EXAM

Midterm

Math 157
November 14, 2013

ANSWERS

Problem 1. Define. [2 points each]
(a) Let $s:[a, b] \rightarrow \mathbb{R}$ be a function. What does it mean to say that s is a step function?

Answer:

A function $s:[a, b] \rightarrow \mathbb{R}$ is a step function if and only if there exists a partition $P=$ $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of the interval $[a, b]$ for which s is constant on the open subintervals $\left(x_{k-1}, x_{k}\right)$.
(b) Let $s:[a, b] \rightarrow \mathbb{R}$ be a step function. Define $\int_{a}^{b} s$.

Answer:

Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$ for which s is constant on the open subintervals $\left(x_{k-1}, x_{k}\right)$. Let s_{k} be the constant value of s on $\left(x_{k-1}, x_{k}\right)$. Then

$$
\int_{a}^{b} s:=\sum_{k=1}^{n} s_{k}\left(x_{k}-x_{k-1}\right) .
$$

(c) Let $f:[a, b] \rightarrow \mathbb{R}$ be any bounded function. Define the statement f is integrable, and the expression $\int_{a}^{b} f$.

Answer:

If there exists one and only one number I satisfying

$$
\int_{a}^{b} s<I<\int_{a}^{b} t
$$

for all step functions s and t with $s<f<t$, then we say f is integrable and we denote the number I by $\int_{a}^{b} f$.

Problem 2. [2 points each] Compute. Do three out of four, or do all four for a bonus.
(a) $\int_{1}^{5}\left[\frac{1}{2} x+1\right] d x$

Answer:
The function $s(x)=\left[\frac{1}{2} x+1\right]$ is a step function taking the value 1 on $(1,2)$, the value 2 on $(2,4)$ and the value 3 on $(4,5)$.

So,

$$
\int_{1}^{5}\left[\frac{1}{2} x+1\right] d x=1(1)+2(2)+3(1)=8 .
$$

(b) $\int_{0}^{5} f$ where $f(x)=\left\{\begin{array}{ll}1 & \text { if } 3 \leq\left|x^{2}-4\right| \leq 5 \\ 0 & \text { otherwise. }\end{array}\right.$.

Answer:
Note that

$$
\left|x^{2}-4\right| \leq 5 \Leftrightarrow-3 \leq x \leq 3 .
$$

and

$$
3 \leq\left|x^{2}-4\right| \Leftrightarrow-1 \leq x \leq 1 \text { or } x \leq-\sqrt{7} \text { or } x \geq \sqrt{7} \text {. }
$$

Therefore, $3 \leq\left|x^{2}-4\right| \leq 5 \Leftrightarrow-3 \leq x \leq-\sqrt{7}$ or $-1 \leq x \leq 1$ or $\sqrt{7} \leq x \leq 3$.

So,

$$
\int_{0}^{5} f=1(1-0)+1(3-\sqrt{7})=4-\sqrt{7}
$$

Problem 2. Continued.

(c) $\int_{0}^{4}|2 x-6| d x$

Answer:

Since the function $f:[0,4] \rightarrow \mathbb{R}$ given by $f(x)=|2 x-6|$ is piecewise monotonic, it is integrable and since it's nonegative, the integral is the area of the ordinate set of f. Here's a picture of the ordinate set, which is the union of two triangles of area $\frac{1}{2}(6)(3)=9$ and $\frac{1}{2}(2)(1)=1$.

So,

$$
\int_{0}^{4}|2 x-6| d x=10 .
$$

(d) $\int_{1}^{3}\left(3 x^{2}-5 x\right) d x$ We compute:

$$
\begin{aligned}
\int_{1}^{3}\left(3 x^{2}-5 x\right) d x & =\int_{0}^{3}\left(3 x^{2}-5 x\right) d x-\int_{0}^{1}\left(3 x^{2}-5 x\right) d x \\
& =3 \int_{0}^{3} x^{2} d x-5 \int_{0}^{3} x d x-3 \int_{0}^{1} x^{2} d x+5 \int_{0}^{1} x d x \\
& =3 \frac{3^{3}}{3}-5 \frac{3^{2}}{2}-3 \frac{1^{3}}{3}+5 \frac{1^{2}}{2} \\
& =6
\end{aligned}
$$

Problem 3. True or false : [Right answer +1 , wrong answer -1 , no answer $+\frac{1}{2}$]

(a) For all functions $f, g, h: \mathbb{R} \rightarrow \mathbb{R}, f \circ(g+h)=f \circ g+f \circ h$.

Answer:

False. For example, if $f(x)=1, g(x)=2, h(x)=2$, then $f \circ(g+h)(x)=1$ and $f \circ g+f \circ h=2$.
(b) For every function $f:[a, b] \rightarrow \mathbb{R}$, there exist step functions $s, t:[a, b] \rightarrow \mathbb{R}$ with $s \leq f \leq t$.

Answer:

False. The function $f:[-1,1] \rightarrow \mathbb{R}$ given by $f(x)=\frac{1}{x}$ if $x \neq 0$ and $f(0)=5$ is unbounded and there are no step functions s with $s \leq f$ and no step function t with $f \leq t$.
(c) If f is integrable and even, then $\int_{-b}^{b} f(x) d x=2 \int_{0}^{b} f(x) d x$.

Answer:

True.
(d) If $s:[a, b] \rightarrow \mathbb{R}$ is a step function, then $s([a, b])$ is a finite set.

Answer:

True. By definition, there's a partition $\left\{x_{0}, \ldots, x_{n}\right\}$ of $[a, b]$ for which s is constant on the n open subintervals $\left(x_{k-1}, x_{k}\right)$. Accounting for the possibly distinct values of s at the $n+1$ endpoints shows that s takes on at most $2 n+1$ values.
(e) If $s:[a, b] \rightarrow \mathbb{R}$ is a step function, then for any $y \in \mathbb{R}$, the set $s^{-1}(\{y\})$ is either empty or an interval.

Answer:

False. For example, if $s:[0,3] \rightarrow \mathbb{R}$ is given by $s(x)=1$ if $0 \leq x<1, x(x)=2$ if $1 \leq x \leq 2$ and $s(x)=1$ if $2<x \leq 3$. Then we have $s^{-1}(\{1\})=[0,1) \cup(2,3]$ which is not an interval.

Problem 3. Continued.

(f) Let $\pi_{1}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ and $\pi_{2}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be the canonical projections. Let $A \subseteq \mathbb{R} \times \mathbb{R}$ be the ordinate set of a nonegative function f. Then

$$
\pi_{1}(A)=\text { the domain of } f \quad \text { and } \quad \pi_{2}(A)=\text { the range of } f .
$$

Answer:

False. Say $f:[0,1] \rightarrow \mathbb{R}$ is given by $f(x)=2$. Then the ordinate set A of f is the rectangle $A=\{(x, y): 0 \leq x \leq 1$ and $0 \leq y \leq 2\}$. We see $\pi_{1}(A)=[0,1]=$ the domain of f but $\pi_{2}(A)=[0,2] \neq$ the range of $f=\{2\}$.
(g) For every $\epsilon>0$, there exists a step function $s:[0,1] \rightarrow \mathbb{R}$ with

$$
s(x) \leq x^{2} \text { for all } x \in[0,1] \text { and } \int_{0}^{1} s>\frac{1}{3}-\epsilon
$$

Answer:

True. We know that the function given by $f(x)=x^{2}$ is integrable on $[0,1]$ and $\int_{0}^{1} x^{2}=$ $\frac{1}{3}$. So, the lower integral $\underline{I}(f)=\frac{1}{3}$. Since $\frac{1}{3}-\epsilon$ is less than $\frac{1}{3}$, which is the least upper bound of

$$
S=\left\{\int_{0}^{1} s: s \text { is a step function with } s \leq f\right\}
$$

there must be an element of S greater than $\frac{1}{3}-\epsilon$. That is, a step function s with $s \leq f$ and $\int_{0}^{1} s>\frac{1}{3}-\epsilon$.
(h) If $f, g:[a, b] \rightarrow \mathbb{R}$ are integrable, then so is $f g$ and $\int_{a}^{b} f g=\left(\int_{a}^{b} f\right)\left(\int_{a}^{b} g\right)$

Answer:

False. If $f=g=$ the constant function 1 and $[a, b]=[0,3]$, then

$$
\int_{a}^{b} f g=\int_{0}^{3} 1=3 \text { and }\left(\int_{a}^{b} f\right)\left(\int_{a}^{b} g\right)=\left(\int_{0}^{3} 1\right)\left(\int_{0}^{3} 1\right)=(3)(3)=9 .
$$

Problem 4. Consider the function $f:[0,1] \rightarrow \mathbb{R}$ whose graph consists of straight lines connecting

$$
\begin{gathered}
(1,0) \text { and }\left(\frac{1}{2}, 1\right) \\
\left(\frac{1}{2}, 1\right) \text { and }\left(\frac{1}{3}, 0\right) \\
\left(\frac{1}{3}, 0\right) \text { and }\left(\frac{1}{4}, 1\right) \\
\left(\frac{1}{4}, 1\right) \text { and }\left(\frac{1}{5}, 0\right) \\
\vdots
\end{gathered}
$$

The value of f at zero is immaterial, say $f(0)=0$ if you like. One could give a formula for f on each interval $\left(\frac{1}{n}, \frac{1}{n+1}\right)$ but a picture is worth a thousand words:

(a) [2 points] Is f is piecewise monotonic on $[0,1]$?

Answer:
No.
(b) [2 points] Is f integrable on $[0,1]$?

Answer:
Yes.

Problem 4. Continued.

(c) [2 bonus points] Determine $\underline{I}(f)$ and $\bar{I}(f)$.

Answer:

f is integrable, so $\underline{I}(f)=\bar{I}(f)=\int_{0}^{1} f=\frac{1}{2}$.
To see that $\int_{0}^{1} f=\frac{1}{2}$, first note that the ordinate set of f on any interval of the form $\left[\frac{1}{n}, 1\right]$ consists of the union of a finite number of triangles, hence $\int_{\frac{1}{n}}^{1} f$ is the sum of the areas of these finitely many rectangles. Adding them up (from right to left) we have

$$
\begin{aligned}
\int_{\frac{1}{n}}^{1} f & =\frac{1}{2}\left(1-\frac{1}{3}\right)+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{4}\right)+\frac{1}{2}\left(\frac{1}{4}-\frac{1}{5}\right)+\cdots \frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n}\right) \\
& =\frac{1}{2}\left(1-\frac{1}{n}\right) .
\end{aligned}
$$

Intuitively, as n gets larger and larger, these ordinates sets exhaust more and more of the ordinate set of f and we guess that $\int_{0}^{1} f=\frac{1}{2}$.
To make this idea rigorous, we use step functions. Since $\frac{1}{2}\left(1-\frac{1}{n}\right)-\frac{1}{n}<\int_{\frac{1}{n}}^{1} f$, we can find a step function s with $s<f$ and $\int_{\frac{1}{n}}^{1} s \geq \frac{1}{2}\left(1-\frac{1}{n}\right)-\frac{1}{n}$. By extending s to take the value 0 on $\left[0, \frac{1}{n}\right.$), we've found a step function \tilde{s} less than f with

$$
\int_{0}^{1} \tilde{s} \geq \frac{1}{2}\left(1-\frac{1}{n}\right)-\frac{1}{n}=\frac{1}{2}-\frac{3}{2 n} .
$$

Similarly, we can find a step function t with $t>f$ on $\left[\frac{1}{n}, 1\right]$ with $\int_{\frac{1}{n}} t<\frac{1}{2}\left(1-\frac{1}{n}\right)+\frac{1}{n}$. By extending t to take the value 1 on $\left[0, \frac{1}{n}\right.$), we've found a step function \tilde{t}, greater than f with

$$
\int_{0}^{1} \tilde{t} \leq \frac{1}{2}\left(1-\frac{1}{n}\right)+\frac{1}{n}+\frac{1}{n}=\frac{1}{2}+\frac{3}{2 n} .
$$

Since $\frac{1}{2}$ is the only number that lies between $\frac{1}{2}-\frac{3}{2 n}$ and $\frac{1}{2}+\frac{3}{2 n}$ for every n, we conclude that f is integrable on $[0,1]$ and $\int_{0}^{1} f=\frac{1}{2}$.

Problem 5. Short answer. [2 points each] Do three out of four. Or do all four for a bonus.
(a) Find a rational number and an irrational number in the interval $\left(0, \frac{1}{2}\right)$.

Answer:
$\frac{1}{4}$ is a rational number, and $\frac{\sqrt{3}}{4}$ is an irrational number, in $\left(0, \frac{1}{2}\right)$. The number $\frac{\sqrt{3}}{4}$ is irrational since $\sqrt{3}$ is irrational and $\frac{1}{4}$ is rational and the product of an irrational number and a nonzero rational number is irrational. The number $\frac{\sqrt{3}}{4}$ lies in $\left(0, \frac{1}{2}\right)$ since

$$
0<\sqrt{3}<\sqrt{4} \Rightarrow 0<\frac{\sqrt{3}}{4} \leq \frac{\sqrt{4}}{2}=\frac{1}{2}
$$

(b) If possible, find a left inverse and a right inverse of the function $f: \mathbb{N} \rightarrow \mathbb{N}$ given by $f(n)=n+2$. If either is not possible, be sure to say so.

Answer:

Since f is injective, it has a left inverse. Since f is not surjective (the number 1 is not in the image of f) it does not have a right inverse.
The function $g: \mathbb{N} \rightarrow \mathbb{N}$ given by

$$
g(n)= \begin{cases}n-2 & \text { if } n \geq 3 \\ 8 & \text { if } n=1,2\end{cases}
$$

is a left inverse of f.

Problem 5. Continued.

(c) Compute $\underline{I}(f)$ and $\bar{I}(f)$ for $f:[0,1] \rightarrow \mathbb{R}$ given by $f(x)= \begin{cases}1+x & \text { if } x \in \mathbb{Q}, \\ 2-x & \text { if } x \notin \mathbb{Q} .\end{cases}$

Answer:

$$
\underline{I}(f)=\frac{5}{4} \text { and } \bar{I}(f)=\frac{7}{4} .
$$

To see this, consider the lines $\{(x, y): y=1+x\}$ and $\{(x, y): y=2-x\}$.

Any step function less than f has an ordinate set contained in the region pictured below, and whose area is less than, but can be as close as desired, to the area of this region. Therefore $\underline{I}(f)$ is the area of this region, which is $\frac{5}{4}$.

Any step function greater than f has an ordinate set containing the region pictured below and whose area is greater than, but can be as close as desired, to the area of this region. Therefore $\bar{I}(f)$ is the area of this region, which is $\frac{7}{4}$.

Problem 5. Continued.

(d) Pictured below is the graph of an increasing function g.

Let $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of the interval $[0,8]$ into n subintervals of equal length and let

$$
A=\sum_{k=1}^{n} g\left(x_{k-1}\right)\left(x_{k}-x_{k-1}\right) \text { and } B=\sum_{k=1}^{n} g\left(x_{k}\right)\left(x_{k}-x_{k-1}\right) .
$$

Note that

$$
A \leq \int_{0}^{8} g \leq B
$$

How large must n be in order for $B-A \leq \frac{1}{10}$.
Answer:
The difference

$$
B-A=\left(g\left(x_{n}\right)-g\left(x_{0}\right)\right)\left(\frac{8}{n}\right)=(12-2)\left(\frac{8}{n}\right)=\frac{80}{n} .
$$

Setting

$$
\frac{80}{n} \leq \frac{1}{10} \Rightarrow n \geq 800
$$

