EXAM

_

Practice Exam 1

Math 157

October 3, 2013

ANSWERS

Problem 1. Use mathematical induction to prove that for all $n \in \mathbb{N}$,

$$0^3 + 1^3 + 2^3 + \dots + (n-1)^3 < \frac{n^4}{4}$$
 and $\frac{n^4}{4} < 1^3 + 2^3 + \dots + (n-1)^3 + n^3$.

Use this result to compute the area of the region pictured below (the vertical distance between the point b units from 0 is b^3).

Answer:

Answer: We proved in class that $0^3 + 1^3 + 2^3 + \dots + (n-1)^3 < \frac{n^4}{4}$ for all $n \in \mathbb{N}$ and that $\frac{n^4}{4} < 1^3 + 2^3 + \dots + (n-1)^3 + n^3$ for all $n \in \mathbb{N}$. Here, I'll write the details for the second one. To prove that $\frac{n^4}{4} < 1^3 + 2^3 + \dots + (n-1)^3 + n^3$ for all $n \in \mathbb{N}$ by induction, consider the base case: since $\frac{1^4}{4} < 1$, the inequality is holds when n = 1. Now, assume the inequality holds for n = k. That is, suppose that for some natural number k, we have

$$\frac{k^4}{4} < 1^3 + 2^3 + \dots + k^3$$

After adding $(k+1)^3$ to both sides we have

$$\frac{k^4}{4} + (k+1)^3 < 1^3 + 2^3 + \dots + k^3 + (k+1)^3$$

and doing a little arithmetic yields

$$\frac{k^4}{4} + \frac{4k^3}{4} + \frac{12k^2}{4} + \frac{12k}{4} + \frac{4}{4} < 1^3 + 2^3 + \dots + k^3 + (k+1)^3.$$
(1)

Also,

$$\frac{k^4}{4} + \frac{4k^3}{4} + \frac{6k^2}{4} + \frac{4k}{4} + \frac{1}{4} < \frac{k^4}{4} + \frac{4k^3}{4} + \frac{12k^2}{4} + \frac{12k}{4} + \frac{4}{4}.$$
 (2)

Combining (1) and (2) gives

$$\frac{k^4}{4} + \frac{4k^3}{4} + \frac{6k^2}{4} + \frac{4k}{4} + \frac{1}{4} < 1^3 + 2^3 + \dots + k^3 + (k+1)^3.$$

That is,

$$\frac{(k+1)^4}{4} < 1^3 + 2^3 + \dots + k^3 + (k+1)^3.$$

This proves that if the inequality holds for k then it holds for k + 1. So, by the principle of mathematical induction, the inequality holds for all $n \in \mathbb{N}$.

Answer:

To compute the area of the region in question, we bound it by two rectangular regions obtained by inscribing n rectangles of equal width and circumscribing n rectangles of equal width, as pictured below:

Let s_n be the area of the inscribed rectangular region, let A be the area of the curved region, and S_n be the area of the circumscribed rectangular region. We have

$$s_n < A < S_n.$$

$$s_n = \frac{2}{n}((0)^3) + \frac{2}{n}\left(\left(\frac{2}{n}\right)^3\right) + \frac{2}{n}\left(\left(\frac{4}{n}\right)^3\right) + \dots + \frac{2}{n}\left(\left(\frac{(n-1)2}{n}\right)^3\right)$$
$$= \frac{2}{n}\left(\left(\frac{2}{n}\right)^3 + \left(\frac{4}{n}\right)^3 + \dots + \left(\frac{(n-1)2}{n}\right)^3\right)$$
$$= \frac{2^4}{n^4}\left(1^3 + 2^3 + \dots + (n-1)^3\right)$$

Similarly,

$$S_n = \frac{2^4}{n^4} \left(1^3 + 2^3 + \dots + (n)^3 \right)$$

By the inequalities proved above, we have

$$s_n < \left(\frac{2^4}{n^4}\right) \left(\frac{n^4}{4}\right) = 4 \text{ and } 4 = \left(\frac{2^4}{n^4}\right) \left(\frac{n^4}{4}\right) < S_n.$$

So, for every $n \in \mathbb{N}$, we have

$$s_n < 4 < S_n$$
 and $s_n < A < S_n$.

Since $S_n - s_n = \frac{16}{n}$, we conclude that there is only one real number that lies between s_n and S_n for every $n \in \mathbb{N}$. Therefore, A = 4.

Problem 2. Prove that $|x + y| \le |x| + |y|$ for all $x, y \in \mathbb{R}$.

Answer:

First, we prove a lemma. For all $z \in \mathbb{R}$ and all $a \ge 0$,

$$|z| \le a \Leftrightarrow -a \le z \le a.$$

To prove that $|z| \le a \Rightarrow -a \le z \le a$, suppose that $|z| \le a$. If $z \ge 0$, then we automatically get $-a \le z$ and since $|z| \le a$ means $z \le a$ we get $-a \le z \le a$ also. If $z \le 0$, then we automatically have $z \le a$ and since $|z| \le a$ means $-z \le a$ we get $-a \le z$, and so $-a \le z \le a$. To prove that if $-a \le z \le a \Rightarrow |z| \le a$, suppose that $-a \le z \le a$. If $z \ge 0$, then $|z| = z \le a$. If $z \le 0$, then |z| = -z and $-a \le z \Rightarrow -z \le a \Leftrightarrow |z| \le a$.

Now, since $|x| \leq |x|$ the Lemma (by substituting z = x and a = |x|) implies

$$-|x| \le x \le |x|.$$

Similarly, we have

$$-|y| < y < |y|.$$

Adding gives

$$-(|x| + |y|) \le x + y \le |x| + |y|$$

which the Lemma (by substituting z = x + y and a = |x| + |y|) implies that $|x + y| \le |x| + |y|$.

Problem 3. Let $a, b \in \mathbb{R}$ with $a \neq 0$. Use the field axioms of \mathbb{R} to carefully prove that if ax + b = 0 then $x = -b\left(\frac{1}{a}\right)$. Justify all your steps.

Answer:

$$ax + b = 0 \Rightarrow (ax + b) - b = 0 - b$$

$$\Rightarrow ax + (b + -b) = -b$$

$$\Rightarrow ax = -b$$

$$\Rightarrow \left(\frac{1}{a}\right)(ax) = \left(\frac{1}{a}\right)(-b)$$

$$\Rightarrow \left(\left(\frac{1}{a}\right)a\right)(x) = \left(\frac{1}{a}\right)(-b)$$

$$\Rightarrow 1x = \left(\frac{1}{a}\right)(-b)$$

$$\Rightarrow x = \left(\frac{1}{a}\right)(-b)$$

$$\Rightarrow x = \left(\frac{1}{a}\right)(-b)$$

$$associativity of + and def of 0 since b + -b = 0$$

$$existence of recipricals$$

$$associativity of × associativity of × associativity$$

Problem 4. True or False: If S is a nonempty subset of rational numbers that is bounded above, then the least upper bound of S is rational.

Answer:

False. The set

$$S = \{r \in \mathbb{Q} : r < \sqrt{3}\}$$

is bounded above and the least upper bound is $\sqrt{3}$ which is irrational.

We proved that $\sqrt{3}$ isn't rational in class. It's clear that $\sqrt{3}$ is an upper bound for S. To see that $\sqrt{3}$ is the least upper bound for S, suppose $B < \sqrt{3}$. Since there is a rational number between any two distinct real numbers, we know there exists a rational number r with $B < r < \sqrt{3}$, and that says that B is not an upper bound for S.

Problem 5. Prove or disprove: For all propositions p, q, r, s, we have

$$((p \Rightarrow q) \Rightarrow r) \Rightarrow s \equiv ((p \land q) \land r) \Rightarrow s.$$

Answer:

If p, r are true and q, s are false, then $p \Rightarrow q$ is false, $(p \Rightarrow q) \Rightarrow r$ is true, hence $((p \Rightarrow q) \Rightarrow r) \Rightarrow s$ is false. On the other hand $((p \land q) \land r)$ is false, so $((p \land q) \land r) \Rightarrow s$ is true.

Problem 6. Let X and Y be sets. Recall, for sets X and Y, we define the set $X \setminus Y$ to be

$$X \setminus Y = \{x \in X \text{ satisfying } x \notin Y\}.$$

Prove or disprove:

(a) For all sets A, B, C

$$(A \setminus B) \cup C = (A \cup C) \setminus (B \cup C).$$

Answer:

False. For example, let $A = \{1, 2, 3\}$, $B = \{1, 4\}$ and $C = \{3, 4, 5\}$. Then

$$(A \setminus B) \cup C = \{2,3\} \cup C = \{2,3,4,5\} \text{ and } (A \cup C) \setminus (B \cup C) = \{1,2,3,4,5\} \setminus \{1,3,4,5\} = \{2\} \setminus \{1,3,5\} = \{2\} \setminus \{1,3,5\} = \{2\} \setminus \{1,3,5\} = \{2\} \setminus \{1,3,5\} =$$

(b) For all sets A, B, C

Answer:

False. For example, let $A = \{1, 2, 3\}$, $B = \{1, 4\}$ and $C = \{3, 4, 5\}$. Then

$$A \setminus (B \cup C) = A \setminus \{1, 3, 4, 5\} = \{2\}$$
 and $(A \setminus B) \cup (A \setminus C) = \{2, 3\} \cup \{1, 2\} = \{1, 2, 3\}$

(c) For all sets A, B, C

$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C).$$

Answer:

This is true. To prove that $A \setminus (B \cap C) \subseteq (A \setminus B) \cup (A \setminus C)$, let $a \in A \setminus (B \cap C)$. This means $a \in A$ and $a \ notin(B \cap C)$. Since $a \notin B \cap C$, we know $a \notin B$ or $a \notin C$. If $a \notin B$, then $a \in A \setminus B$ so $a \in A(\setminus B) \cup (A \setminus C)$. If $a \notin C$, then $a \in A \setminus C$ so $a \in A(\setminus B) \cup (A \setminus C)$.

To prove that $(A \setminus B) \cup (A \setminus C) \subseteq A \setminus (B \cap C) \subseteq (A \setminus B)$, let $a \in (A \setminus B) \cup (A \setminus C)$. This means $a \in A \setminus B$ or $a \in A \setminus C$. In the first case, $a \in A \setminus B$ means $a \in A$ and $a \notin B$. Since $a \notin B$, $a \notin B \cap C$, so we have $a \in A$ and $a \notin B \cap C$, so $a \in A \setminus (B \cap C)$. In the second case, $a \in A \setminus C$ means $a \in A$ and $a \notin C$. Since $a \notin C$, $a \notin B \cap C$, so we have $a \in A$ and $a \notin C$. Since $a \notin C$, $a \notin B \cap C$, so we have $a \in A$ and $a \notin C$. **Problem** 7. Let X and Y be subsets of real numbers. Define the set X - Y to be

$$X - Y = \{x - y \text{ where } x \in X \text{ and } y \in Y\}.$$

(a) Suppose that $X, Y \subset \mathbb{R}$ and that L is the least upper bound of X and M is the least upper bound of Y. Prove or disprove: the least upper bound of X - Y is L - M.

Answer:

Let $X = \{1, 2, 3\}$ and $Y = \{-1, 1\}$. Then $X - Y = \{2, 3, 4, 0, 1, 2\} = \{0, 1, 2, 3, 4\}$. Not that $X \subset X - Y$ and $0 \notin Y$.

(b) Prove or disprove: For any sets $X, Y \subset \mathbb{R}$, if $X \subset X - Y$ then $0 \in Y$.

Answer:

The same example above disproves this statement for $\sup X = 3$, $\sup Y = 1$ but $\sup X - Y = 3 \neq 3 - 1$.

Answer:

Suppose x, y > 0 and x < y. Since x, y > 0, the sum y + x > 0. Also, x < y implies y - x > 0. Therefore the product (y + x)(y - x) > 0. This says that $y^2 - x^2 > 0$, which means that $x^2 < y^2$.

Problem 9. More induction: use mathematical induction to prove that

(a)
$$\sum_{k=1}^{n} k = \frac{(n)(n+1)}{2}$$
 for all $n \in \mathbb{N}$.

Answer:

When n = 1, the statement is that $1 = \frac{(1)(2)}{2}$ which is true.

Assume that for some $m \in \mathbb{N}$ we have $\sum_{k=1}^m k = \frac{(m)(m+1)}{2}$. Now consider

$$\sum_{k=1}^{m+1} k = \left(\sum_{k=1}^{m} k\right) + m + 1$$
$$= \frac{(m)(m+1)}{2} + m + 1$$
$$= \frac{(m)(m+1) + 2(m+1)}{2}$$
$$= \frac{(m+1)(m+2)}{2}$$

This shows that if the statement is true for $m \in \mathbb{N}$, it's true for $m + 1 \in \mathbb{N}$, so by PMI, the statement is true for all $n \in \mathbb{N}$.

(b) $n! > 2^n$ for all natural numbers $n \ge 4$.

Answer:

Here we do a modified version of mathematical induction where the base step verifies that it's true for n = 4. For n = 4, the statement is 24 > 16, which is true.

Now assume that for some $k \in \mathbb{N}$, $k! > 2^k$. Now consider

$$(k+1)! = (k+1)k! > (k+1)2^k > (2)(2^k) = 2^{k+1}$$

The first inequality in the line above follows from the inductive hypothesis and the second follows from the fact that k + 1 > 2.

That completes the proof.

Problem 10. Negate the following propositions. Decide whether the proposition or its negation are true.

(a) $\forall x \in \mathbb{R} \exists n \in \mathbb{N} (x < n)$

Answer:

 $\exists x \in \mathbb{R} \forall n \in \mathbb{N} (n \leq x)$. The original statement is true—it's the Archimedean property of \mathbb{R} . The negation is false, it says that \mathbb{N} is bounded above by some real number.

(b) $\exists x \in \mathbb{R} \forall n \in \mathbb{N} (x > n)$

Answer:

 $\forall x \in \mathbb{R} \exists n \in N (x \leq n)$. Here the original statement is false—it says that \mathbb{N} is bounded above by some real number.

(c) $\forall x > 0 \exists n \in \mathbb{N} \left(\frac{1}{n} < x \right)$

Answer:

 $\exists x > 0 \forall n \in N(\frac{1}{n} \ge x)$ The original statement is true and the negation is false. The negation says that there's a real number less than $\frac{1}{2}$ less than $\frac{1}{3}$, and less than $\frac{1}{n}$ for every $n \in \mathbb{N}$.

(d) $\forall x \in \mathbb{R} \forall y \in \mathbb{R} (x < y \Rightarrow \exists z \in \mathbb{R} (x < z < y))$

Answer:

 $\exists x \in \mathbb{R} \exists y \in \mathbb{R} (x < y \text{ and } \forall z \in \mathbb{R} (z \le x \text{ or } y \le z)$. The original statement is true. There exists a real number between any two distinct real numbers.