsto c$$

Let $A = \{1, 2\}$. Then

$$f^{-1}(f(A)) = f^{-1}(\{a,b\}) = \{1,2,3\} \neq A.$$

Problem 4. True or False. Right answer +1, wrong answer -1, no answer 0.

(a) The field axioms of \mathbb{R} imply that $1+1\neq 0$.

Answer:

False. To see that it's false, note that $\{0,1\}$ with addition defined by

$$0+0=0$$
, $0+1=1+0=1$, $1+1=0$

and multiplication defined by

$$0 \times 0 = 0$$
, $0 \times 1 = 1 \times 0 = 0$, $1 \times 1 = 1$

satisfies all the field axioms that \mathbb{R} satisfies and 1+1=0.

(b) For all functions $f: X \to Y$ and for all sets $C \subseteq Y$, we have $f^{-1}(Y \setminus C) = X \setminus f^{-1}(C)$.

Answer:

True. Here's a proof.

Let $f: X \to Y$ be a function and $C \subseteq Y$. To show that $f^{-1}(Y \setminus C) \subseteq X \setminus f^{-1}(C)$, let $x \in f^{-1}(Y \setminus C)$. This means that $f(x) \in Y \setminus C$. So, $f(x) \notin C$. Since $f(x) \notin C$, we know $x \notin f^{-1}(C)$, implying that $x \in X \setminus f^{-1}(C)$.

To show that $X \setminus f^{-1}(C) \subseteq f^{-1}(Y \setminus C)$, let $x \in X \setminus f^{-1}(C)$. So $x \notin f^{-1}(C)$. This implies that $f(x) \notin C$. Therefore $f(x) \in Y \setminus C$. This says that $x \in f^{-1}(Y \setminus C)$ as needed.

Problem 4. Continued.

(c) For all functions $f: X \to Y$ and for all sets $C \subseteq Y$, we have $f(f^{-1}(C)) = C$.

Answer:

False. Let $X = \{1, 2, 3, 4\}$ and $Y = \{a, b, c, d\}$ and define

$$f: X \to Y$$

$$1 \mapsto a$$

$$2 \mapsto b$$

$$3 \mapsto b$$

$$4 \mapsto c$$

Let $C = \{b, d\}$. Then $f^{-1}(C) = \{2, 3\}$ and $f(f^{-1}(C)) = \{b\}$.

(d) For all injective functions $f: X \to Y$ and for all sets $A \subseteq X$ we have $f^{-1}(f(A)) = A$.

Answer:

True. Here's a proof.

First, we'll prove that for all functions $f: X \to Y$ and all subsets $A \subset X$, we have $A \subseteq f^{-1}(f(A))$. So, suppose $f: X \to Y$ is a function and $A \subseteq X$. Let $x \in A$. Then $f(x) \in f(A)$. Since $f^{-1}(f(X))$ consists of all elements $x \in X$ with $f(x) \in f(A)$, we have $x \in f^{-1}(f(A))$.

Now we will prove that if f is injective, we have $f^{-1}(f(A)) = A$. So, let $x \in f^{-1}(f(A))$. This means that $f(x) \in f(A)$. This means that there exists a $z \in A$ with f(z) = f(x). Since f is injective, x = z, and we find $x \in A$.