Math 157 Fall 2013 Homework 6 - Selected answers

Problem 1. Read Chapter 1, through section 1.8. (pages 48-61).
(a) In Section 1.5, do exercises 2,3,4,8,9,10, and 11.
Answer. Exercise 2. Let f(z) =1+ 2 and g(z) =1 — 2. Then
F2)+g(2) =3+ -1=2
J@) - g(2)=3--1-1

f(2)g(2) = (3)(-1) = -3
(2) 3
e
9(f(2))=9(3)=1-3=-2
flg2)=f(-1)=-1+1=0
fla)+g(—a)=1+a+(1——a)=2+2a
fg(=t) =1 +1)(1+1).

Answer. Exercise 9. Let

flx) = chxk =co4 1z + cox® + -+ .
k=0
(a) If n > 1 and f(0) = 0, the f(z) = xg(x) where g is a polynomial of
degree n — 1. To see this, note that for any polynomial, f(0) = co.
So, if f(0) =0, then ¢p = 0. So,
flx) = chxk =17+ cox® + - + cpa®
k=1
=x (01 +coxr+ - ckxkfl)
zg(x)

where

g(z) = (01 +coxr + - ckxk_l) = Z ck+1xk.

(b) For each real number a, the function p defined by p(z) = f(x +a) is
a polynomial of degree n. To see this, simply substitute = + a for =
in f(x), expand the expressions (x + a)*, and collect the powers of
x. More explicitly,
p(e) = fle+ a)
=co+ci(r+a)t+clr+a)+ - +cp(z+a)
=cg + (c17 + c1a) + (cax? + 2c0ax + c2a?) + (c3z® + 3czax® + 3cza’s + c3a®)
+ o4 (cpa™ + nepaz™ '+ 4+ nepa™ e+ cna™)
= (co+cra+ c2a® +cgad + -+ cna™) + (c1 + 2c0a + 3csa® + -+ ncnanfl)er
+ (2 +3cza+ )% 4 Fcpa”
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which is a polynomial of degree n also.

If n > 1 and f(a) = 0, then there exists a polynomial h of degree
n—1 with f(z) = (z —a)h(z). To see this, let p(z) = f(z +a). Note
that f(z) = p(x — a). Since f(a) = 0, we have p(0) = 0 and since p
is a polynomial of degree n, part (a) implies that p factors as

p(x) = zq(x)

for some polynomial g(z) of degree n—1. Therefore f(z) = p(x—a) =
(x —a)q(x — a). Since g(x) is a polynomial of degree n — 1, so is
h(z) := q(x —a). Thus, we have found a polynomial h of degree n—1
so that

f(2) = (@ — a)h(z)

It follows that if f is a polynomial of degree n, then f(x) = 0 for at
most n distinct real numbers. I'll walk through a slow argument of
this fact.

If n > 2, and f(z) = 0 for two distinct values of x, say * = a
and z = b, then there exists a polynomial g of degree n — 2 so that
f(z) = (x —a)(x—b)g(x). To see this, use the previous part to write
f(x) = (x — a)h(z) for a polynomial h of degree n — 1. Then, since
f(b) = 0, we have (b — a)h(b) = 0. Since b —a # 0 if a and b are
distinct, we must have h(b) = 0. Then, the previous part says that
there exists a polynomial g of degree n—2 so that h(z) = (x—b)g(x).
Then,

f(@) = (z = a)(z = b)g(x).

Continuing, one sees that if f(z) = 0 for k distinct values of x, say
r = ai,...,a, then there exists a polynomial g of degree n — k so
that

fl@) = (z—a1)-- (x - ar)g(x).

Note that if the degree of f is n, then f(z) = 0 for at most n distinct
values of x. To see this, note that if f(z) = 0 for n > 0 distinct
values of x, call them aq,...,a,, then

f(@) = (2 —a)(z —az) - (z = an)g(x)

for some polynomial g of degree zero. Since g is a degree zero poly-
nomial, g(x) = ¢ for some constant ¢ and ¢ # 0 since degree of f is
n > 0. So the polynomial f has the form

f(x) = e(z —ar)(x = az) -~ (2 — an)



Math 157 Fall 2013 Homework 6 - Selected answers

for some constants aq, ..., a, and some nonzero constant c. Then, for
any number a,; distinct from ay,...,a,, we have (an41 — a;) # 0,
so the righthand side ¢(x — a1)(x — ag)--- (x — a,) is not zero at
& = anp41. That is, f(z) cannot be zero for any number a,41 distinct
from aq,...,an.

Another way to summarize this is to say that if f is a polynomial of
degree less than or equal to n and f(z) = 0 for n 4+ 1 distinct values
of z, then f(z) =0 for all z.

Now suppose that g is a polynomial of m > n, where n is the degree
of the polynomial f. If f(x) = g(x) for m + 1 distinct values of
x, then f = g. To see this, note that the function h defined by
h(z) = f(x) — g(x) is a polynomial of degree < m. If f(z) = g(x)
for m 4 1 distinct values of z, then h(x) = 0 for more than m + 1
distinct numbers, hence h(z) = 0.

(b) In Section 1.7, do exercises 1,2,3, and 6.

Functions

Definition 1. We say that a set of ordered pairs f C X XY is a function from
X to Y if and only if for all x € X there exists one and only one y € Y so that
(z,y) € f. We usually write f: X — Y if f C X xY is a function and we write
y = f(z) if (x,y) € f. The set X is called the domain of f and the set Y is
called the codomain of f.

It is common to think of a function f : X — Y a “rule” that associates z € X
to y € Y whenever y = f(x) and to refer to the set of ordered pairs f C X x Y
as the graph of the function. By this convention the “rule” is referred to as the
function f and the set graph(f) = {(z,y) € X xY : f(x) = y} is the graph of

f.

Definition 2. Suppose that f: X — Y is a function.

(a) For any subset A C X, we define the set f(A) CY by

fA) ={yeY:3zec Awith f(z) =y}.

(b) We call f(X) CY the range of f.

(c) For any subset B C Y, we define the set f~!(B) C X by

fYB)={zeX: f(z) € B}.

Problem 2. Suppose that f: X — Y is a function.
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(a)

For any A C X and B C X, compare f(AU B) and f(A)U f(B).
Answer.

Claim 1. For any A, B C X, we have f(AU B) = f(A) U f(B).

Proof. Let A,B C X. To prove that f(AUB) C f(A)U f(B) let y €
f(AU B). This means there exists an element x € AU B with f(z) = y.
Ifx e A, wehave y = f(z) € f(A) =y € f(A)U f(B). If x € B, we have
y=[f(x)e f(B)=ye f(A)U[(B).

To prove that f(A)U f(B) C f(AUB), let y € f(A)U f(B). If y € f(A),
there exists an element x € A with f(z) = y. Since z € A, we have
x € AUB, soy = f(z) € f(AUB). If y € f(B), there exists an
element € B with f(z) = y. Since z € B, we have z € AU B, so
y=f(z) e f(AUB). O

For any A C X and B C X, compare f(AN B) and f(A)N f(B).
Answer.

Claim 2. For any A,B C X, we have f(ANB) C f(A)N f(B).

Proof. Let A,B C X and let y € f(A N B). This means there exists
an element x € AN B with f(z) = y. Since z € A, y = f(x) € f(A).
Since z € B, y = f(z) € f(B). Together, y € f(A) and y € f(B) imply
y € f(A) N f(B). O

It may be the case that
F(A) N f(B) £ f(ANB).

Consider an example: Let X = {1,2,3}, Y = {a,b,c} and f: {1,2,3} —
{a,b,c} be defined by

For A = {1} and B = {2}, we have
f(ANB) = f(0) =0 and f(A)Nf(B) = fF{1}Nf({2}) = {a}n{a} = {a}.
Claim 3. If f is injective, then for any A, B C X, f(ANB = f(A)Nf(B).

Proof. Let A, B C X. We already know that f(ANB) C f(4)N f(B). To
finish, we need to show that if f is injective then f(A)N f(B) C f(ANB).
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So, assume f is injective and let y € f(A) N f(B). Since y € f(A) there
exists an element x € A with f(x) = y. Since y € f(B) there exists an
element z € B with f(z) = y. Since f is injective and f(z) = f(2), we
have = z. Therefore x € A and z = z € B, so © € AN B. Therefore,
y=f(z) € f(AN B). 0

For any C CY and D C Y, compare f~1(CUD) and f~1(C)uU f~1(D).
For any C CY and D C Y, compare f~1(C N D) and f~1(C)n f~1(D).
Answer.

Claim 4. For any C,D C Y, we have f~1(C N D)= f~1(C)n f~Y(D).
Proof. Let C,D C Y. To prove that f~1(C N D) C f~1(C)n f~1(D),
let 2 € f~1(C N D). This means f(x) € CND. So f(z) € C and
f(z) € D. Since f(z) € C, we have z € f~1(C). Since f(x) € D, we
have x € f~Y(D). Together z € f~1(C) and x € f~(D) imply that
ve fC)N fD).

To prove that f~1(C)N f~Y(D) C f~1(CND),let z € f~1(C)N f~Y(D).
This means z € f~1(C) and z € f~1(D). Since z € f~1(C), we have

f(z) € C. Since z € f~1(D) we have f(x) € D. Therefore, f(z) € CND.
Therefore z € f~1(C'N D). O

For any A C X, compare f(X \ A) and Y\ f(A).
Answer. First, we give an example to show that it may be the case that
FIXNA)ZY N\ f(A) and Y\ f(A) € f(X\ A).

Let X ={1,2,3}, Y = {a,b,c} and f: {1,2,3} — {a,b,c} be defined by
f)=a, f2)=a, [f(3)=0

Let A = {1}. We have

FXNA) = f({2,3}) = {a,b} and Y\ f(A) =Y\ {a} = {b,c}.
Claim 5. If f : X — Y is injective, then for any A C X we have
fXNA) CY N\ f(A).

Proof. Assume f : X — Y is injective and A C X. Let y € f(X \ 4).
This means there exists x € X \ A with f(z) = y. Since f is injective, z
is the only element of X with f(z) = y. Since x ¢ A, there is no element
z € A with f(z) =y. Thus, y ¢ f(A). This says y € Y \ f(A), as needed
to prove that f(X \ A) CY \ f(A). O
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Claim 6. If f : X — Y 1is surjective then for any A C X we have
Y\ f(4) C f(X\A).

Proof. Assume f : X — Y is surjective and A C X. Let y € Y\ f(4).
Because f is onto, there exists x € X with f(x) = y. Note that v ¢ A
for otherwise f(z) =y € f(A). Therefore z € X \ A. Since f(z) =y, we
have y € f(X \ A), as needed to prove that Y\ f(4) C f(X \ 4). O

For any C CY, compare f~1(Y \ C) and X \ f~1(O).
For any A C X, compare f~!(f(A)) and A.
Answer.

Claim 7. For any A C X, we have A C f=1(f(A)).

Proof. Let z € A. Then f(x) € f(A). Since f(z) € f(A), the element
z € f7H(f(A)). O

Note that f~!(f(A)) and A need not be equal. For example, let X =
{1,2,3,4} and Y = {a,b,c,d} and define
f: X—>Y
l1—a
2=
3—=b

4d—c
Let A= {1,2}. Then

f_l(f(A>) = f_l({a7b}) = {17273} # A.

Claim 8. If f is injective, then for any A C X, we have A = f~1(f(A)).

Proof. We only need to show that if f is injective, then f~1(f(A)) C A. So
assume f is injective and let € f~1(f(A)). This means that f(z) € f(A).
Therefore, there exists an element z € A with f(z) = f(x). Since f is
injective, z = x and we see that x € A. O

(h) For any C' C Y, compare f(f~(C)) and C.

Here “compare” means decide whether C, O, =, or none apply.

Definition 3. Suppose that f: X — Y is a function.
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(a)

(b)

()

We say that f is injective or one to one if and only if

Ve e XVze X (f(z) = f(z) =z =2).

We say that f is surjective or onto if and only if

YyeYdre X (f(z) =y).

We say that f is bijective if f is both injective and surjective.

We may call an injective function an injection, a surjective function a surjection,

and a bijective function a bijection.

Problem 3. Which apply: injective, surjective, or bijective?

(a)

Define f : N — N by f(n) = 2n for every n € N.

Answer. The function f is injective but not surjective. To see that f is
injective, suppose f(n) = f(k). This means 2n = 2k, which implies n = k.
To see that f is not surjective, note that 1 ¢ f(N) since 1 # 2n for any
n € N.

Define g : N\ {0,1} — N by g(n) =n — 1 for every n € N.

Answer. Here, g is bijective. To see that g is injective, assume g(n) =
g(k). This means n — 1 = k — 1 which implies n = k. To see that g is
surjective, let y € N, thenn =y +1 € N\ {0,1} and g(n) = g(y + 1) =
y+1—-1=4y.

Let X = {functions ¢ : N — N}. Define a function G : X — N by
G(¢) = ¢(3) for all ¢ € X.

Answer. This function G is surjective but not injective. To see that it is
surjective, let y € N. Then for the constant function ¢ : N — N defined
by ¢(n) =y, we have G(¢) = ¢(3) = y.

To see that G is not surjective consider the constant function the constant
function ¢ : N — N defined by ¢(n) = 6 and the function f : N - N
defined by f(n) = 2n. Here,

¢ # f and G(9) = $(3) = 6 and G(f) = f(3) = 6.

Let X = {functions ¢ : N — {0,1}} and let Y = {subsets of N}. Define a
function H : X — Y by H(f) = f~1({1}).
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Answer. The function H is bijective. To see that H is injective, assume
that H(f) = H(g) for functions f,g : N — {0,1}. The assumption that
H(f) = H(g) means that f~1({1}) = g7 *({1}). So, for all n € f~1({1}),
we have f(n) = 1= g(n). If n ¢ f~1({1}), we must have f(n) = 0 and
g(n) = 0. Therefore, for all n € N, f(n) = g(n). That is, f = g.

To see that H is surjective, let Y C N. Define a function f : N — N by
f(n)=1ifneY and f(n)=0if n ¢ Y. Then H(f) = f~1({1}) =Y.



