Problem 1. Everyone ought to try to approximate π .

- (a) Define the number π .
- (b) The picture on the left makes it easy to see that $2 < \pi < 4$:

It takes more work to see that $3 < \pi$. Here's one way: Use the following points

$$(0,1), \quad \left(\frac{7}{25}, \frac{24}{25}\right), \quad \left(\frac{3}{5}, \frac{4}{5}\right), \quad \left(\frac{4}{5}, \frac{3}{5}\right), \quad \left(\frac{24}{25}, \frac{7}{25}\right), \quad (1,0)$$

as the vertices of a polygon (as pictured on the right) to approximate the area of the quarter unit circle. Use this to (under) approximate π .

(c) Here's another way to approximate π . Let $\mathcal{P} = \{x_0, x_1, \dots, x_n\}$ be a partition of [0, 1] into n subintervals of equal length. Define step a function $s : [0, 1] \to \mathbb{R}$ by

$$s(x) = \sqrt{1 - x_{k+1}^2}$$
 if $x_k \le x < x_{k+1}$

Note that $\int_0^1 s < \frac{\pi}{4}$. How large must *n* be in order for $3.14 < 4 \int_0^1 s$?

Problem 2. Expressions like $\int_0^1 \frac{1}{\sqrt{x}} dx$ and $\int_1^\infty \frac{1}{x^2} dx$ are undefined because (so far!) we have defined $\int_a^b f$ only for finite intervals [a, b] and for bounded functions f. Nonetheless, by using limits we can make sense of these "improper integrals." We define

$$\int_0^1 \frac{1}{\sqrt{x}} dx := \lim_{B \to 0^+} \int_B^1 \frac{1}{\sqrt{x}} dx \quad \text{and} \quad \int_1^\infty \frac{1}{x^2} dx := \lim_{B \to \infty} \int_1^B \frac{1}{x^2} dx.$$
(a) Compute $\int_0^1 \frac{1}{\sqrt{x}} dx$
(b) Compute $\int_1^\infty \frac{1}{x^2} dx.$

Problem 3. Let $f: [0,\infty) \to \mathbb{R}$ by $f(t) = \cos(\sqrt{t})$ and define $A: [0,\infty) \to \mathbb{R}$ by

$$A(x) = \int_0^x f(t)dt.$$

- (a) Sketch the graph of f.
- (b) Approximate A(x) for $x = 0, \pi^2, \frac{9\pi^2}{4}$, and $4\pi^2$.
- (c) On what intervals is A increasing? decreasing?
- (d) On what intervals is A concave up? concave down?
- (e) Sketch a good picture of the graph of A.

Problem 4. The k-th Fibonacci number F_k is defined inductively for all k by $F_1 = 1$, $F_2 = 1$, and $F_k = F_{k-1} + F_{k-2}$ for all k > 2. The first few Fibonacci numbers are

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \ldots$

Prove that for every $n \in \mathbb{N}$, F(4n) is divisible by 3.

Problem 5. Let $\pi_1 : \mathbb{R}^2 \to \mathbb{R}$ and $\pi_2 : \mathbb{R}^2 \to \mathbb{R}$ be the canonical projections

For each of the following sets $A \subset \mathbb{R}^2$ describe $\pi_1(A)$ and $\pi_2(A)$.

- (a) $A = \text{the graph of } g \text{ where } g : \mathbb{R} \to \mathbb{R} \text{ is given by } g(x) = 0 \text{ if } x \in \mathbb{R} \setminus \mathbb{Q} \text{ and } \frac{1}{r} \text{ if } x = \frac{p}{q} \in \mathbb{Q} \text{ is in lowest terms.}$
- (b) A is the ordinate set of g where $g : \mathbb{R} \to \mathbb{R}$ is given by g(x) = 0 if $x \in \mathbb{R} \setminus \mathbb{Q}$ and $\frac{1}{r}$ if $x = \frac{p}{q} \in \mathbb{Q}$ is in lowest terms.
- (c) A is the unit circle.
- (d) $A = \{(x, y) : 1 < x \le 2 \text{ and } 5 \le x < 7\}.$

Problem 6. Give an example, or prove that no such example exists.

- (a) Two functions f, g satisfying $\lim_{x \to 0} f(x) = 0$, $\lim_{x \to 0} g(x) = 0$ and $\lim_{x \to 0} \frac{f(x)}{g(x)} = 3$
- (b) A continuous bijection $f:(0,1) \to \mathbb{R}$
- (c) A bijection $f: [0, 2\pi) \to C$ where $C \subset \mathbb{R}^2$ is the unit circle
- (d) A function $f : [1,3] \to \mathbb{R}$ satisfying f(1) = -1, f(3) = 1, and $f(x) \neq 0$ for any number x
- (e) A continuous function f whose domain is all real numbers satisfying f(n) = n! for all $n \in \mathbb{N}$
- (f) A function with domain [0, 2] and range $[0, 2] \cup [3, 4]$
- (g) A function with domain [0, 2] and range (0, 2)
- (h) A continuous function with domain [0, 2] and range $[0, 2) \cup (2, 3]$
- (i) A function whose domain is \mathbb{R} and whose range is (0, 1)

Problem 7. Compute.

(a)
$$\lim_{h \to 0} \left(\frac{1}{h}\right) \left(\frac{3}{2+h} - \frac{3}{2}\right)$$

(b) $\int_{1}^{5} \left[x^{2} - 3x + 2\right] dx$
(c) $\lim_{x \to \infty} \sqrt{x^{2} + x} - x$
(d) $\int_{0}^{\pi} \cos\left(\frac{x}{2}\right) dx$
(e) $\int_{0}^{\pi} |\sin(x) + \cos(x)| dx$
(f) $\int_{0}^{2} \frac{x + \sqrt{4 - x^{2}}}{2} dx$
(g) $\int_{0}^{1} x^{\frac{1}{5}} dx$
(h) $\lim_{h \to 0} \frac{\cos\left(\frac{\pi}{3} + h\right) - \frac{1}{2}}{h}$
(i) $\lim_{x \to 0} \frac{\sin(x)}{x}$
(j) $\lim_{x \to 0} \frac{\sin(x)}{x}$

()
$$\lim_{x \to \infty} \frac{1}{x}$$

Problem 8. True or false.

(a) If $f: X \to Y$ is injective, then for all $A \subset X$,

$$f(X \setminus A) = Y \setminus f(A).$$

- (b) For any $a, b, c, d \in \mathbb{R}$, $(ac + bd)^2 \le (a^2 + c^2)(b^2 + d^2)$.
- (c) If A and B satisfy

$$\frac{17 - 6n}{3} \le A \le B \le \frac{17 + 6n}{3}$$

for every $n \in \mathbb{N}$, then A = B.

- (d) If $f : [a, b] \to \mathbb{R}$ is monotonic then f is integrable.
- (e) If $f : [a, b] \to \mathbb{R}$ is bounded then f is integrable.
- (f) If $f : [a, b] \to \mathbb{R}$ is bounded then f is continuous.
- (g) If $f : [a, b] \to \mathbb{R}$ is integrable then f is monotonic.
- (h) If $f : [a, b] \to \mathbb{R}$ is integrable then f is continuous.
- (i) If $f : [a, b] \to \mathbb{R}$ is monotonic then f is invertible.
- (j) If $f : [a, b] \to \mathbb{R}$ is invertible then f is monotonic.
- (k) If $f : [a, b] \to \mathbb{R}$ is integrable then f is bounded.
- (1) If $f : [a, b] \to \mathbb{R}$ is integrable then f is invertible.
- (m) If $f : [a, b] \to \mathbb{R}$ is continuous then f is bounded.
- (n) For every real number x there exists a real number y with $y^2 = x$.

EXAM

Practice Final

Math 157

December 9, 2013