EXAM

Practice Exam 1
Math 157
October 3, 2013

ANSWERS

Problem 1. Use mathematical induction to prove that for all $n \in \mathbb{N}$,

$$
0^{3}+1^{3}+2^{3}+\cdots+(n-1)^{3}<\frac{n^{4}}{4} \text { and } \frac{n^{4}}{4}<1^{3}+2^{3}+\cdots+(n-1)^{3}+n^{3}
$$

Use this result to compute the area of the region pictured below (the vertical distance between the point b units from 0 is b^{3}).

Answer:

We proved in class that $0^{3}+1^{3}+2^{3}+\cdots+(n-1)^{3}<\frac{n^{4}}{4}$ for all $n \in \mathbb{N}$ and that $\frac{n^{4}}{4}<$ $1^{3}+2^{3}+\cdots+(n-1)^{3}+n^{3}$ for all $n \in \mathbb{N}$. Here, I'll write the details for the second one.
To prove that $\frac{n^{4}}{4}<1^{3}+2^{3}+\cdots+(n-1)^{3}+n^{3}$ for all $n \in \mathbb{N}$ by induction, consider the base case: since $\frac{1^{4}}{4}<1$, the inequality is holds when $n=1$.
Now, assume the inequality holds for $n=k$. That is, suppose that for some natural number k, we have

$$
\frac{k^{4}}{4}<1^{3}+2^{3}+\cdots+k^{3}
$$

After adding $(k+1)^{3}$ to both sides we have

$$
\frac{k^{4}}{4}+(k+1)^{3}<1^{3}+2^{3}+\cdots+k^{3}+(k+1)^{3}
$$

and doing a little arithmetic yields

$$
\begin{equation*}
\frac{k^{4}}{4}+\frac{4 k^{3}}{4}+\frac{12 k^{2}}{4}+\frac{12 k}{4}+\frac{4}{4}<1^{3}+2^{3}+\cdots+k^{3}+(k+1)^{3} \tag{1}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\frac{k^{4}}{4}+\frac{4 k^{3}}{4}+\frac{6 k^{2}}{4}+\frac{4 k}{4}+\frac{1}{4}<\frac{k^{4}}{4}+\frac{4 k^{3}}{4}+\frac{12 k^{2}}{4}+\frac{12 k}{4}+\frac{4}{4} \tag{2}
\end{equation*}
$$

Combining (1) and (2) gives

$$
\frac{k^{4}}{4}+\frac{4 k^{3}}{4}+\frac{6 k^{2}}{4}+\frac{4 k}{4}+\frac{1}{4}<1^{3}+2^{3}+\cdots+k^{3}+(k+1)^{3}
$$

That is,

$$
\frac{(k+1)^{4}}{4}<1^{3}+2^{3}+\cdots+k^{3}+(k+1)^{3}
$$

This proves that if the inequality holds for k then it holds for $k+1$.
So, by the principle of mathematical induction, the inequality holds for all $n \in \mathbb{N}$.

Answer:

To compute the area of the region in question, we bound it by two rectangular regions obtained by inscribing n rectangles of equal width and circumscribing n rectangles of equal width, as pictured below:

Let s_{n} be the area of the inscribed rectangular region, let A be the area of the curved region, and S_{n} be the area of the circumscribed rectangular region. We have

$$
\begin{aligned}
& s_{n}<A<S_{n} \\
& s_{n}=\frac{2}{n}\left((0)^{3}\right)+\frac{2}{n}\left(\left(\frac{2}{n}\right)^{3}\right)+\frac{2}{n}\left(\left(\frac{4}{n}\right)^{3}\right)+\cdots+\frac{2}{n}\left(\left(\frac{(n-1) 2}{n}\right)^{3}\right) \\
&=\frac{2}{n}\left(\left(\frac{2}{n}\right)^{3}+\left(\frac{4}{n}\right)^{3}+\cdots+\left(\frac{(n-1) 2}{n}\right)^{3}\right) \\
&=\frac{2^{4}}{n^{4}}\left(1^{3}+2^{3}+\cdots(n-1)^{3}\right)
\end{aligned}
$$

Similarly,

$$
S_{n}=\frac{2^{4}}{n^{4}}\left(1^{3}+2^{3}+\cdots(n)^{3}\right)
$$

By the inequalities proved above, we have

$$
s_{n}<\left(\frac{2^{4}}{n^{4}}\right)\left(\frac{n^{4}}{4}\right)=4 \text { and } 4=\left(\frac{2^{4}}{n^{4}}\right)\left(\frac{n^{4}}{4}\right)<S_{n}
$$

So, for every $n \in \mathbb{N}$, we have

$$
s_{n}<4<S_{n} \text { and } s_{n}<A<S_{n}
$$

Since $S_{n}-s_{n}=\frac{16}{n}$, we conclude that there is only one real number that lies between s_{n} and S_{n} for every $n \in \mathbb{N}$. Therefore, $A=4$.

Problem 2. Prove that $|x+y| \leq|x|+|y|$ for all $x, y \in \mathbb{R}$.

Answer:

First, we prove a lemma. For all $z \in \mathbb{R}$ and all $a \geq 0$,

$$
|z| \leq a \Leftrightarrow-a \leq z \leq a
$$

To prove that $|z| \leq a \Rightarrow-a \leq z \leq a$, suppose that $|z| \leq a$. If $z \geq 0$, then we automatically get $-a \leq z$ and since $|z| \leq a$ means $z \leq a$ we get $-a \leq z \leq a$ also. If $z \leq 0$, then we automatically have $z \leq a$ and since $|z| \leq a$ means $-z \leq a$ we get $-a \leq z$, and so $-a \leq z \leq a$. To prove that if $-a \leq z \leq a \Rightarrow|z| \leq a$, suppose that $-a \leq z \leq a$. If $z \geq 0$, then $|z|=z \leq a$. If $z \leq 0$, then $|z|=-z$ and $-a \leq z \Rightarrow-z \leq a \Leftrightarrow|z| \leq a$.
Now, since $|x| \leq|x|$ the Lemma (by substituting $z=x$ and $a=|x|$) implies

$$
-|x| \leq x \leq|x|
$$

Similarly, we have

$$
-|y|<y<|y|
$$

Adding gives

$$
-(|x|+|y|) \leq x+y \leq|x|+|y|
$$

which the Lemma (by substituting $z=x+y$ and $a=|x|+|y|$) implies that $|x+y| \leq|x|+|y|$.

Problem 3. Let $a, b \in \mathbb{R}$ with $a \neq 0$. Use the field axioms of \mathbb{R} to carefully prove that if $a x+b=0$ then $x=-b\left(\frac{1}{a}\right)$. Justify all your steps.

Answer:

$$
\begin{aligned}
a x+b=0 & \Rightarrow(a x+b)-b=0-b \\
& \Rightarrow a x+(b+-b)=-b \\
& \Rightarrow a x=-b \\
& \Rightarrow\left(\frac{1}{a}\right)(a x)=\left(\frac{1}{a}\right)(-b) \\
& \Rightarrow\left(\left(\frac{1}{a}\right) a\right)(x)=\left(\frac{1}{a}\right)(-b) \\
& \Rightarrow 1 x=\left(\frac{1}{a}\right)(-b) \\
& \Rightarrow x=\left(\frac{1}{a}\right)(-b)
\end{aligned}
$$

existence of negatives associativity of + and def of 0 since $b+-b=0$ existence of recipricals associativity of \times since $\left(\frac{1}{a}\right) a=1$
by definition of 1

Problem 4. True or False: If S is a nonempty subset of rational numbers that is bounded above, then the least upper bound of S is rational.

Answer:
False. The set

$$
S=\{r \in \mathbb{Q}: r<\sqrt{3}\}
$$

is bounded above and the least upper bound is $\sqrt{3}$ which is irrational.
We proved that $\sqrt{3}$ isn't rational in class. It's clear that $\sqrt{3}$ is an upper bound for S. To see that $\sqrt{3}$ is the least upper bound for S, suppose $B<\sqrt{3}$. Since there is a rational number between any two distinct real numbers, we know there exists a rational number r with $B<r<\sqrt{3}$, and that says that B is not an upper bound for S.

Problem 5. Prove or disprove: For all propositions p, q, r, s, we have

$$
((p \Rightarrow q) \Rightarrow r) \Rightarrow s \equiv((p \wedge q) \wedge r) \Rightarrow s
$$

Answer:

If p, r are true and q, s are false, then $p \Rightarrow q$ is false, $(p \Rightarrow q) \Rightarrow r$ is true, hence $((p \Rightarrow q) \Rightarrow$ $r) \Rightarrow s$ is false. On the other hand $((p \wedge q) \wedge r)$ is false, so $((p \wedge q) \wedge r) \Rightarrow s$ is true.

Problem 6. Let X and Y be sets. Recall, for sets X and Y, we define the set $X \backslash Y$ to be

$$
X \backslash Y=\{x \in X \text { satisfying } x \notin Y\}
$$

Prove or disprove:
(a) For all sets A, B, C

$$
(A \backslash B) \cup C=(A \cup C) \backslash(B \cup C)
$$

Answer:

False. For example, let $A=\{1,2,3\}, B=\{1,4\}$ and $C=\{3,4,5\}$. Then

$$
(A \backslash B) \cup C=\{2,3\} \cup C=\{2,3,4,5\} \text { and }(A \cup C) \backslash(B \cup C)=\{1,2,3,4,5\} \backslash\{1,3,4,5\}=\{2\}
$$

(b) For all sets A, B, C

Answer:

False. For example, let $A=\{1,2,3\}, B=\{1,4\}$ and $C=\{3,4,5\}$. Then

$$
A \backslash(B \cup C)=A \backslash\{1,3,4,5\}=\{2\} \text { and }(A \backslash B) \cup(A \backslash C)=\{2,3\} \cup\{1,2\}=\{1,2,3\}
$$

(c) For all sets A, B, C

$$
A \backslash(B \cap C)=(A \backslash B) \cup(A \backslash C)
$$

Answer:

This is true. To prove that $A \backslash(B \cap C) \subseteq(A \backslash B) \cup(A \backslash C)$, let $a \in A \backslash(B \cap C)$. This means $a \in A$ and $a \operatorname{notin}(B \cap C)$. Since $a \notin B \cap C$, we know $a \notin B$ or $a \notin C$. If $a \notin B$, then $a \in A \backslash B$ so $a \in A(\backslash B) \cup(A \backslash C)$. If $a \notin C$, then $a \in A \backslash C$ so $a \in A(\backslash B) \cup(A \backslash C)$.
To prove that $(A \backslash B) \cup(A \backslash C) \subseteq A \backslash(B \cap C) \subseteq(A \backslash B)$, let $a \in(A \backslash B) \cup(A \backslash C)$. This means $a \in A \backslash B$ or $a \in A \backslash C$. In the first case, $a \in A \backslash B$ means $a \in A$ and $a \notin B$. Since $a \notin B, a \notin B \cap C$, so we have $a \in A$ and $a \notin B \cap C$, so $a \in A \backslash(B \cap C)$. In the second case, $a \in A \backslash C$ means $a \in A$ and $a \notin C$. Since $a \notin C, a \notin B \cap C$, so we have $a \in A$ and $a \notin B \cap C$, so $a \in A \backslash(B \cap C)$.

Problem 7. Let X and Y be subsets of real numbers. Define the set $X-Y$ to be

$$
X-Y=\{x-y \text { where } x \in X \text { and } y \in Y\} .
$$

(a) Suppose that $X, Y \subset \mathbb{R}$ and that L is the least upper bound of X and M is the least upper bound of Y. Prove or disprove: the least upper bound of $X-Y$ is $L-M$.

Answer:

Let $X=\{1,2,3\}$ and $Y=\{-1,1\}$. Then $X-Y=\{2,3,4,0,1,2\}=\{0,1,2,3,4\}$. Not that $X \subset X-Y$ and $0 \notin Y$.
(b) Prove or disprove: For any sets $X, Y \subset \mathbb{R}$, if $X \subset X-Y$ then $0 \in Y$.

Answer:
The same example above disproves this statement for $\sup X=3$, $\sup Y=1$ but $\sup X-$ $Y=3 \neq 3-1$.

Problem 8. Use the order axioms of \mathbb{R} to prove that if x, y are positive real numbers with $x<y$ then $x^{2}<y^{2}$.

Answer:
Suppose $x, y>0$ and $x<y$. Since $x, y>0$, the sum $y+x>0$. Also, $x<y$ implies $y-x>0$. Therefore the product $(y+x)(y-x)>0$. This says that $y^{2}-x^{2}>0$, which means that $x^{2}<y^{2}$.

Problem 9. More induction: use mathematical induction to prove that
(a) $\sum_{k=1}^{n} k=\frac{(n)(n+1)}{2}$ for all $n \in \mathbb{N}$.

Answer:

When $n=1$, the statement is that $1=\frac{(1)(2)}{2}$ which is true.
Assume that for some $m \in \mathbb{N}$ we have $\sum_{k=1}^{m} k=\frac{(m)(m+1)}{2}$. Now consider

$$
\begin{aligned}
\sum_{k=1}^{m+1} k & =\left(\sum_{k=1}^{m} k\right)+m+1 \\
& =\frac{(m)(m+1)}{2}+m+1 \\
& =\frac{(m)(m+1)+2(m+1)}{2} \\
& =\frac{(m+1)(m+2)}{2}
\end{aligned}
$$

This shows that if the statement is true for $m \in \mathbb{N}$, it's true for $m+1 \in \mathbb{N}$, so by PMI, the statement is true for all $n \in \mathbb{N}$.
(b) $n!>2^{n}$ for all natural numbers $n \geq 4$.

Answer:

Here we do a modified version of mathematical induction where the base step verifies that it's true for $n=4$. For $n=4$, the statement is $24>16$, which is true.
Now assume that for some $k \in \mathbb{N}, k!>2^{k}$. Now consider

$$
(k+1)!=(k+1) k!>(k+1) 2^{k}>(2)\left(2^{k}\right)=2^{k+1} .
$$

The first inequality in the line above follows from the inductive hypothesis and the second follows from the fact that $k+1>2$.
That completes the proof.

Problem 10. Negate the following propositions. Decide whether the proposition or its negation are true.
(a) $\forall x \in \mathbb{R} \exists n \in \mathbb{N}(x<n)$

Answer:

$\exists x \in \mathbb{R} \forall n \in \mathbb{N}(n \leq x)$. The original statement is true-it's the Archimedean property of \mathbb{R}. The negation is false, it says that \mathbb{N} is bounded above by some real number.
(b) $\exists x \in \mathbb{R} \forall n \in \mathbb{N}(x>n)$

Answer:

$\forall x \in \mathbb{R} \exists n \in N(x \leq n)$. Here the original statement is false-it says that \mathbb{N} is bounded above by some real number.
(c) $\forall x>0 \exists n \in \mathbb{N}\left(\frac{1}{n}<x\right)$

Answer:

$\exists x>0 \forall n \in N\left(\frac{1}{n} \geq x\right)$ The original statement is true and the negation is false. The negation says that there's a real number less than $\frac{1}{2}$ less than $\frac{1}{3}$, and less than $\frac{1}{n}$ for every $n \in \mathbb{N}$.
(d) $\forall x \in \mathbb{R} \forall y \in \mathbb{R}(x<y \Rightarrow \exists z \in \mathbb{R}(x<z<y))$

Answer:

$\exists x \in \mathbb{R} \exists y \in \mathbb{R}(x<y$ and $\forall z \in \mathbb{R}(z \leq x$ or $y \leq z)$. The original statement is true. There exists a real number between any two distinct real numbers.

