EXAM

Practice Final

Math 157
December 17, 2013

ANSWERS

Problem 1. Everyone ought to try to approximate π.
(a) Define the number π.

Answer:

π is defined to be the area of the unit circle.
(b) The picture on the left makes it easy to see that $2<\pi<4$:

It takes more work to see that $3<\pi$. Here's one way: Use the following points

$$
\begin{equation*}
(0,1), \quad\left(\frac{7}{25}, \frac{24}{25}\right), \quad\left(\frac{3}{5}, \frac{4}{5}\right), \quad\left(\frac{4}{5}, \frac{3}{5}\right), \quad\left(\frac{24}{25}, \frac{7}{25}\right), \tag{1,0}
\end{equation*}
$$

as the vertices of a polygon (as pictured on the right) to approximate the area of the quarter unit circle. Use this to (under) approximate π.

Answer:

The region under the polygon from $x=0$ to $x=\frac{7}{25}$ consists of a rectange of width $\frac{7}{25}$ and height $\frac{24}{25}$ and a triangle of height $\frac{1}{25}$ and width $\frac{7}{25}$ giving an area of

$$
\left(\frac{7}{25}\right)\left(\frac{24}{25}\right)+\frac{1}{2}\left(\frac{7}{25}\right)\left(\frac{1}{25}\right)=\frac{343}{1250} .
$$

Similarly, the area of the polygon between $x=\frac{7}{25}$ and $x=\frac{3}{5}$ is given by

$$
\left(\frac{7}{25}-\frac{3}{5}\right)\left(\frac{4}{5}\right)+\frac{1}{2}\left(\frac{7}{25}-\frac{3}{5}\right)\left(\frac{24}{25}-\frac{4}{25}\right)=\frac{176}{625} .
$$

Continuing in this way we obtain the area of the polygon is

$$
\frac{343}{1250}+\frac{176}{625}+\frac{7}{50}+\frac{44}{625}+\frac{7}{1250}=\frac{193}{250}
$$

So, $\pi \approx 4\left(\frac{193}{250}\right)=\frac{386}{125}>\frac{375}{125}=3$.

Problem 1.

(c) Here's another way to approximate π. Let $\mathcal{P}=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of $[0,1]$ into n subintervals of equal length. Define step a function $s:[0,1] \rightarrow \mathbb{R}$ by

$$
s(x)=\sqrt{1-x_{k+1}^{2}} \text { if } x_{k} \leq x<x_{k+1}
$$

Note that $\int_{0}^{1} s<\frac{\pi}{4}$. How large must n be in order for $3.14<4 \int_{0}^{1} s$?

Answer:

By defining a step function $t:[0,1] \rightarrow \mathbb{R}$ by $t(x)=\sqrt{1-x_{k}^{2}}$ if $x_{k} \leq x<x_{k+1}$, we have

$$
\int_{0}^{1} s \leq \int_{0}^{1} \sqrt{1-x^{2}} d x \leq \int_{0}^{1} t
$$

Since

$$
\int_{0}^{1} t-\int_{0}^{1} s=\frac{1}{n}(1-0)=\frac{1}{n}
$$

we have

$$
\int_{0}^{1} \sqrt{1-x^{2}} d x-\int_{0}^{1} s<\frac{1}{n} \Rightarrow \frac{\pi}{4}-\int_{0}^{1} s<\frac{1}{n} \Rightarrow \pi-\frac{4}{n}<4 \int_{0}^{1} s
$$

Since $3.14<\pi-\frac{1}{1000}$, if we choose n large enough for $\frac{4}{n}<\frac{1}{1000}$, we will have $3.14<4 \int_{0}^{1} s$. So if $n>4000$ we have $3.14<4 \int_{0}^{1} s$.
For fun, I computed this and got $\int_{0}^{1} s=3.1410880051481031671 \ldots$ when $n=4000$.
But note that smaller n work-the smallest integer n for which $3.14<\int_{0}^{1}$ s is $n=1277$

Problem 2. Expressions like $\int_{0}^{1} \frac{1}{\sqrt{x}} d x$ and $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ are undefined because (so far!) we have defined $\int_{a}^{b} f$ only for finite intervals $[a, b]$ and for bounded functions f. Nonetheless, by using limits we can make sense of these "improper integrals." We define

$$
\int_{0}^{1} \frac{1}{\sqrt{x}} d x:=\lim _{B \rightarrow 0^{+}} \int_{B}^{1} \frac{1}{\sqrt{x}} d x \quad \text { and } \quad \int_{1}^{\infty} \frac{1}{x^{2}} d x:=\lim _{B \rightarrow \infty} \int_{1}^{B} \frac{1}{x^{2}} d x
$$

(a) Compute $\int_{0}^{1} \frac{1}{\sqrt{x}} d x$

Answer:

$$
\int_{0}^{1} \frac{1}{\sqrt{x}} d x:=\lim _{B \rightarrow 0^{+}} \int_{B}^{1} \frac{1}{\sqrt{x}} d x=\lim _{B \rightarrow 0^{+}} 2 \sqrt{1}-2 \sqrt{B}=2 .
$$

(b) Compute $\int_{1}^{\infty} \frac{1}{x^{2}} d x$.

Answer:

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x:=\lim _{B \rightarrow \infty} \int_{1}^{B} \frac{1}{x^{2}} d x=\lim _{B \rightarrow \infty}\left(-\frac{1}{B}\right)-\left(-\frac{1}{1}\right)=1 .
$$

Problem 3. Let $f:[0, \infty) \rightarrow \mathbb{R}$ by $f(t)=\cos (\sqrt{t})$ and define $A:[0, \infty) \rightarrow \mathbb{R}$ by

$$
A(x)=\int_{0}^{x} f(t) d t
$$

(a) Sketch the graph of f.

Answer:

(b) Approximate $A(x)$ for $x=0, \pi^{2}, \frac{9 \pi^{2}}{4}$, and $4 \pi^{2}$.

Answer:

Looking at the graph of f and using $\pi^{2} \approx 10, \frac{9}{4} \pi^{2} \approx 22$ and $4 \pi^{2} \approx 40$, I estimate

$$
A\left(\pi^{2}\right) \approx-4, \quad A\left(\frac{9}{4} \pi^{2}\right) \approx-10, \quad A\left(4 \pi^{2}\right) \approx 0
$$

(c) On what intervals is A increasing? decreasing?

Answer:

A is increasing when f is positive. That is $\left(0, \frac{\pi^{2}}{4}\right) \cup\left(\frac{9}{4} \pi^{2}, 4 \pi^{2}\right)$.
A is decreasing when f is negative. That is $\left(\frac{\pi^{2}}{4}, \frac{9}{4} \pi^{2}\right)$.
(d) On what intervals is A concave up? concave down?

Answer:

A is concave up when f is increasing. That is $\left(\pi^{2}, 4 \pi^{2}\right)$.
A is concave down when f is decreasing. That is $\left(0, \pi^{2}\right)$.

Problem 3.

(e) Sketch a good picture of the graph of A.

Answer:

Problem 4. The k-th Fibonacci number F_{k} is defined inductively for all k by $F_{1}=1, F_{2}=$ 1 , and $F_{k}=F_{k-1}+F_{k-2}$ for all $k>2$. The first few Fibonacci numbers are

$$
1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

Prove that for every $n \in \mathbb{N}, F(4 n)$ is divisible by 3 .
Answer:
Base step. Note that $F_{4}=3$ is divisible by 3.
Inductive step. Suppose that $F_{4 k}$ is divisible by 3 for some natural number k. Now look at $F_{4(k+1)}$:

$$
\begin{aligned}
F_{4(k+1)} & =F_{4 k+4} \\
& =F_{4 k+3}+F_{4 k+2} \\
& =F_{4 k+2}+F_{4 k+1}+F_{4 k+1}+F_{4 k} \\
& =F_{4 k+1}+F_{4 k}+F_{4 k+1}+F_{4 k+1}+F_{4 k} \\
& =3 F_{4 k+1}+F_{4 k}
\end{aligned}
$$

Since $F_{4 k}$ is divisible by 3 and $3 F_{4 k+1}$ is divisible by 3 , the sum is divisible by 3 . That is, $F_{4(k+1)}$ is divisible by 3.
Therefore, by the principle of mathematical induction, $F_{4 n}$ is divisible by 3 for all $n \in \mathbb{N}$.

Problem 5. Let $\pi_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\pi_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the canonical projections

For each of the following sets $A \subset \mathbb{R}^{2}$ describe $\pi_{1}(A)$ and $\pi_{2}(A)$.
(a) $A=$ the graph of g where $g: \mathbb{R} \rightarrow \mathbb{R}$ is given by $g(x)=0$ if $x \in \mathbb{R} \backslash \mathbb{Q}$ and $\frac{1}{r}$ if $x=\frac{p}{q} \in \mathbb{Q}$ is in lowest terms.

Answer:
$\pi_{1}(A)=\mathbb{R}$ and $\pi_{2}(A)=\{0\} \cup\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$.
(b) A is the ordinate set of g where $g: \mathbb{R} \rightarrow \mathbb{R}$ is given by $g(x)=0$ if $x \in \mathbb{R} \backslash \mathbb{Q}$ and $\frac{1}{r}$ if $x=\frac{p}{q} \in \mathbb{Q}$ is in lowest terms.

Answer:
$\pi_{1}(A)=\mathbb{R}$ and $\pi_{2}(A)=[0,1]$
(c) A is the unit circle.

Answer:
$\pi_{1}(A)=[-1,1]$ and $\pi_{2}(A)=[-1,1]$
(d) $A=\{(x, y): 1<x \leq 2$ and $5 \leq y<7\}$.

Answer:

$\pi_{1}(A)=(1,2]$ and $\pi_{2}(A)=[5,7)$

Problem 6. Give an example, or prove that no such example exists.
(a) Two functions f, g satisfying $\lim _{x \rightarrow 0} f(x)=0, \lim _{x \rightarrow 0} g(x)=0$ and $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=3$

Answer:
$f(x)=3 x, g(x)=x$.
(b) A continuous bijection $f:(0,1) \rightarrow \mathbb{R}$

Answer:

Here's a sketch of the graph of one such continuous bijection
(c) A bijection $f:[0,2 \pi) \rightarrow C$ where $C \subset \mathbb{R}^{2}$ is the unit circle

Answer:
$f(t)=(\cos (t), \sin (t))$
(d) A function $f:[1,3] \rightarrow \mathbb{R}$ satisfying $f(1)=-1, f(3)=1$, and $f(x) \neq 0$ for any number x

Answer:
$f(x)=-1$ for $x=1$ and $f(x)=1$ for all $1<x \leq 3$.

Problem 6.

(e) A continuous function f whose domain is all real numbers satisfying $f(n)=n$! for all $n \in \mathbb{N}$

Answer:

Here's a sketch of one such function

But there are many. Here's another:

(f) A function with domain $[0,2]$ and range $[0,2] \cup[3,4]$

Answer:

Here's a sketch of the graph of one possible function:

(g) A function with domain $[0,2]$ and range (0,2)

Answer:
Let $f(0)=1, f(2)=1$, and $f(x)=x$ for all $0<x<2$.
(h) A continuous function with domain $[0,2]$ and range $[0,2) \cup(2,3]$

Answer:
Not possible. By the intermediate value theorem, if 0 and 3 are in the range, then so must 2 be.

Problem 6.

(i) A function whose domain is \mathbb{R} and whose range is (0,1)

Answer:

The inverse of the function from part b works. So does the function whose graph is pic-
tured here:

Problem 7. Compute.

Answer:

I'm giving the answer so you can check your work and hint in case you were stuck.
(a) $\lim _{h \rightarrow 0}\left(\frac{1}{h}\right)\left(\frac{3}{2+h}-\frac{3}{2}\right)=-\frac{3}{4}$ algebra, cancel the h.
(b) $\int_{1}^{5}\left|x^{2}-3 x+2\right| d x=\frac{41}{3}$ factor and find where $x^{2}-3 x+2=0$
(c) $\lim _{x \rightarrow \infty} \sqrt{x^{2}+x}-x=\frac{1}{2}$ multiply and divide by $\sqrt{x^{2}+x}+x$.
(d) $\int_{0}^{\pi} \cos \left(\frac{x}{2}\right) d x=2$ use thm 1.19 on page 81 about expansion or contraction.
(e) $\int_{0}^{\pi}|\sin (x)+\cos (x)| d x=2 \sqrt{2}$ you know the graphs of sine and cosine.
(f) $\int_{0}^{2} \frac{x+\sqrt{4-x^{2}}}{2} d x=1+\frac{\pi}{2}$ you know the area of a circle of radius $2 \ldots$
(g) $\int_{0}^{1} x^{\frac{1}{5}} d x=\frac{5}{6}$.
(h) $\lim _{h \rightarrow 0} \frac{\cos \left(\frac{\pi}{3}+h\right)-\frac{1}{2}}{h}=-\frac{\sqrt{3}}{2}$ use $\cos (x+y)=\cdots$
(i) $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$ use the fundamental inequality and the squeezing principle
(j) $\lim _{x \rightarrow \infty} \frac{\sin (x)}{x}=0$ use the fact that $-1 \leq \sin (x) \leq 1$ and squeeze

Problem 8. True or false.
Answer:
If true, you should have a good idea as to why. If false, you should be able to give a good simple example. Here are the answers.
(a) If $f: X \rightarrow Y$ is injective, then for all $A \subset X$,

$$
f(X \backslash A)=Y \backslash f(A)
$$

Answer:

False.
(b) For any $a, b, c, d \in \mathbb{R},(a c+b d)^{2} \leq\left(a^{2}+c^{2}\right)\left(b^{2}+d^{2}\right)$.

Answer:
True.
(c) If A and B satisfy

$$
\frac{17-6 n}{3} \leq A \leq B \leq \frac{17+6 n}{3}
$$

for every $n \in \mathbb{N}$, then $A=B$.
Answer:
True.
(d) If $f:[a, b] \rightarrow \mathbb{R}$ is monotonic then f is integrable.

Answer:
True.
(e) If $f:[a, b] \rightarrow \mathbb{R}$ is bounded then f is integrable.

Answer:
False.
(f) If $f:[a, b] \rightarrow \mathbb{R}$ is bounded then f is continuous.

Answer:
False.

Problem 8.

(g) If $f:[a, b] \rightarrow \mathbb{R}$ is integrable then f is monotonic.

Answer:

False.
(h) If $f:[a, b] \rightarrow \mathbb{R}$ is integrable then f is continuous.

Answer:
False.
(i) If $f:[a, b] \rightarrow \mathbb{R}$ is monotonic then f is invertible.

Answer:
False. If f is strictly monotonic, then f is invertible.
(j) If $f:[a, b] \rightarrow \mathbb{R}$ is invertible then f is monotonic.

Answer:
False.
(k) If $f:[a, b] \rightarrow \mathbb{R}$ is integrable then f is bounded.

Answer:
True.
(l) If $f:[a, b] \rightarrow \mathbb{R}$ is integrable then f is invertible.

Answer:
False.
(m) If $f:[a, b] \rightarrow \mathbb{R}$ is continuous then f is bounded.

Answer:
True.
(n) For every real number x there exists a real number y with $y^{2}=x$.

Answer:
False.

