Definitions and theorems [2 points each]

Problem 1. Let f be a bounded function defined on $[a, b]$. Define the statement " f is integrable" and the number $\int_{a}^{b} f$.

Problem 2. Let f be a function defined on an open neighborhood of c. Define the statement " f is continuous at c."

Multiple Choice [1 point each]

Problem 3. Below the graph of a function f is sketched

$\int_{2}^{8} f(t) d t=$
(a) $\pi+6$
(b) $\pi+8$
(c) $\pi+10$
(d) $\pi+12$
(e) $\pi+14$

Problem 4. Consider the region sketched below.

The curve on top is defined by $y=2 x+\sqrt{1-x^{2}}-1$ and the curve on bottom is $y=x^{2}$. The area of this region is
(a) $\frac{\pi}{4}-\frac{1}{3}$
(b) $\frac{\pi}{4}+\frac{1}{4}$
(c) $\frac{\pi}{4}+\frac{1}{2}$
(d) $\frac{\pi}{4}-\frac{2}{3}$
(e) $\frac{\pi}{4}-\frac{1}{2}$

Problem 5. Here's the graph of $A(x)=\int_{0}^{x} f(t) d t$:

Which is the graph of f ?
(a)

(d)

(b)

(e)

(c)

(f)

Problem 6. On the interval $\left[0,4 \pi^{2}\right]$ the function defined by $A(x)=\int_{0}^{x} \sin (\sqrt{t}) d t$ has a global maximum at
(a) π^{2}
(b) $4 \pi^{2}$
(c) $\frac{25}{4} \pi^{2}$
(d) $\sqrt{2 \pi}$
(e) $\frac{1}{4} \pi^{2}$

Problem 7. The graphs of two functions are sketched below.

The graph of f is solid and the graph of g is dashed. $\lim _{x \rightarrow 3} \frac{f(x)}{g(x)}=$
(a) -1
(b) 1
(c) 2
(d) does not exist
(e) 0

Problem 8. Which statement is false?
(a) There exists a continuous surjection $f:(0,1) \rightarrow[0,1]$.
(b) There exists a continuous injection $f:(0,1) \rightarrow[0,1]$.
(c) There exists a continuous surjection $f:[0,1] \rightarrow(0,1)$.
(d) There exists a continuous injection $f:[0,1] \rightarrow(0,1)$.

Problem 9. Which statements about a function $f: X \rightarrow Y$ could be false?
(a) If f is injective, then for all sets $A, B \subseteq X$ we have $f(A \cap B) \subseteq f(A) \cap f(B)$.
(b) If f is surjective then for all sets A we have $f(X \backslash A) \subseteq Y \backslash f(A)$.
(c) If f is injective, then for all sets $A, B \subseteq X$ we have $f(A) \cap f(B) \subseteq f(A \cap B)$.
(d) If $f(A \cap B)=f(A) \cap f(B)$ for all sets $A, B \subseteq X$ then f is injective.
(e) If f is not injective then there exist sets $A, B \subseteq X$ with $f(A \cap B) \neq f(A) \cap f(B)$

Problem 10. Let

$$
g(x)= \begin{cases}x & \text { if } x \text { is irrational } \\ -x & \text { if } x \text { is rational }\end{cases}
$$

Which of the following statements is false?
(a) g is piecewise monotonic
(b) g is continuous at 0
(c) $\lim _{x \rightarrow 0} g(x)=0$
(d) g is invertible
(e) g is bounded on $[-1,1]$

Problem 11. Let

$$
f(x)= \begin{cases}0 & \text { if } x \text { is irrational } \\ \frac{1}{q} & \text { if } x \text { is rational and } x=\frac{p}{q} \text { in lowest terms }\end{cases}
$$

Which of the following statements is false?
(a) f is integrable on $[0,1]$
(b) $f(0)=1$
(c) $\lim _{x \rightarrow p} f(x)=0$ for every number p
(d) f is continuous at every irrational number
(e) f is invertible

Problem 12. Suppose that $f:[0,1] \rightarrow[0,1]$ is a continuous function satisfying $f(0)=\frac{1}{2}$ and $f(1)=\frac{1}{2}$. Which of the following statements must be false?
(a) there is a number c with $f(c)=c$
(b) $0<\int_{0}^{1} f<1$
(c) f is invertible
(d) there is a number $c \in[0,1]$ with $f(c)=0$
(e) f is bounded

Problem 13. Suppose that $f:[0,1] \rightarrow[0,1]$ is a continuous function satisfying $f(0)=\frac{1}{2}$ and $f(1)=\frac{1}{2}$. Which of the following statements might be false?
(a) there is a number c with $f(c)=c$
(b) $0<\int_{0}^{1} f<1$
(c) f is invertible
(d) there is a number $c \in[0,1]$ with $f(c)=0$
(e) f is bounded

Matching comutations [1 point each]

14. $\lim _{h \rightarrow 0} \frac{1}{h}\left(\cos \left(\frac{\pi}{6}+h\right)-\frac{\sqrt{3}}{2}\right)$
15. $\int_{0}^{\pi}\left|\cos (t)+\frac{1}{2}\right| d t$
16. $\int_{0}^{6}[\sqrt{x}] d x$
17. $\sin \left(\frac{\pi}{12}\right)$
18. $\int_{0}^{\pi^{2}} \sqrt{x} d x$

The answers (out of order) are:
(a) 7
(b) $\frac{\sqrt{3}-1}{2 \sqrt{2}}$
(c) $\sqrt{3}+\frac{\pi}{6}$
(d) $-\frac{1}{2}$
(e) $\frac{2 \pi^{3}}{3}$

Bonus [1 point]

Let $f(x)=2 x^{3}$. Give a rigorous, epsilon-delta proof that the function f is continuous at 1 . Answer:

EXAM

Final Exam

Math 157

Tuesday, December 17, 2013

- Make sure your solutions are clearly and carefully written.

Proofread.

- There are 20 points and 1 bonus points (a total of 21 possible).

May the Force be with you!

