EXAM

Final Exam

Math 157
Tuesday, December 17, 2013

ANSWERS

Definitions and theorems [2 points each]

Problem 1. Let f be a bounded function defined on $[a, b]$. Define the statement " f is integrable" and the number $\int_{a}^{b} f$.
Answer:
If there exists one and only one number I satisfying

$$
\int_{a}^{b} s \leq I \leq \int_{a}^{b} t
$$

for all step functions s and t with $s \leq f \leq t$, then we say f is integrable and we let $\int_{a}^{b} f=I$.

Problem 2. Let f be a function defined on an open neighborhood of c. Define the statement " f is continuous at c."

Answer:
f is continuous at c if and only if for every $\epsilon>0$ there exists a $\delta>0$ so that if $|x-c|<\delta$ then $|f(x)-f(c)|<\epsilon$.

Multiple Choice [1 point each]

Problem 3. Below the graph of a function f is sketched

$\int_{2}^{8} f(t) d t=$
(a) $\pi+6$
(b) $\pi+8$
(c) $\pi+10$
(d) $\pi+12$
(e) $\pi+14$

Answer:

(b). $\int_{2}^{8} f(t) d t$ is the area of the region above the x-axis minus the area below the x-axis. The region above consists of two rectangles each of area 4, a quarter circle of radius 2 and a triangle of area 1. The region below consists of a triangle of area 1.

Problem 4. Consider the region sketched below.

The curve on top is defined by $y=2 x+\sqrt{1-x^{2}}-1$ and the curve on bottom is $y=x^{2}$. The area of this region is
(a) $\frac{\pi}{4}-\frac{2}{3}$
(b) $\frac{\pi}{4}-\frac{1}{2}$
(c) $\frac{\pi}{4}-\frac{1}{3}$
(d) $\frac{\pi}{4}+\frac{1}{4}$
(e) $\frac{\pi}{4}+\frac{1}{2}$

Answer:
(c). The area of the region is given by

$$
\int_{0}^{1}\left(2 x+\sqrt{1-x^{2}}-1\right)-x^{2} .
$$

We compute

$$
\begin{aligned}
\int_{0}^{1}\left(2 x+\sqrt{1-x^{2}}-1\right)-x^{2} & =\int_{0}^{1} 2 x+\int_{0}^{1} \sqrt{1-x^{2}}-\int_{0}^{1} 1-\int_{0}^{1} x^{2} \\
& =1+\frac{\pi}{4}-1-\frac{1}{3}
\end{aligned}
$$

Problem 5. Here's the graph of $A(x)=\int_{0}^{x} f(t) d t$:

Which is the graph of f ?
(a)

(d)

(b)

(e)

(c)

(f)

Answer:

(c). The following determines the answer conclusively. A is concave down and increasing on $(0,4)$ so f is decreasing and positive on $(0,4)$. A is concave up and decreasing on $(4,6)$ so f is increasing and negative on $(4,6)$.

Problem 6. On the interval $\left[0,4 \pi^{2}\right]$ the function defined by $A(x)=\int_{0}^{x} \sin (\sqrt{t}) d t$ has a global maximum at
(a) $\frac{1}{4} \pi^{2}$
(b) π^{2}
(c) $4 \pi^{2}$
(d) $\frac{25}{4} \pi^{2}$
(e) $\sqrt{2 \pi}$

Answer:

(b). Since $\sin (\sqrt{t})>0$ on $\left(0, \pi^{2}\right), A$ increases on $\left(0, \pi^{2}\right)$. Since $\sin (\sqrt{t})>0$ on $\left(\pi^{2}, 2 \pi^{2}\right)$, A decreases on $\left(\pi^{2}, 2 \pi^{2}\right)$. Therefore, the maximum is attained at π^{2}. For similar reasons, one checks that A has a global minimum at $4 \pi^{2}$ on the interval $\left[0,9 \pi^{2}\right]$.

Problem 7. The graphs of two functions are sketched below.

The graph of f is solid and the graph of g is dashed. $\lim _{x \rightarrow 3} \frac{f(x)}{g(x)}=$
(a) 0
(b) 1
(c) -1
(d) 2
(e) does not exist

Answer:

(c). There's a neighborhood of 3 on which $g(x)=-f(x)$, so $\frac{f(x)}{g(x)}=-1$ for all $x \neq 3$ in this neighborhood. Therefore $\lim _{x \rightarrow 3} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 3}-1=-1$.

Problem 8. Which statement is false?
(a) There exists a continuous injection $f:(0,1) \rightarrow[0,1]$.
(b) There exists a continuous surjection $f:(0,1) \rightarrow[0,1]$.
(c) There exists a continuous surjection $f:[0,1] \rightarrow(0,1)$.
(d) There exists a continuous injection $f:[0,1] \rightarrow(0,1)$.

Answer:

(c). To see that there exist no continuous surjection $f:[0,1] \rightarrow(0,1)$, recall that a continuous function on a closed bounded interval must have a global maximum and a global minimum, but a surjection $[0,1] \rightarrow(0,1)$ has neither a maximum nor a minimum.

It's a good exercise to sketch the graph of functions that show the other statements are possible, but some are easy to find formulas for. For example, $f(x)=x$ defines a continuous injection $(0,1) \rightarrow[0,1]$. And $f(x)=\frac{1}{2} x+\frac{1}{4}$ defines a continuous injection $[0,1] \rightarrow(0,1)$. Finally, here's a picture of the graph of a continuous surjection $(0,1) \rightarrow[0,1]$:

Problem 9. Which statements about a function $f: X \rightarrow Y$ could be false?
(a) If f is injective, then for all sets $A, B \subseteq X$ we have $f(A \cap B) \subseteq f(A) \cap f(B)$.
(b) If f is injective, then for all sets $A, B \subseteq X$ we have $f(A) \cap f(B) \subseteq f(A \cap B)$.
(c) If $f(A \cap B)=f(A) \cap f(B)$ for all sets $A, B \subseteq X$ then f is injective.
(d) If f is not injective then there exist sets $A, B \subseteq X$ with $f(A \cap B) \neq f(A) \cap f(B)$
(e) If f is surjective then for all sets A we have $f(X \backslash A) \subseteq Y \backslash f(A)$.

Answer:

(e). For example, let $f:\{1,2,3\} \rightarrow\{a, b\}$ be given by $f(1)=a, f(2)=a$, and $f(3)=b$. Let $A=\{1\}$. Then $f(X \backslash A)=\{a, b\}$ is not a subset of $Y \backslash f(A)=\{3\}$.

All the statements were proved true in class.

Problem 10. Let

$$
g(x)= \begin{cases}x & \text { if } x \text { is irrational } \\ -x & \text { if } x \text { is rational } .\end{cases}
$$

Which of the following statements is false?
(a) g is continuous at 0
(b) $\lim _{x \rightarrow 0} g(x)=0$
(c) g is invertible
(d) g is bounded on $[-1,1]$
(e) g is piecewise monotonic

Answer:

(e). The function g is not monotonic on any interval. Here's a direct proof: Let I be any interval and choose two rational numbers $p, q \in I$ with $p<q$. We have $g(p)<g(q)$ so g is not decreasing on I. Choose two irrational numbers $a, b \in I$ with $a<b$. We have $g(a)>g(b)$ so g is not increasing on I.

It's worthwhile mentioning reasons the others are true. g is continuous at 0 since $g(0)=0$ and Since $-x \leq g(x) \leq x$ for all x, the squeezing principle says $\lim _{x \rightarrow 0} g(x)=0$. Since in addition, $g(0)=0, g$ is continuous at 0 . It's not hard to see that g is bijective so g is invertible-in fact, $g(g(x))=x$ for all $x \in \mathbb{R}$ so g is its own inverse. Also, $-1 \leq g(x) \leq 1$ for all $x \in[-1,1]$ so g is bounded on $[-1,1]$.

Problem 11. Let

$$
f(x)= \begin{cases}0 & \text { if } x \text { is irrational } \\ \frac{1}{q} & \text { if } x \text { is rational and } x=\frac{p}{q} \text { in lowest terms }\end{cases}
$$

Which of the following statements is false?
(a) $f(0)=1$
(b) $\lim _{x \rightarrow p} f(x)=0$ for every number p
(c) f is continuous at every irrational number
(d) f is invertible
(e) f is integrable on $[0,1]$

Answer:

(d). Since f is not one-to-one (note $g(\sqrt{2})=g(\sqrt{3})=0$) it is not invertible.

We proved in class that $\lim _{x \rightarrow p} f(x)=0$ for every number p so (b) is true. Since $f(x)=0$ for every irrational number x, f is continuous at every irrational number so (c) is true. We proved $\lim _{x \rightarrow p} f(x)=0$ by observing that for every $\epsilon>0$, the value $f(p)>\epsilon$ for only finitely many $p \in[0,1]$. That observation also proves that f is integrable and $\int_{0}^{1} f=0$ since it's possible to engineer a step function s with $s<f$ and $\int_{0}^{1} s<\epsilon$. So (e) is true. Oh yeah, (a) is true since the number 0 is rational and $0=\frac{0}{1}$, so $f(0)=1$.

Problem 12. Suppose that $f:[0,1] \rightarrow[0,1]$ is a continuous function satisfying $f(0)=\frac{1}{2}$ and $f(1)=\frac{1}{2}$. Which of the following statements must be false?
(a) $0<\int_{0}^{1} f<1$
(b) f is invertible
(c) there is a number $c \in[0,1]$ with $f(c)=0$
(d) f is bounded
(e) there is a number c with $f(c)=c$

Answer:

(b). Since $f(0)=f(1), f$ cannot be one-to-one and therefore is not invertible.

It's worthwhile checking that the other choices are wrong. First, (d) is always true since the range of $f \subseteq[0,1]$ implies f is bounded. If f is continuous, f is integrable. Since $0 \leq f(x) \leq 1$, we have $0 \leq \int_{0}^{1} f \leq 1$. But the only way for $\int_{0}^{1} f=0$ is iif $f(x)=0$ for all x and the only way for $\int_{0}^{1} f=0$ is if $f(x)=1$ for all x. So, (a) is always true. Also (e) is always true. You can see this graphically by observing that any curve connecting ($0, \frac{1}{2}$) and $\left(1, \frac{1}{2}\right)$ must cross the line $y=x$. Or, apply the intermediate value theorem to $h(x)=f(x)-x$ which is a continuous function for which $h(0)$ and $h(1)$ have opposite signs.
(c) might be false, but (c) might be true, as this picture shows:

Problem 13. Suppose that $f:[0,1] \rightarrow[0,1]$ is a continuous function satisfying $f(0)=\frac{1}{2}$ and $f(1)=\frac{1}{2}$. Which of the following statements might be false?
(a) $0<\int_{0}^{1} f<1$
(b) f is invertible
(c) there is a number $c \in[0,1]$ with $f(c)=0$
(d) f is bounded
(e) there is a number c with $f(c)=c$

Answer:

(c) might be false. For example, the function $f(x)=\frac{1}{4}+\left(x-\frac{1}{2}\right)^{2}$ has no zero in $[0,1]$:

See the answer to the problem above to see why the other choices are wrong.

Matching comutations [1 point each]

14. $\lim _{h \rightarrow 0} \frac{1}{h}\left(\cos \left(\frac{\pi}{6}+h\right)-\frac{\sqrt{3}}{2}\right)$

Answer:
We have

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{1}{h}\left(\cos \left(\frac{\pi}{6}+h\right)-\frac{\sqrt{3}}{2}\right) & =\lim _{h \rightarrow 0} \frac{1}{h}\left(\cos \left(\frac{\pi}{6}\right) \cos (h)-\sin \left(\frac{\pi}{6}\right) \sin (h)-\frac{\sqrt{3}}{2}\right) \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{3}}{2} \frac{\cos (h)-1}{h}-\frac{1}{2} \frac{\sin (h)}{h} \\
& =\frac{\sqrt{3}}{2}(0)-\frac{1}{2}(1) \\
& =-\frac{1}{2}
\end{aligned}
$$

15. $\int_{0}^{\pi}\left|\cos (t)+\frac{1}{2}\right| d t$

Answer:
Since $\cos (t) \geq-\frac{1}{2}$ for $0 \leq t \leq \frac{2 \pi}{3}$ and $\cos (t) \leq-\frac{1}{2}$ for $\frac{2 \pi}{3} \leq t \leq \pi$, we have

$$
\begin{aligned}
\int_{0}^{\pi}\left|\cos (t)+\frac{1}{2}\right| d t & =\int_{0}^{\frac{2 \pi}{3}} \cos (t)+\frac{1}{2} d t-\int_{\frac{2 \pi}{3}}^{\pi}-\cos (t)-\frac{1}{2} d t \\
& =\sqrt{3}+\frac{\pi}{6}
\end{aligned}
$$

16. $\int_{0}^{6}[\sqrt{x}] d x$

Answer:
$f(x)=[\sqrt{x}]$ is a step function with value 0 on $[0,1)$, value 1 on $[1,4)$ and value 2 on $[4,9)$. So,

$$
\int_{0}^{6}[\sqrt{x}] d x=0(1)+1(3)+2(2)=7 .
$$

17. $\sin \left(\frac{\pi}{12}\right)$

Answer:

$$
\sin \left(\frac{\pi}{12}\right)=\sin \left(\frac{\pi}{3}-\frac{\pi}{4}\right)=\sin \left(\frac{\pi}{3}\right) \cos \left(-\frac{\pi}{4}\right)+\sin \left(-\frac{\pi}{4}\right) \cos \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}-1}{2 \sqrt{2}}
$$

18. $\int_{0}^{\pi^{2}} \sqrt{x} d x$

Answer:
Since $\int_{a}^{b} \sqrt{x} d x=\frac{2}{3} b^{\frac{3}{2}}-\frac{2}{3} a^{\frac{3}{2}}$, we have

$$
\int_{0}^{\pi^{2}} \sqrt{x} d x=\frac{2}{3}\left(\pi^{2}\right)^{\frac{3}{2}}=\frac{2 \pi^{3}}{3}
$$

Bonus [1 point]

Let $f(x)=x^{3}$. Give a rigorous, epsilon-delta proof that the function f is continuous at 1 .
Answer:
Let $\epsilon>0$ be given. Choose $\delta=\min \left\{1, \frac{\epsilon}{9}\right\}$ and suppose $|x-1|<\delta$. Then we have

$$
|x-1|<1 \Rightarrow 0<x<2 .
$$

We also have $|x-1|<\frac{\epsilon}{9}$ so

$$
\begin{aligned}
\left|x^{3}-1\right| & =|x-1|\left|x^{2}-2 x+1\right| \\
& \leq|x-1|\left(\left|x^{2}\right|+|2 x|+1\right) \\
& \leq \frac{\epsilon}{9}(4+4+1) \\
& =\epsilon
\end{aligned}
$$

as needed.

