Math 157 Fall 2013 Problem Set 3: Due Dec 3

Problem 1. [1 point each] Compute:
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Answer. Since —1 < sin (1) <1 for all z for all x # 0, we have
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This limit follows from the fundamental inequality

sin(z) for0<z< il

0
< cos(z) < - cos(@) 5

and the squeeze theorem. See Example 4 on page 134 for all the details.
It follows that
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Problem 2. [1 point each] True or False. Give proofs or counterexamples.

(a)

If lim f(x) does not exist and lim g(x) = L, then lim f(z) + g(x) does

z—)a. r—a r—a
not exist.

Answer. True. Suppose both limits lim g(x) and lim f(x) 4 g(z) exist.
r—ra Tr—ra
Say, lim g(x) = L and lim f(x) + g(x) = M. Then, by Theorem 3.1 part
Tr—a r—a
(ii), we know the limit of the difference

lim (f(z) + g(x)) — f(x)

r—a

exists and equals M — L. That is, if lim g(x) exists and lim f(x) + g(z)
r—a r—a
exists, then lim f(z) exists also. Therefore, if lim f(x) does not exist and
r—a Tr—a

lim g(z) exists then it is impossible that for lim f(x) 4 g(z) to exist.
T—a

T—a

If lim f(x) does not exist and lim g(z) does not exist, then lim f(z)g(x)
T—a

r—a r—a
does not exist.

Answer. False. For example, let f(z) = 0 for z € Q and f(z) = 1 for
€ R\ Q. Let g(x) =1 for z € Q and g(xz) = 0 for z € R\ Q. Note that
neither ilig f(x) nor }/}g}} g(z) exist. However, the function f(x)g(xz) =0,
so lim f(x)g(x) = lim 0 = 0 exists.

z—3 r—3
If lim f(z) does not exist and lim g(x) = L, then lim f(z)g(x) does not

r—a r—a r—a
exist.
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Answer. False. For example, let f(z) = 0 for z € Q and f(z) =1
for . € R\ Q. Let g(z) = 0 for all x € R. Note that lirré f(x) does
T—r

not exist and lilrég(x) = 0 exists. Also, the function f(x)g(z) = 0, so
z—

ilg}s f(x)g(x) = ili%() = 0 exists.

b
(d) If f(z) >0 for all z in an interval [a, b] and / f =0, then f =0.
a

Answer. False. Let f(z) =1 for z = 1 and let f(z) = 0 for all other z.

1
Then / f(z) =0, but f #0.
0

Problem 3. [1 point each] Definitions and theorems

(a) Let f be a function defined on an open neighborhood of ¢. Define the
statement “f is continuous at c¢.”

(b) State Bolzano’s theorem.

(¢) State the intermediate value theorem.

(d) State the mean value theorem for integrals.
Answer. See the textbook.
Problem 4. [Bonus 2 points] Prove:
Theorem. Suppose f is continuous on [a,b] for some numbers a < b and that

b
f(x) >0 for all x € [a,b]. If/ f =0 then f(z) =0 for all x € [a,b].
Answer. Let a < b and let f be a continuous function on [a,b] satisfying
f(z) >0 for all z € [a, b].
Suppose that there is a number ¢ with f(c) # 0. Say f(¢) =y > 0. Since f

is continuous, there exists a number § > 0 so that f(z) > § for allz € (c—d,c+

d) C [a,b]. Therefore, the function s defined by s(z) = § forc =0 <z <c+§
and s(z) = 0 for all other x satisfies

s(z) < f(x) for all x € [a, b].

/abfZ/abs—y(b;a) > 0.

b
This proves that if it is not true that f(z) = 0 for all x € [a, b], then / f#0.
a

Thus,

b
Therefore, if/ f=0then f(x) =0 for all z € [a,b].



