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Problem 1. Use mathematical induction to prove that for all n ∈ N,

03 + 13 + 23 + · · ·+ (n− 1)3 <
n4

4
and

n4

4
< 13 + 23 + · · ·+ (n− 1)3 + n3.

Use this result to compute the area of the region pictured below (the vertical distance between
the point b units from 0 is b3).
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Answer:
We proved in class that 03 + 13 + 23 + · · · + (n − 1)3 < n4

4 for all n ∈ N and that n4

4 <
13 + 23 + · · ·+ (n− 1)3 + n3 for all n ∈ N. Here, I’ll write the details for the second one.
To prove that n4

4 < 13 +23 + · · ·+ (n− 1)3 + n3 for all n ∈ N by induction, consider the base
case: since 14

4 < 1, the inequality is holds when n = 1.
Now, assume the inequality holds for n = k. That is, suppose that for some natural number k,
we have

k4

4
< 13 + 23 + · · ·+ k3.

After adding (k + 1)3 to both sides we have

k4

4
+ (k + 1)3 < 13 + 23 + · · ·+ k3 + (k + 1)3

and doing a little arithmetic yields

k4

4
+

4k3

4
+

12k2

4
+

12k

4
+

4

4
< 13 + 23 + · · ·+ k3 + (k + 1)3. (1)

Also,
k4

4
+

4k3

4
+

6k2

4
+

4k

4
+

1

4
<

k4

4
+

4k3

4
+

12k2

4
+

12k

4
+

4

4
. (2)

Combining (1) and (2) gives

k4

4
+

4k3

4
+

6k2

4
+

4k

4
+

1

4
< 13 + 23 + · · ·+ k3 + (k + 1)3.

That is,
(k + 1)4

4
< 13 + 23 + · · ·+ k3 + (k + 1)3.

This proves that if the inequality holds for k then it holds for k + 1.
So, by the principle of mathematical induction, the inequality holds for all n ∈ N.
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Answer:
To compute the area of the region in question, we bound it by two rectangular regions obtained
by inscribing n rectangles of equal width and circumscribing n rectangles of equal width, as
pictured below:

Let sn be the area of the inscribed rectangular region, let A be the area of the curved region, and
Sn be the area of the circumscribed rectangular region. We have

sn < A < Sn.

sn =
2

n
((0)3) +

2

n

((
2

n

)3
)

+
2

n

((
4

n

)3
)

+ · · ·+ 2

n

((
(n− 1)2

n

)3
)

=
2

n

((
2

n

)3

+

(
4

n

)3

+ · · ·+
(
(n− 1)2

n

)3
)

=
24

n4

(
13 + 23 + · · · (n− 1)3

)
Similarly,

Sn =
24

n4

(
13 + 23 + · · · (n)3

)
By the inequalities proved above, we have

sn <

(
24

n4

)(
n4

4

)
= 4 and 4 =

(
24

n4

)(
n4

4

)
< Sn.

So, for every n ∈ N, we have

sn < 4 < Sn and sn < A < Sn.

Since Sn − sn = 16
n , we conclude that there is only one real number that lies between sn and

Sn for every n ∈ N. Therefore, A = 4.
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Problem 2. Prove that |x+ y| ≤ |x|+ |y| for all x, y ∈ R.

Answer:
First, we prove a lemma. For all z ∈ R and all a ≥ 0,

|z| ≤ a⇔ −a ≤ z ≤ a.

To prove that |z| ≤ a ⇒ −a ≤ z ≤ a, suppose that |z| ≤ a. If z ≥ 0, then we automatically
get −a ≤ z and since |z| ≤ a means z ≤ a we get −a ≤ z ≤ a also. If z ≤ 0, then we
automatically have z ≤ a and since |z| ≤ a means−z ≤ a we get−a ≤ z, and so−a ≤ z ≤ a.
To prove that if −a ≤ z ≤ a⇒ |z| ≤ a, suppose that −a ≤ z ≤ a. If z ≥ 0, then |z| = z ≤ a.
If z ≤ 0, then |z| = −z and −a ≤ z ⇒ −z ≤ a⇔ |z| ≤ a.
Now, since |x| ≤ |x| the Lemma (by substituting z = x and a = |x|) implies

−|x| ≤ x ≤ |x|.

Similarly, we have
−|y| < y < |y|.

Adding gives
−(|x|+ |y|) ≤ x+ y ≤ |x|+ |y|

which the Lemma (by substituting z = x+ y and a = |x|+ |y|) implies that |x+ y| ≤ |x|+ |y|.
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Problem 3. Let a, b ∈ R with a 6= 0. Use the field axioms of R to carefully prove that if
ax+ b = 0 then x = −b

(
1
a

)
. Justify all your steps.

Answer:

ax+ b = 0⇒ (ax+ b)− b = 0− b existence of negatives

⇒ ax+ (b+−b) = −b associativity of + and def of 0

⇒ ax = −b since b+−b = 0

⇒
(
1

a

)
(ax) =

(
1

a

)
(−b) existence of recipricals

⇒
((

1

a

)
a

)
(x) =

(
1

a

)
(−b) associativity of ×

⇒ 1x =

(
1

a

)
(−b) since

(
1

a

)
a = 1

⇒ x =

(
1

a

)
(−b) by definition of 1
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Problem 4. True or False: If S is a nonempty subset of rational numbers that is bounded
above, then the least upper bound of S is rational.

Answer:
False. The set

S = {r ∈ Q : r <
√
3}

is bounded above and the least upper bound is
√
3 which is irrational.

We proved that
√
3 isn’t rational in class. It’s clear that

√
3 is an upper bound for S. To see that√

3 is the least upper bound for S, suppose B <
√
3. Since there is a rational number between

any two distinct real numbers, we know there exists a rational number r with B < r <
√
3, and

that says that B is not an upper bound for S.
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Problem 5. Prove or disprove: For all propositions p, q, r, s, we have

((p⇒ q)⇒ r)⇒ s ≡ ((p ∧ q) ∧ r)⇒ s.

Answer:
If p, r are true and q, s are false, then p ⇒ q is false, (p ⇒ q) ⇒ r is true, hence ((p ⇒ q) ⇒
r)⇒ s is false. On the other hand ((p ∧ q) ∧ r) is false, so ((p ∧ q) ∧ r)⇒ s is true.



Practice Exam 1 : October 3, 2013 7

Problem 6. Let X and Y be sets. Recall, for sets X and Y , we define the set X \ Y to be

X \ Y = {x ∈ X satisfying x /∈ Y }.

Prove or disprove:

(a) For all sets A,B,C
(A \B) ∪ C = (A ∪ C) \ (B ∪ C).

Answer:

False. For example, let A = {1, 2, 3}, B = {1, 4} and C = {3, 4, 5}. Then

(A\B)∪C = {2, 3}∪C = {2, 3, 4, 5} and (A∪C)\(B∪C) = {1, 2, 3, 4, 5}\{1, 3, 4, 5} = {2}.

(b) For all sets A,B,C

Answer:

False. For example, let A = {1, 2, 3}, B = {1, 4} and C = {3, 4, 5}. Then

A\ (B∪C) = A\{1, 3, 4, 5} = {2} and (A\B)∪ (A\C) = {2, 3}∪{1, 2} = {1, 2, 3}

(c) For all sets A,B,C
A \ (B ∩ C) = (A \B) ∪ (A \ C).

Answer:

This is true. To prove that A \ (B ∩ C) ⊆ (A \ B) ∪ (A \ C), let a ∈ A \ (B ∩ C).
This means a ∈ A and a notin(B ∩ C). Since a /∈ B ∩ C, we know a /∈ B or a /∈ C.
If a /∈ B, then a ∈ A \ B so a ∈ A(\B) ∪ (A \ C). If a /∈ C, then a ∈ A \ C so
a ∈ A(\B) ∪ (A \ C).

To prove that (A \B) ∪ (A \C) ⊆ A \ (B ∩C) ⊆ (A \B), let a ∈ (A \B) ∪ (A \C).
This means a ∈ A\B or a ∈ A\C. In the first case, a ∈ A\B means a ∈ A and a /∈ B.
Since a /∈ B, a /∈ B ∩ C, so we have a ∈ A and a /∈ B ∩ C, so a ∈ A \ (B ∩ C). In the
second case, a ∈ A \ C means a ∈ A and a /∈ C. Since a /∈ C, a /∈ B ∩ C, so we have
a ∈ A and a /∈ B ∩ C, so a ∈ A \ (B ∩ C).
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Problem 7. Let X and Y be subsets of real numbers. Define the set X − Y to be

X − Y = {x− y where x ∈ X and y ∈ Y }.

(a) Suppose that X,Y ⊂ R and that L is the least upper bound of X and M is the least upper
bound of Y . Prove or disprove: the least upper bound of X − Y is L−M .

Answer:

Let X = {1, 2, 3} and Y = {−1, 1}. Then X − Y = {2, 3, 4, 0, 1, 2} = {0, 1, 2, 3, 4}.
Not that X ⊂ X − Y and 0 /∈ Y .

(b) Prove or disprove: For any sets X,Y ⊂ R, if X ⊂ X − Y then 0 ∈ Y .

Answer:

The same example above disproves this statement for supX = 3, supY = 1 but supX−
Y = 3 6= 3− 1.
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Problem 8. Use the order axioms of R to prove that if x, y are positive real numbers with
x < y then x2 < y2.

Answer:
Suppose x, y > 0 and x < y. Since x, y > 0, the sum y + x > 0. Also, x < y implies
y−x > 0. Therefore the product (y+x)(y−x) > 0. This says that y2−x2 > 0, which means
that x2 < y2.
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Problem 9. More induction: use mathematical induction to prove that

(a)
n∑

k=1

k =
(n)(n+ 1)

2
for all n ∈ N.

Answer:

When n = 1, the statement is that 1 = (1)(2)
2 which is true.

Assume that for some m ∈ N we have
m∑
k=1

k =
(m)(m+ 1)

2
. Now consider

m+1∑
k=1

k =

(
m∑
k=1

k

)
+m+ 1

=
(m)(m+ 1)

2
+m+ 1

=
(m)(m+ 1) + 2(m+ 1)

2

=
(m+ 1)(m+ 2)

2

This shows that if the statement is true for m ∈ N, it’s true for m + 1 ∈ N, so by PMI,
the statement is true for all n ∈ N.

(b) n! > 2n for all natural numbers n ≥ 4.

Answer:

Here we do a modified version of mathematical induction where the base step verifies that
it’s true for n = 4. For n = 4, the statement is 24 > 16, which is true.

Now assume that for some k ∈ N, k! > 2k. Now consider

(k + 1)! = (k + 1)k! > (k + 1)2k > (2)(2k) = 2k+1.

The first inequality in the line above follows from the inductive hypothesis and the second
follows from the fact that k + 1 > 2.

That completes the proof.
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Problem 10. Negate the following propositions. Decide whether the proposition or its negation
are true.

(a) ∀x ∈ R∃n ∈ N(x < n)

Answer:

∃x ∈ R∀n ∈ N(n ≤ x). The original statement is true—it’s the Archimedean property
of R. The negation is false, it says that N is bounded above by some real number.

(b) ∃x ∈ R∀n ∈ N(x > n)

Answer:

∀x ∈ R∃n ∈ N(x ≤ n). Here the original statement is false—it says that N is bounded
above by some real number.

(c) ∀x > 0∃n ∈ N
(
1
n < x

)
Answer:

∃x > 0∀n ∈ N
(
1
n ≥ x

)
The original statement is true and the negation is false. The

negation says that there’s a real number less than 1
2 less than 1

3 , and less than 1
n for every

n ∈ N.

(d) ∀x ∈ R∀y ∈ R (x < y ⇒ ∃z ∈ R(x < z < y))

Answer:

∃x ∈ R∃y ∈ R (x < y and ∀z ∈ R(z ≤ x or y ≤ z) . The original statement is true.
There exists a real number between any two distinct real numbers.


