Definitions and theorems [2 points each]

Problem 1. Let f be a bounded function defined on [a,b]. Define the statement "f is integrable" and the number $\int_a^b f$.

Problem 2. Let f be a function defined on an open neighborhood of c. Define the statement "f is continuous at c."

Multiple Choice [1 point each]

Problem 3. Below the graph of a function f is sketched

$$\int_{2}^{8} f(t)dt =$$

- (a) $\pi + 6$
- (b) $\pi + 8$
- (c) $\pi + 10$
- (d) $\pi + 12$
- (e) $\pi + 14$

Problem 4. Consider the region sketched below.

The curve on top is defined by $y = 2x + \sqrt{1 - x^2} - 1$ and the curve on bottom is $y = x^2$. The area of this region is

- (a) $\frac{\pi}{4} \frac{1}{3}$
- (b) $\frac{\pi}{4} + \frac{1}{4}$
- (c) $\frac{\pi}{4} + \frac{1}{2}$
- (d) $\frac{\pi}{4} \frac{2}{3}$
- (e) $\frac{\pi}{4} \frac{1}{2}$

Problem 5. Here's the graph of $A(x) = \int_0^x f(t)dt$:

Which is the graph of f?

Problem 6. On the interval $[0,4\pi^2]$ the function defined by $A(x)=\int_0^x\sin(\sqrt{t})dt$ has a global maximum at

- (a) π^2
- (b) $4\pi^2$
- (c) $\frac{25}{4}\pi^2$
- (d) $\sqrt{2\pi}$
- (e) $\frac{1}{4}\pi^2$

Problem 7. The graphs of two functions are sketched below.

The graph of f is solid and the graph of g is dashed. $\lim_{x\to 3}\frac{f(x)}{g(x)}=$

- (a) -1
- (b) 1
- (c) 2
- (d) does not exist
- **(e)** 0

Problem 8. Which statement is false?

- (a) There exists a continuous surjection $f:(0,1)\to [0,1]$.
- (b) There exists a continuous injection $f:(0,1)\to [0,1]$.
- (c) There exists a continuous surjection $f:[0,1]\to (0,1)$.
- (d) There exists a continuous injection $f:[0,1] \to (0,1)$.

Problem 9. Which statements about a function $f: X \to Y$ could be false?

- (a) If f is injective, then for all sets $A, B \subseteq X$ we have $f(A \cap B) \subseteq f(A) \cap f(B)$.
- (b) If f is surjective then for all sets A we have $f(X \setminus A) \subseteq Y \setminus f(A)$.
- (c) If f is injective, then for all sets $A, B \subseteq X$ we have $f(A) \cap f(B) \subseteq f(A \cap B)$.
- (d) If $f(A \cap B) = f(A) \cap f(B)$ for all sets $A, B \subseteq X$ then f is injective.
- (e) If f is not injective then there exist sets $A, B \subseteq X$ with $f(A \cap B) \neq f(A) \cap f(B)$

Problem 10. Let

$$g(x) = \begin{cases} x & \text{if } x \text{ is irrational} \\ -x & \text{if } x \text{ is rational.} \end{cases}$$

Which of the following statements is false?

- (a) *g* is piecewise monotonic
- (b) g is continuous at 0
- (c) $\lim_{x \to 0} g(x) = 0$
- (d) q is invertible
- (e) g is bounded on [-1, 1]

Problem 11. Let

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is irrational} \\ \frac{1}{q} & \text{if } x \text{ is rational and } x = \frac{p}{q} \text{ in lowest terms.} \end{cases}$$

Which of the following statements is false?

- (a) f is integrable on [0, 1]
- (b) f(0) = 1
- (c) $\lim_{x\to p} f(x) = 0$ for every number p
- (d) f is continuous at every irrational number
- (e) f is invertible

Problem 12. Suppose that $f:[0,1]\to [0,1]$ is a continuous function satisfying $f(0)=\frac{1}{2}$ and $f(1)=\frac{1}{2}$. Which of the following statements *must be* false?

- (a) there is a number c with f(c) = c
- (b) $0 < \int_0^1 f < 1$
- (c) f is invertible
- (d) there is a number $c \in [0, 1]$ with f(c) = 0
- (e) f is bounded

Problem 13. Suppose that $f:[0,1]\to [0,1]$ is a continuous function satisfying $f(0)=\frac{1}{2}$ and $f(1)=\frac{1}{2}$. Which of the following statements *might be* false?

- (a) there is a number c with f(c) = c
- (b) $0 < \int_0^1 f < 1$
- (c) f is invertible
- (d) there is a number $c \in [0, 1]$ with f(c) = 0
- (e) f is bounded

Matching comutations [1 point each]

14.
$$\lim_{h\to 0} \frac{1}{h} \left(\cos \left(\frac{\pi}{6} + h \right) - \frac{\sqrt{3}}{2} \right)$$

15.
$$\int_0^{\pi} \left| \cos(t) + \frac{1}{2} \right| dt$$

16.
$$\int_0^6 [\sqrt{x}] dx$$

17.
$$\sin\left(\frac{\pi}{12}\right)$$

18.
$$\int_0^{\pi^2} \sqrt{x} dx$$

The answers (out of order) are:

(a) 7

(b)
$$\frac{\sqrt{3}-1}{2\sqrt{2}}$$

(c)
$$\sqrt{3} + \frac{\pi}{6}$$

(d)
$$-\frac{1}{2}$$

(e)
$$\frac{2\pi^3}{3}$$

Bonus [1 point]

Let $f(x) = 2x^3$. Give a rigorous, epsilon-delta proof that the function f is continuous at 1.

Answer:

EXAM

Final Exam

Math 157

Tuesday, December 17, 2013

- Make sure your solutions are clearly and carefully written. Proofread.
- There are 20 points and 1 bonus points (a total of 21 possible).

May the Force be with you!