Problem 1. Define. [2 points each]

(a) Let $s:[a, b] \rightarrow \mathbb{R}$ be a function. What does it mean to say that s is a step function?
(b) Let $s:[a, b] \rightarrow \mathbb{R}$ be a step function. Define $\int_{a}^{b} s$.
(c) Let $f:[a, b] \rightarrow \mathbb{R}$ be any bounded function. Define the statement f is integrable, and the expression $\int_{a}^{b} f$.

Problem 2. [2 points each] Compute. Do three out of four, or do all four for a bonus.
(a) $\int_{1}^{5}\left[\frac{1}{2} x+1\right] d x$
(b) $\int_{0}^{5} f$ where $f(x)=\left\{\begin{array}{ll}1 & \text { if } 3 \leq\left|x^{2}-4\right| \leq 5 \\ 0 & \text { otherwise. }\end{array}\right.$.

Problem 2. Continued.
(c) $\int_{0}^{4}|2 x-6| d x$
(d) $\int_{1}^{3}\left(3 x^{2}-5 x\right) d x$

Problem 3. True or false : [Right answer +1 , wrong answer -1 , no answer $+\frac{1}{2}$]
(a) For all functions $f, g, h: \mathbb{R} \rightarrow \mathbb{R}, f \circ(g+h)=f \circ g+f \circ h$.
(b) For every function $f:[a, b] \rightarrow \mathbb{R}$, there exist step functions $s, t:[a, b] \rightarrow \mathbb{R}$ with $s \leq f \leq t$.
(c) If f is integrable and even, then $\int_{-b}^{b} f(x) d x=2 \int_{0}^{b} f(x) d x$.
(d) If $s:[a, b] \rightarrow \mathbb{R}$ is a step function, then $s([a, b])$ is a finite set.
(e) If $s:[a, b] \rightarrow \mathbb{R}$ is a step function, then for any $y \in \mathbb{R}$, the set $s^{-1}(\{y\})$ is either empty or an interval.
(f) Let $\pi_{1}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ and $\pi_{2}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be the canonical projections. Let $A \subseteq \mathbb{R} \times \mathbb{R}$ be the ordinate set of a nonegative function f. Then

$$
\pi_{1}(A)=\text { the domain of } f \quad \text { and } \quad \pi_{2}(A)=\text { the range of } f .
$$

(g) For every $\epsilon>0$, there exists a step function $s:[0,1] \rightarrow \mathbb{R}$ with

$$
s(x) \leq x^{2} \text { for all } x \in[0,1] \text { and } \int_{0}^{1} s>\frac{1}{3}-\epsilon
$$

(h) If $f, g:[a, b] \rightarrow \mathbb{R}$ are integrable, then so is $f g$ and $\int_{a}^{b} f g=\left(\int_{a}^{b} f\right)\left(\int_{a}^{b} g\right)$

Problem 4. Consider the function $f:[0,1] \rightarrow \mathbb{R}$ whose graph consists of straight lines connecting

$$
\begin{gathered}
(1,0) \text { and }\left(\frac{1}{2}, 1\right) \\
\left(\frac{1}{2}, 1\right) \text { and }\left(\frac{1}{3}, 0\right) \\
\left(\frac{1}{3}, 0\right) \text { and }\left(\frac{1}{4}, 1\right) \\
\left(\frac{1}{4}, 1\right) \text { and }\left(\frac{1}{5}, 0\right) \\
\vdots
\end{gathered}
$$

The value of f at zero is immaterial, say $f(0)=0$ if you like. One could give a formula for f on each interval $\left(\frac{1}{n}, \frac{1}{n+1}\right)$ but a picture is worth a thousand words:

(a) [2 points] Is f is piecewise monotonic on $[0,1]$?
(b) $[2$ points $]$ Is f integrable on $[0,1]$?
(c) [2 bonus points] Determine $\underline{I}(f)$ and $\bar{I}(f)$.

Problem 5. Short answer. [2 points each] Do three out of four. Or do all four for a bonus.
(a) Find a rational number and an irrational number in the interval $\left(0, \frac{1}{2}\right)$.
(b) If possible, find a left inverse and a right inverse of the function $f: \mathbb{N} \rightarrow \mathbb{N}$ given by $f(n)=n+2$. If either is not possible, be sure to say so.
(c) Compute $\underline{I}(f)$ and $\bar{I}(f)$ for $f:[0,1] \rightarrow \mathbb{R}$ given by $f(x)= \begin{cases}1+x & \text { if } x \in \mathbb{Q}, \\ 2-x & \text { if } x \notin \mathbb{Q} .\end{cases}$

Problem 5. Continued.

(d) Pictured below is the graph of an increasing function g.

Let $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of the interval $[0,8]$ into n subintervals of equal length and let

$$
A=\sum_{k=1}^{n} g\left(x_{k-1}\right)\left(x_{k}-x_{k-1}\right) \text { and } B=\sum_{k=1}^{n} g\left(x_{k}\right)\left(x_{k}-x_{k-1}\right) .
$$

Note that

$$
A \leq \int_{0}^{8} g \leq B
$$

How large must n be in order for $B-A \leq \frac{1}{10}$.

EXAM

Midterm

Math 157

November 14, 2013

- Make sure your solutions are clearly and carefully written. Proofread.
- Show your work, but not your scratchwork. Neatness counts.
- There are 30 points and 6 bonus points (a total of 36 possible).

Success!

