EXAM

Exam 2
Math 157
Thursday, October 17, 2013

ANSWERS

Problem 0. Bonus. "lapidate" means kill by throwing stones at.

Problem 1. Let $x \geq-1$. Prove that for all $n \in \mathbb{N}$ we have $(1+x)^{n} \geq 1+x n$.
Answer:
We use induction. When $n=1$, the statement $(1+x)^{n} \geq 1+x n$ is the statement

$$
(1+x)^{1} \geq 1+x
$$

which is true since both sides are equal.
Now, assume the statement is true for some natural number k. That is, assume

$$
(1+x)^{k} \geq 1+x k
$$

Consider $(1+x)^{k+1}$:

$$
\begin{array}{rlr}
(1+x)^{k+1} & =(1+x)^{k}(1+x) \\
& \geq(1+k x)(1+x) \quad \text { because }(1+x)^{k} \geq 1+x k \text { and }(1+x) \geq 0 \\
& =1+(k+1) x+k x^{2} \\
& \geq 1+(k+1) x & \quad \text { because } k x^{2} \geq 0
\end{array}
$$

This proves that if the statement is true for k, then the statement is true for $k+1$, completing our proof by induction.

Problem 2. Let X and Y be sets and $f: X \rightarrow Y$ be a function. Consider the following argument:

Suppose that $f: X \rightarrow Y$ is not injective. Then there exist elements $x, z \in X$ with $f(x)=f(z)$ and $x \neq z$. Let $A=\{x\}$. Note that $z \in X \backslash A$ so

$$
f(z) \in f(X \backslash A)
$$

Since $x \in A, f(x) \in f(A)$, so

$$
f(x) \notin Y \backslash f(A)
$$

Since $f(x)=f(z)$, we've found an element in $f(X \backslash A)$ that is not in $Y \backslash f(A)$. Therefore, $f(X \backslash A) \nsubseteq Y \backslash f(A)$.

Which of the following propositions does the argument above prove?
(a) If f is injective, then for all $A \subseteq X$ we have $f(X \backslash A) \subseteq Y \backslash f(A)$.
(b) If f is injective, then there exists a set $A \subseteq X$ with $f(X \backslash A) \subseteq Y \backslash f(A)$.
(c) If for all subsets $A \subseteq X$ we have $f(X \backslash A) \subseteq Y \backslash f(A)$, then f is injective.
(d) If f is injective, then for all $A \subseteq X$ we have $Y \backslash f(A) \subseteq f(X \backslash A)$.
(e) If for all sets $A \subseteq X$ we have $Y \backslash f(A) \subseteq f(X \backslash A)$, then f is injective.
(f) If f is not injective, then for all $A \subseteq X$ we have $f(X \backslash A) \nsubseteq Y \backslash f(A)$.

Answer:
(c). The argument proves that if f is not injective, there exists a set $A \subseteq X$ for which $f(X \backslash A) \nsubseteq$ $Y \backslash f(A)$. This proves that if for all sets $A \subset X$ we have $f(X \backslash A) \nsubseteq Y \backslash f(A)$, then f is injective.

Problem 3. Give an example of a function $f: X \rightarrow Y$ and a set $A \subseteq X$ for which

$$
f^{-1}(f(A)) \neq A .
$$

Answer:

Let $X=\{1,2,3,4\}$ and $Y=\{a, b, c, d\}$ and define

$$
\begin{aligned}
f: X & \rightarrow Y \\
1 & \mapsto a \\
2 & \mapsto b \\
3 & \mapsto b \\
4 & \mapsto c
\end{aligned}
$$

Let $A=\{1,2\}$. Then

$$
f^{-1}(f(A))=f^{-1}(\{a, b\})=\{1,2,3\} \neq A .
$$

Problem 4. True or False. Right answer +1 , wrong answer -1 , no answer 0 .
(a) The field axioms of \mathbb{R} imply that $1+1 \neq 0$.

Answer:

False. To see that it's false, note that $\{0,1\}$ with addition defined by

$$
0+0=0, \quad 0+1=1+0=1, \quad 1+1=0
$$

and multiplication defined by

$$
0 \times 0=0, \quad 0 \times 1=1 \times 0=0, \quad 1 \times 1=1
$$

satisfies all the field axioms that \mathbb{R} satisfies and $1+1=0$.
(b) For all functions $f: X \rightarrow Y$ and for all sets $C \subseteq Y$, we have $f^{-1}(Y \backslash C)=X \backslash f^{-1}(C)$.

Answer:

True. Here's a proof.
Let $f: X \rightarrow Y$ be a function and $C \subseteq Y$. To show that $f^{-1}(Y \backslash C) \subseteq X \backslash f^{-1}(C)$, let $x \in f^{-1}(Y \backslash C)$. This means that $f(x) \in Y \backslash C$. So, $f(x) \notin C$. Since $f(x) \notin C$, we know $x \notin f^{-1}(C)$, implying that $x \in X \backslash f^{-1}(C)$.
To show that $X \backslash f^{-1}(C) \subseteq f^{-1}(Y \backslash C)$, let $x \in X \backslash f^{-1}(C)$. So $x \notin f^{-1}(C)$. This implies that $f(x) \notin C$. Therefore $f(x) \in Y \backslash C$. This says that $x \in f^{-1}(Y \backslash C)$ as needed.

Problem 4. Continued.

(c) For all functions $f: X \rightarrow Y$ and for all sets $C \subseteq Y$, we have $f\left(f^{-1}(C)\right)=C$.

Answer:
False. Let $X=\{1,2,3,4\}$ and $Y=\{a, b, c, d\}$ and define

$$
\begin{aligned}
f: X & \rightarrow Y \\
1 & \mapsto a \\
2 & \mapsto b \\
3 & \mapsto b \\
4 & \mapsto c
\end{aligned}
$$

Let $C=\{b, d\}$. Then $f^{-1}(C)=\{2,3\}$ and $f\left(f^{-1}(C)\right)=\{b\}$.
(d) For all injective functions $f: X \rightarrow Y$ and for all sets $A \subseteq X$ we have $f^{-1}(f(A))=A$.

Answer:

True. Here's a proof.
First, we'll prove that for all functions $f: X \rightarrow Y$ and all subsets $A \subset X$, we have $A \subseteq f^{-1}(f(A))$. So, suppose $f: X \rightarrow Y$ is a function and $A \subseteq X$. Let $x \in A$. Then $f(x) \in f(A)$. Since $f^{-1}(f(X))$ consists of all elements $x \in X$ with $f(x) \in f(A)$, we have $x \in f^{-1}(f(A))$.
Now we will prove that if f is injective, we have $f^{-1}(f(A))=A$. So, let $x \in f^{-1}(f(A))$. This means that $f(x) \in f(A)$. This means that there exists a $z \in A$ with $f(z)=f(x)$. Since f is injective, $x=z$, and we find $x \in A$.

