EXAM

Final Exam

Math 157

Tuesday, December 17, 2013

ANSWERS

Definitions and theorems [2 points each]

Problem 1. Let f be a bounded function defined on [a, b]. Define the statement "f is integrable" and the number $\int_a^b f$.

Answer:

If there exists one and only one number I satisfying

$$\int_{a}^{b} s \le I \le \int_{a}^{b} t$$

for all step functions s and t with $s \le f \le t$, then we say f is integrable and we let $\int_a^b f = I$.

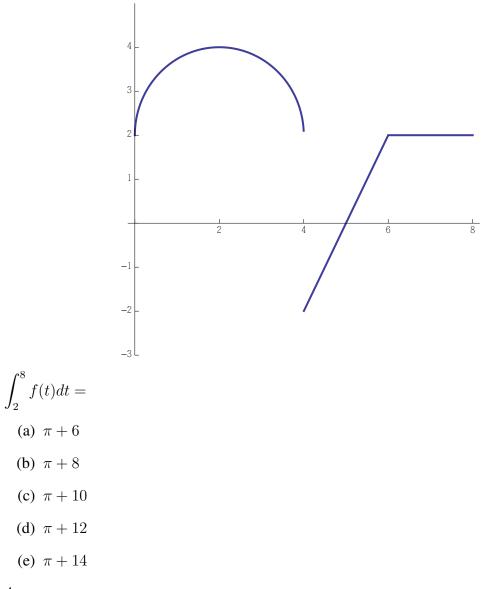
Problem 2. Let f be a function defined on an open neighborhood of c. Define the statement "f is continuous at c."

Answer:

f is continuous at c if and only if for every $\epsilon > 0$ there exists a $\delta > 0$ so that if $|x - c| < \delta$ then $|f(x) - f(c)| < \epsilon$.

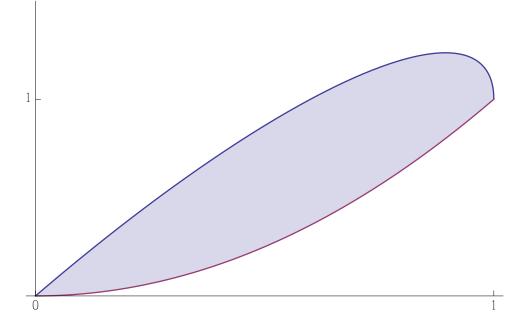
Multiple Choice [1 point each]

Problem 3. Below the graph of a function f is sketched



Answer:

(b). $\int_{2}^{5} f(t)dt$ is the area of the region above the x-axis minus the area below the x-axis. The region above consists of two rectangles each of area 4, a quarter circle of radius 2 and a triangle of area 1. The region below consists of a triangle of area 1. **Problem 4**. Consider the region sketched below.



The curve on top is defined by $y = 2x + \sqrt{1 - x^2} - 1$ and the curve on bottom is $y = x^2$. The area of this region is

(a) $\frac{\pi}{4} - \frac{2}{3}$ (b) $\frac{\pi}{4} - \frac{1}{2}$ (c) $\frac{\pi}{4} - \frac{1}{3}$ (d) $\frac{\pi}{4} + \frac{1}{4}$ (e) $\frac{\pi}{4} + \frac{1}{2}$

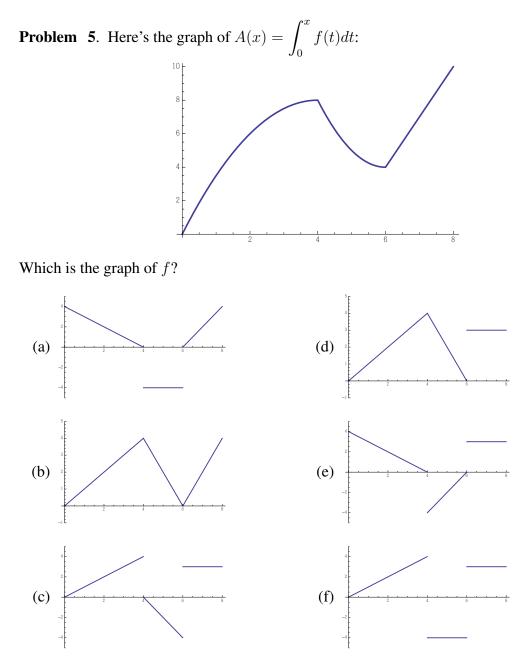
Answer:

(c). The area of the region is given by

$$\int_0^1 (2x + \sqrt{1 - x^2} - 1) - x^2.$$

We compute

$$\int_0^1 (2x + \sqrt{1 - x^2} - 1) - x^2 = \int_0^1 2x + \int_0^1 \sqrt{1 - x^2} - \int_0^1 1 - \int_0^1 x^2 = 1 + \frac{\pi}{4} - 1 - \frac{1}{3}$$



Answer:

(c). The following determines the answer conclusively. A is concave down and increasing on (0, 4) so f is decreasing and positive on (0, 4). A is concave up and decreasing on (4, 6) so f is increasing and negative on (4, 6).

Problem 6. On the interval $[0, 4\pi^2]$ the function defined by $A(x) = \int_0^x \sin(\sqrt{t}) dt$ has a global maximum at

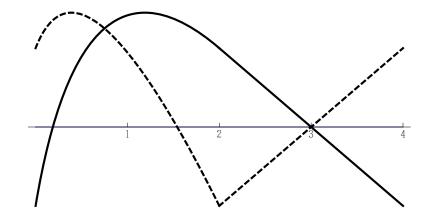
(a)
$$\frac{1}{4}\pi^2$$

(b) π^2
(c) $4\pi^2$
 25

(d) $\frac{25}{4}\pi^2$ (e) $\sqrt{2\pi}$

Answer:

(b). Since $\sin(\sqrt{t}) > 0$ on $(0, \pi^2)$, A increases on $(0, \pi^2)$. Since $\sin(\sqrt{t}) > 0$ on $(\pi^2, 2\pi^2)$, A decreases on $(\pi^2, 2\pi^2)$. Therefore, the maximum is attained at π^2 . For similar reasons, one checks that A has a global minimum at $4\pi^2$ on the interval $[0, 9\pi^2]$.



Problem 7. The graphs of two functions are sketched below.

The graph of f is solid and the graph of g is dashed. $\lim_{x\to 3} \frac{f(x)}{g(x)} =$

- (a) 0
- (b) 1
- (c) -1
- (d) 2
- (e) does not exist

Answer:

(c). There's a neighborhood of 3 on which g(x) = -f(x), so $\frac{f(x)}{g(x)} = -1$ for all $x \neq 3$ in this neighborhood. Therefore $\lim_{x \to 3} \frac{f(x)}{g(x)} = \lim_{x \to 3} -1 = -1$.

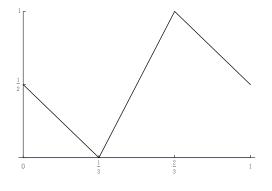
Problem 8. Which statement is false?

- (a) There exists a continuous injection $f: (0,1) \rightarrow [0,1]$.
- (b) There exists a continuous surjection $f: (0,1) \rightarrow [0,1]$.
- (c) There exists a continuous surjection $f: [0,1] \rightarrow (0,1)$.
- (d) There exists a continuous injection $f : [0, 1] \rightarrow (0, 1)$.

Answer:

(c). To see that there exist no continuous surjection $f : [0, 1] \to (0, 1)$, recall that a continuous function on a closed bounded interval must have a global maximum and a global minimum, but a surjection $[0, 1] \to (0, 1)$ has neither a maximum nor a minimum.

It's a good exercise to sketch the graph of functions that show the other statements are possible, but some are easy to find formulas for. For example, f(x) = x defines a continuous injection $(0, 1) \rightarrow [0, 1]$. And $f(x) = \frac{1}{2}x + \frac{1}{4}$ defines a continuous injection $[0, 1] \rightarrow (0, 1)$. Finally, here's a picture of the graph of a continuous surjection $(0, 1) \rightarrow [0, 1]$:



Problem 9. Which statements about a function $f : X \to Y$ could be false?

- (a) If f is injective, then for all sets $A, B \subseteq X$ we have $f(A \cap B) \subseteq f(A) \cap f(B)$.
- (b) If f is injective, then for all sets $A, B \subseteq X$ we have $f(A) \cap f(B) \subseteq f(A \cap B)$.
- (c) If $f(A \cap B) = f(A) \cap f(B)$ for all sets $A, B \subseteq X$ then f is injective.
- (d) If f is not injective then there exist sets $A, B \subseteq X$ with $f(A \cap B) \neq f(A) \cap f(B)$
- (e) If f is surjective then for all sets A we have $f(X \setminus A) \subseteq Y \setminus f(A)$.

Answer:

(e). For example, let $f : \{1, 2, 3\} \to \{a, b\}$ be given by f(1) = a, f(2) = a, and f(3) = b. Let $A = \{1\}$. Then $f(X \setminus A) = \{a, b\}$ is not a subset of $Y \setminus f(A) = \{3\}$.

All the statements were proved true in class.

Problem 10. Let

$$g(x) = \begin{cases} x & \text{if } x \text{ is irrational} \\ -x & \text{if } x \text{ is rational.} \end{cases}$$

Which of the following statements is false?

(a) g is continuous at 0

(b)
$$\lim_{x \to 0} g(x) = 0$$

- (c) g is invertible
- (d) g is bounded on [-1, 1]
- (e) g is piecewise monotonic

Answer:

(e). The function g is not monotonic on any interval. Here's a direct proof: Let I be any interval and choose two rational numbers $p, q \in I$ with p < q. We have g(p) < g(q) so g is not decreasing on I. Choose two irrational numbers $a, b \in I$ with a < b. We have g(a) > g(b) so g is not increasing on I.

It's worthwhile mentioning reasons the others are true. g is continuous at 0 since g(0) = 0and Since $-x \leq g(x) \leq x$ for all x, the squeezing principle says $\lim_{x\to 0} g(x) = 0$. Since in addition, g(0) = 0, g is continuous at 0. It's not hard to see that g is bijective so g is invertible—in fact, g(g(x)) = x for all $x \in \mathbb{R}$ so g is its own inverse. Also, $-1 \leq g(x) \leq 1$ for all $x \in [-1, 1]$ so g is bounded on [-1, 1].

Problem 11. Let

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is irrational} \\ \frac{1}{q} & \text{if } x \text{ is rational and } x = \frac{p}{q} \text{ in lowest terms} \end{cases}$$

Which of the following statements is false?

- (a) f(0) = 1
- (b) $\lim_{x\to p} f(x) = 0$ for every number p
- (c) f is continuous at every irrational number
- (d) f is invertible
- (e) f is integrable on [0, 1]

Answer:

(d). Since f is not one-to-one (note $g(\sqrt{2}) = g(\sqrt{3}) = 0$) it is not invertible.

We proved in class that $\lim_{x\to p} f(x) = 0$ for every number p so (b) is true. Since f(x) = 0 for every irrational number x, f is continuous at every irrational number so (c) is true. We proved $\lim_{x\to p} f(x) = 0$ by observing that for every $\epsilon > 0$, the value $f(p) > \epsilon$ for only finitely many $p \in [0, 1]$. That observation also proves that f is integrable and $\int_0^1 f = 0$ since it's possible to engineer a step function s with s < f and $\int_0^1 s < \epsilon$. So (e) is true. Oh yeah, (a) is true since the number 0 is rational and $0 = \frac{0}{1}$, so f(0) = 1.

Problem 12. Suppose that $f : [0, 1] \to [0, 1]$ is a continuous function satisfying $f(0) = \frac{1}{2}$ and $f(1) = \frac{1}{2}$. Which of the following statements *must be* false?

(a)
$$0 < \int_0^1 f < 1$$

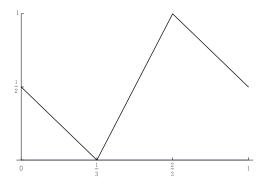
(b) f is invertible

- (c) there is a number $c \in [0, 1]$ with f(c) = 0
- (d) f is bounded
- (e) there is a number c with f(c) = c

Answer:

(b). Since f(0) = f(1), f cannot be one-to-one and therefore is not invertible.

It's worthwhile checking that the other choices are wrong. First, (d) is always true since the range of $f \subseteq [0,1]$ implies f is bounded. If f is continuous, f is integrable. Since $0 \leq f(x) \leq 1$, we have $0 \leq \int_0^1 f \leq 1$. But the only way for $\int_0^1 f = 0$ is iif f(x) = 0 for all x and the only way for $\int_0^1 f = 0$ is if f(x) = 1 for all x. So, (a) is always true. Also (e) is always true. You can see this graphically by observing that any curve connecting $(0, \frac{1}{2})$ and $(1, \frac{1}{2})$ must cross the line y = x. Or, apply the intermediate value theorem to h(x) = f(x) - xwhich is a continuous function for which h(0) and h(1) have opposite signs. (c) might be false, but (c) might be true, as this picture shows:



Problem 13. Suppose that $f : [0, 1] \to [0, 1]$ is a continuous function satisfying $f(0) = \frac{1}{2}$ and $f(1) = \frac{1}{2}$. Which of the following statements *might be* false?

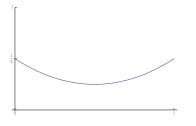
(a)
$$0 < \int_0^1 f < 1$$

(b) f is invertible

- (c) there is a number $c \in [0, 1]$ with f(c) = 0
- (d) f is bounded
- (e) there is a number c with f(c) = c

Answer:

(c) might be false. For example, the function $f(x) = \frac{1}{4} + (x - \frac{1}{2})^2$ has no zero in [0, 1]:



See the answer to the problem above to see why the other choices are wrong.

Matching comutations [1 point each]

14.
$$\lim_{h \to 0} \frac{1}{h} \left(\cos\left(\frac{\pi}{6} + h\right) - \frac{\sqrt{3}}{2} \right)$$

Answer:

We have

$$\lim_{h \to 0} \frac{1}{h} \left(\cos\left(\frac{\pi}{6} + h\right) - \frac{\sqrt{3}}{2} \right) = \lim_{h \to 0} \frac{1}{h} \left(\cos\left(\frac{\pi}{6}\right) \cos(h) - \sin\left(\frac{\pi}{6}\right) \sin(h) - \frac{\sqrt{3}}{2} \right)$$
$$= \lim_{h \to 0} \frac{\sqrt{3}}{2} \frac{\cos(h) - 1}{h} - \frac{1}{2} \frac{\sin(h)}{h}$$
$$= \frac{\sqrt{3}}{2} (0) - \frac{1}{2} (1)$$
$$= -\frac{1}{2}$$

15. $\int_0^{\pi} \left| \cos(t) + \frac{1}{2} \right| dt$

Answer:

Since $\cos(t) \ge -\frac{1}{2}$ for $0 \le t \le \frac{2\pi}{3}$ and $\cos(t) \le -\frac{1}{2}$ for $\frac{2\pi}{3} \le t \le \pi$, we have

$$\int_0^{\pi} \left| \cos(t) + \frac{1}{2} \right| dt = \int_0^{\frac{2\pi}{3}} \cos(t) + \frac{1}{2} dt - \int_{\frac{2\pi}{3}}^{\pi} -\cos(t) - \frac{1}{2} dt$$
$$= \sqrt{3} + \frac{\pi}{6}$$

$$16. \ \int_0^6 [\sqrt{x}] dx$$

Answer:

 $f(x) = [\sqrt{x}]$ is a step function with value 0 on [0, 1), value 1 on [1, 4) and value 2 on [4, 9). So,

$$\int_0^6 [\sqrt{x}] dx = 0(1) + 1(3) + 2(2) = 7.$$

17. $\sin\left(\frac{\pi}{12}\right)$

Answer:

$$\sin\left(\frac{\pi}{12}\right) = \sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \sin\left(\frac{\pi}{3}\right)\cos\left(-\frac{\pi}{4}\right) + \sin\left(-\frac{\pi}{4}\right)\cos\left(\frac{\pi}{3}\right) = \frac{\sqrt{3} - 1}{2\sqrt{2}}$$

.

$$18. \ \int_0^{\pi^2} \sqrt{x} dx$$

Answer:

Since
$$\int_{a}^{b} \sqrt{x} dx = \frac{2}{3}b^{\frac{3}{2}} - \frac{2}{3}a^{\frac{3}{2}}$$
, we have
 $\int_{0}^{\pi^{2}} \sqrt{x} dx = \frac{2}{3}(\pi^{2})^{\frac{3}{2}} = \frac{2\pi^{3}}{3}$

Bonus [1 point]

Let $f(x) = x^3$. Give a rigorous, epsilon-delta proof that the function f is continuous at 1. *Answer*:

Let $\epsilon > 0$ be given. Choose $\delta = \min \{1, \frac{\epsilon}{9}\}$ and suppose $|x - 1| < \delta$. Then we have

$$|x-1| < 1 \Rightarrow 0 < x < 2.$$

We also have $|x-1| < \frac{\epsilon}{9}$ so

$$|x^{3} - 1| = |x - 1| |x^{2} - 2x + 1|$$

$$\leq |x - 1| (|x^{2}| + |2x| + 1)$$

$$\leq \frac{\epsilon}{9} (4 + 4 + 1)$$

$$= \epsilon$$

as needed.