Problem 1. Everyone ought to try to approximate $\pi$.
(a) Define the number $\pi$.
(b) The picture on the left makes it easy to see that $2<\pi<4$ :


It takes more work to see that $3<\pi$. Here's one way: Use the following points

$$
\begin{equation*}
(0,1), \quad\left(\frac{7}{25}, \frac{24}{25}\right), \quad\left(\frac{3}{5}, \frac{4}{5}\right), \quad\left(\frac{4}{5}, \frac{3}{5}\right), \quad\left(\frac{24}{25}, \frac{7}{25}\right), \tag{1,0}
\end{equation*}
$$

as the vertices of a polygon (as pictured on the right) to approximate the area of the quarter unit circle. Use this to (under) approximate $\pi$.
(c) Here's another way to approximate $\pi$. Let $\mathcal{P}=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of $[0,1]$ into $n$ subintervals of equal length. Define step a function $s:[0,1] \rightarrow \mathbb{R}$ by

$$
s(x)=\sqrt{1-x_{k+1}^{2}} \text { if } x_{k} \leq x<x_{k+1}
$$

Note that $\int_{0}^{1} s<\frac{\pi}{4}$. How large must $n$ be in order for $3.14<4 \int_{0}^{1} s$ ?

Problem 2. Expressions like $\int_{0}^{1} \frac{1}{\sqrt{x}} d x$ and $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ are undefined because (so far!) we have defined $\int_{a}^{b} f$ only for finite intervals $[a, b]$ and for bounded functions $f$. Nonetheless, by using limits we can make sense of these "improper integrals." We define

$$
\int_{0}^{1} \frac{1}{\sqrt{x}} d x:=\lim _{B \rightarrow 0^{+}} \int_{B}^{1} \frac{1}{\sqrt{x}} d x \quad \text { and } \quad \int_{1}^{\infty} \frac{1}{x^{2}} d x:=\lim _{B \rightarrow \infty} \int_{1}^{B} \frac{1}{x^{2}} d x
$$

(a) Compute $\int_{0}^{1} \frac{1}{\sqrt{x}} d x$
(b) Compute $\int_{1}^{\infty} \frac{1}{x^{2}} d x$.

Problem 3. Let $f:[0, \infty) \rightarrow \mathbb{R}$ by $f(t)=\cos (\sqrt{t})$ and define $A:[0, \infty) \rightarrow \mathbb{R}$ by

$$
A(x)=\int_{0}^{x} f(t) d t
$$

(a) Sketch the graph of $f$.
(b) Approximate $A(x)$ for $x=0, \pi^{2}, \frac{9 \pi^{2}}{4}$, and $4 \pi^{2}$.
(c) On what intervals is $A$ increasing? decreasing?
(d) On what intervals is $A$ concave up? concave down?
(e) Sketch a good picture of the graph of $A$.

Problem 4. The $k$-th Fibonacci number $F_{k}$ is defined inductively for all $k$ by $F_{1}=1, F_{2}=$ 1 , and $F_{k}=F_{k-1}+F_{k-2}$ for all $k>2$. The first few Fibonacci numbers are

$$
1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

Prove that for every $n \in \mathbb{N}, F(4 n)$ is divisible by 3 .

Problem 5. Let $\pi_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\pi_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the canonical projections


For each of the following sets $A \subset \mathbb{R}^{2}$ describe $\pi_{1}(A)$ and $\pi_{2}(A)$.
(a) $A=$ the graph of $g$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is given by $g(x)=0$ if $x \in \mathbb{R} \backslash \mathbb{Q}$ and $\frac{1}{r}$ if $x=\frac{p}{q} \in \mathbb{Q}$ is in lowest terms.
(b) $A$ is the ordinate set of $g$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is given by $g(x)=0$ if $x \in \mathbb{R} \backslash \mathbb{Q}$ and $\frac{1}{r}$ if $x=\frac{p}{q} \in \mathbb{Q}$ is in lowest terms.
(c) $A$ is the unit circle.
(d) $A=\{(x, y): 1<x \leq 2$ and $5 \leq x<7\}$.

## Problem 6. Give an example, or prove that no such example exists.

(a) Two functions $f, g$ satisfying $\lim _{x \rightarrow 0} f(x)=0, \lim _{x \rightarrow 0} g(x)=0$ and $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=3$
(b) A continuous bijection $f:(0,1) \rightarrow \mathbb{R}$
(c) A bijection $f:[0,2 \pi) \rightarrow C$ where $C \subset \mathbb{R}^{2}$ is the unit circle
(d) A function $f:[1,3] \rightarrow \mathbb{R}$ satisfying $f(1)=-1, f(3)=1$, and $f(x) \neq 0$ for any number $x$
(e) A continuous function $f$ whose domain is all real numbers satisfying $f(n)=n$ ! for all $n \in \mathbb{N}$
(f) A function with domain $[0,2]$ and range $[0,2] \cup[3,4]$
(g) A function with domain $[0,2]$ and range ( 0,2 )
(h) A continuous function with domain $[0,2]$ and range $[0,2) \cup(2,3]$
(i) A function whose domain is $\mathbb{R}$ and whose range is $(0,1)$

Problem 7. Compute.
(a) $\lim _{h \rightarrow 0}\left(\frac{1}{h}\right)\left(\frac{3}{2+h}-\frac{3}{2}\right)$
(b) $\int_{1}^{5}\left[x^{2}-3 x+2\right] d x$
(c) $\lim _{x \rightarrow \infty} \sqrt{x^{2}+x}-x$
(d) $\int_{0}^{\pi} \cos \left(\frac{x}{2}\right) d x$
(e) $\int_{0}^{\pi}|\sin (x)+\cos (x)| d x$
(f) $\int_{0}^{2} \frac{x+\sqrt{4-x^{2}}}{2} d x$
(g) $\int_{0}^{1} x^{\frac{1}{5}} d x$
(h) $\lim _{h \rightarrow 0} \frac{\cos \left(\frac{\pi}{3}+h\right)-\frac{1}{2}}{h}$
(i) $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$
(j) $\lim _{x \rightarrow \infty} \frac{\sin (x)}{x}$

Problem 8. True or false.
(a) If $f: X \rightarrow Y$ is injective, then for all $A \subset X$,

$$
f(X \backslash A)=Y \backslash f(A)
$$

(b) For any $a, b, c, d \in \mathbb{R},(a c+b d)^{2} \leq\left(a^{2}+c^{2}\right)\left(b^{2}+d^{2}\right)$.
(c) If $A$ and $B$ satisfy

$$
\frac{17-6 n}{3} \leq A \leq B \leq \frac{17+6 n}{3}
$$

for every $n \in \mathbb{N}$, then $A=B$.
(d) If $f:[a, b] \rightarrow \mathbb{R}$ is monotonic then $f$ is integrable.
(e) If $f:[a, b] \rightarrow \mathbb{R}$ is bounded then $f$ is integrable.
(f) If $f:[a, b] \rightarrow \mathbb{R}$ is bounded then $f$ is continuous.
(g) If $f:[a, b] \rightarrow \mathbb{R}$ is integrable then $f$ is monotonic.
(h) If $f:[a, b] \rightarrow \mathbb{R}$ is integrable then $f$ is continuous.
(i) If $f:[a, b] \rightarrow \mathbb{R}$ is monotonic then $f$ is invertible.
(j) If $f:[a, b] \rightarrow \mathbb{R}$ is invertible then $f$ is monotonic.
(k) If $f:[a, b] \rightarrow \mathbb{R}$ is integrable then $f$ is bounded.
(l) If $f:[a, b] \rightarrow \mathbb{R}$ is integrable then $f$ is invertible.
(m) If $f:[a, b] \rightarrow \mathbb{R}$ is continuous then $f$ is bounded.
(n) For every real number $x$ there exists a real number $y$ with $y^{2}=x$.

## EXAM

## Practice Final

Math 157
December 9, 2013

