EXAM

Final Exam
Math 158

May 26, 2005

ANSWERS

Problem 1. Let $f(x)=x^{3} \arctan \left(x^{2}\right) \sinh \left(6 x^{7}\right)$. Find $f^{(50)}(0)$.
Answer:
The number $f^{(50)}(0)$ is easily determined from the coefficient of x^{50} in the power series for f. The coefficient of x^{50} can be determined by looking at the power series

$$
x^{3} \arctan \left(x^{2}\right)=x^{5}-\frac{x^{9}}{3}+\frac{x^{13}}{5}-\frac{x^{17}}{7}+\frac{x^{21}}{9}-\frac{x^{25}}{11}+\frac{x^{29}}{13}-+\cdots
$$

and

$$
\sinh \left(6 x^{7}\right)=6 x^{7}+36 x^{21}+\frac{324 x^{35}}{5}+\frac{1944 x^{49}}{35}+\cdots
$$

and realizing that the only term of order x^{50} in the product $f(x)=x^{3} \arctan \left(x^{2}\right) \sinh \left(6 x^{7}\right)$ is

$$
\left(\frac{x^{29}}{13}\right)\left(36 x^{21}\right)=\frac{36}{13} x^{50} .
$$

Therefore, we know

$$
\frac{f^{(50)}(0)}{50!}=\frac{36}{13} \Rightarrow f^{(50)}(0)=(50!) \frac{36}{13} .
$$

Problem 2. Matching
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) 3^{n+\frac{1}{2}}}=\frac{\pi}{6}$.

Answer:
$\arctan \left(\frac{1}{\sqrt{3}}\right)$.
(b) $\sum_{n=1}^{\infty} \frac{i^{n}}{2^{n}}=\frac{-1+2 i}{5}$

Answer:
Convergent geometric series with ratio $\frac{i}{2}$.
(c) $\sum_{n=1}^{\infty} \frac{1}{n 2^{n}}=\log (2)$.

Answer:
$-\log (1-x)$ when $x=\frac{1}{2}$.

Problem 2. Continued.

(d) $\int_{1}^{\infty} \frac{d x}{1+x^{2}}=\frac{\pi}{4}$.

Answer:
$\arctan ^{\prime}(x)=\frac{1}{1+x^{2}}$.
(e) $\sum_{n=1}^{\infty} \frac{i^{n}}{n 2^{n}}=\ln \left(\frac{2}{\sqrt{5}}\right)+i \arctan \left(\frac{1}{2}\right)$.

Answer:
$-\log (1-x)$ when $x=\frac{i}{2}$.
(f) $\sum_{n=0}^{\infty} \frac{(-1)^{n}(\pi i)^{2 n}}{(2 n)!}=\frac{e^{\pi}+e^{-\pi}}{2}$.

Answer:
$\cos (i \pi)=\cosh (\pi)$.
(g) $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{i}{n!}\right)=\infty$

Answer:
The harmonic series diverges.
(h) $\int_{1}^{\infty} \frac{d x}{x^{2}}=1$

Answer:
compute
(i) $\sum_{n=0}^{\infty} \frac{\pi^{n} i^{n}}{n!2^{n}}=i$

Answer:
$\exp \left(\frac{\pi i}{2}\right)$.
(j) $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$.

Answer:
Process of elimination.

Problem 3. Define precisely:
(a) The sequence of functions $\left\{u_{k}\right\}$ converges pointwise to f on the set S.

Answer:

The sequence of functions $\left\{u_{k}\right\}$ converges pointwise to f on the set S if and only if for each $x \in S$ the sequence of numbers $\left\{u_{k}(x)\right\}$ converges to the number $f(x)$.
(b) The sequence of functions $\left\{u_{k}\right\}$ converges uniformly to f on the set S.

Answer:

The sequence of functions $\left\{u_{k}\right\}$ converges uniformly to f on the set S if and only if for each $\epsilon>0$ there exists a natural number N so that for all $n \geq N$ and for all $x \in S$

$$
\left|u_{k}(x)-f(x)\right|<\epsilon
$$

Problem 4. Define three sequences of functions by

$$
f_{n}(x)=\frac{2 n x}{1+n^{2} x^{2}}, \quad g_{n}(x)=\frac{2 x}{1+n^{2} x^{2}}, \quad h_{n}(x)=\frac{2 n}{1+n^{2} x^{2}} .
$$

All three sequences of functions $\left\{f_{n}\right\},\left\{g_{n}\right\}$, and $\left\{h_{n}\right\}$ converge pointwise to 0 on $(0,1]$.
(a) Which one converges uniformly? Prove it.

Answer:

The sequence of functions $\left\{g_{n}(x)\right\}$ converges uniformly to zero on $[0,1]$. To prove it, we use the fact that $0 \leq g_{n}(x) \leq \frac{1}{n}$ for all $0 \leq x \leq 1$. Therefore, if $\epsilon>0$ has been given, choose N to be a natural number greater than $\frac{1}{\epsilon}$. Then, if $n>N$, we have $n>\epsilon$ and $\left|g_{n}(x)\right| \leq \frac{1}{n}<\epsilon$ for all $x \in[0,1]$.
To see that $0 \leq g_{n}(x) \leq \frac{1}{n}$ for all $x \in[0,1]$, notice that for each n, the function g_{n} is continuous on $[0,1]$ and therefore has a maximum. Since g_{n} is differentiable, the maximum must occur at $x=0$, $x=1$, or at a critical point x where $g_{n}^{\prime}(x)=0$. A quick computation reveals that

$$
g_{n}^{\prime}(x)=\frac{2-2 n^{2} x^{2}}{\left(n^{2} x^{2}+1\right)^{2}}
$$

and we see that $g_{n}^{\prime}(x)=0$ when $x=\frac{1}{n}$. Checking $g(0)=0, g\left(\frac{1}{n}\right)=\frac{1}{n}$ and $g(1)=\frac{2}{1+n^{2}}$ reveals the maximum of g_{n} is $\frac{1}{n}$.
(b) For which does $\lim _{n \rightarrow \infty} \int_{0}^{1} u_{n} \neq \int_{0}^{1} \lim _{n \rightarrow \infty} u_{n}$?

Answer:

The answer is $\left\{h_{n}(x)\right\}$ since

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} h_{n}=\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{2 n}{n^{2} x^{2}+1} d x=\lim _{n \rightarrow \infty} 2 \arctan (n)=\pi \neq 0
$$

Remark: We confirm that there are no other correct answers to (a) or (b).
Since $\left\{g_{n}(x)\right\}$ converges uniformly to zero on $[0,1]$, we know $\lim _{n \rightarrow \infty} \int_{0}^{1} g_{n}=\int_{0}^{1} \lim _{n \rightarrow \infty} g_{n}$. So $\left\{g_{n}\right\}$ isn't an answer to (b).
To see that $\left\{f_{n}\right\}$ isn't an answer to (b), we compute

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}=\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{2 n x d x}{n^{2} x^{2}+1}=\lim _{n \rightarrow \infty} \frac{\ln \left(1+n^{2}\right)}{n}=0
$$

To see that $\left\{f_{n}\right\}$ isn't an answer for (a), note that $f_{n}\left(\frac{1}{n}\right)=1$ so it is impossible for $\left|f_{n}(x)-0\right|<\epsilon$ for all $x \in(0,1]$ if $\epsilon<1$.
Finally $\left\{h_{n}\right\}$ isn't an answer to (a) since $\lim _{n \rightarrow \infty} \int_{0}^{1} h_{n} \neq 0$.

Problem 4. Continued. Here are plots of $\left\{f_{n}\right\},\left\{g_{n}\right\}$, and $\left\{h_{n}\right\}$:

Problem 5. For any complex number $z \neq 0$, we define $\log (z)=\ln |z|+i \arg (z)$. Then, recalling that $e^{x+i y}:=e^{x}(\cos (y)+i \sin (y))$, we can define z^{w} for any $z, w \in \mathbb{C}, z \neq 0$ by

$$
z^{w}:=e^{w \log (z)}
$$

(a) Compute $\log (-1)$ and $(-1)^{i}$.

Answer:

$\log (-1)=\ln (|-1|)+i \arg (-1)=\ln (1)+i \pi=i \pi$ and $(-1)^{i}=\exp \left(i \log (-1)=\exp (i(i \pi))=\frac{1}{e^{\pi}}\right.$.
(b) Prove that $z^{w_{1}} z^{w_{2}}=z^{w_{1}+w_{2}}$.

Answer:

First note that $e^{\left(x_{1}+i y_{1}\right)} e^{\left(x_{2}+i y_{2}\right)}=e^{\left(x_{1}+x_{2}+i\left(y_{1}+y_{2}\right)\right)}$:

$$
\begin{aligned}
e^{\left(x_{1}+i y_{1}\right)} e^{\left(x_{2}+i y_{2}\right)}= & e^{x_{1}}\left(\cos \left(y_{1}\right)+i \sin \left(y_{1}\right)\right) e^{x_{2}}\left(\cos \left(y_{2}\right)+i \sin \left(y_{2}\right)\right) \\
= & e^{x_{1}+x_{2}}\left(\cos \left(y_{1}\right) \cos \left(y_{2}\right)-\sin \left(y_{1}\right) \sin \left(y_{2}\right)+i \sin \left(y_{1}\right) \cos \left(y_{2}\right)+i \cos \left(y_{1}\right) \sin \left(y_{2}\right)\right) \\
= & e^{x_{1}+x_{2}}\left(\cos \left(y_{1}+y_{2}\right)+i \sin \left(y_{1}+y_{2}\right)\right) \\
= & e^{\left(x_{1}+x_{2}+i\left(y_{1}+y_{2}\right)\right)} \\
& z^{w_{1}} z^{w_{2}}=e^{w_{1} \log (z)} e^{w_{2} \log (z)}=e^{\left(w_{1}+w_{2}\right) \log (z)}=z^{w_{1}+w_{2}}
\end{aligned}
$$

(c) Prove or disprove: $\left(z_{1}^{w}\right)\left(z_{2}^{w}\right)=\left(z_{1} z_{2}\right)^{w}$.

Answer:
False. For example $(-1)^{i}(-1)^{i}=\left(\frac{1}{e^{\pi}}\right)\left(\frac{1}{e^{\pi}}\right)=\frac{1}{e^{2 \pi}}$ which does not equal $((-1)(-1))^{i}=1^{i}=$ $e^{i \log (1)}=e^{0}=1$.

Problem 6.

(a) Find a power series for $\sqrt{1+x}$ centered at $x=0$.

Answer:

We use the binomial expansion $\sqrt{1+x}=1+\binom{\frac{1}{2}}{1} x+\binom{\frac{1}{2}}{2} x^{2}+\binom{\frac{1}{2}}{3} x^{3}+\cdots$ to get

$$
1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}-\frac{5 x^{4}}{128}+\frac{7 x^{5}}{256}-\frac{21 x^{6}}{1024}+-\cdots
$$

(b) Compute $\lim _{x \rightarrow 0} \frac{\sqrt{1+2 x^{3}}-1-x^{3}}{x^{6}}$.

Answer:

It will be convenient to have the power series:

$$
\sqrt{1+2 x^{3}}=1+x^{3}-\frac{x^{6}}{2}+\frac{x^{9}}{2}-\frac{5 x^{12}}{8}+\cdots
$$

So,

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1+2 x^{3}}-1-x^{3}}{x^{6}}=\lim _{x \rightarrow 0}-\frac{1}{2}+\frac{x^{3}}{2}-\frac{5 x^{6}}{8}+\cdots=-\frac{1}{2} .
$$

(c) Approximate $\int_{0}^{\frac{1}{2}} \sqrt{1+2 x^{3}}$ with an error less than $\frac{1}{20480}$.

Answer:

$$
\begin{aligned}
\int_{0}^{\frac{1}{2}} \sqrt{1+2 x^{3}} d x & =\int_{0}^{\frac{1}{2}}\left(1+x^{3}-\frac{x^{6}}{2}+\frac{x^{9}}{2}-\frac{5 x^{12}}{8}+\cdots\right) d x \\
& \left.=x+\frac{x^{4}}{4}-\frac{x^{7}}{(7)(2)}+\frac{x^{10}}{(10)(2)}-\frac{5 x^{13}}{(13)(8)}+\cdots\right]_{0}^{\frac{1}{2}} d x \\
& =\frac{1}{2}+\frac{1}{(4)\left(2^{4}\right)}-\frac{1}{\left(2^{7}\right)(7)(2)}+\frac{1}{\left(2^{10}\right)(10)(2)}-\cdots \\
& \approx \frac{1}{2}+\frac{1}{(4)\left(2^{4}\right)}-\frac{1}{\left(2^{7}\right)(7)(2)} \\
& =\frac{923}{1792}
\end{aligned}
$$

The error in approximating the exact expression, the infinite sum, by the sum of the first three terms is less than the fourth term

$$
\frac{1}{\left(2^{10}\right)(10)(2)}=\frac{1}{20480}=0.0000488281 \ldots
$$

since the exact expression is the sum of a convergent alternating series whose terms decrease.

Problem 7. True or False. Right answer +1 , wrong answer -2 .
(a) The sequence of functions $\left\{x^{n}\right\}$ converges uniformly to 0 on the set $(0,1]$.

Answer:

False. In fact, this sequence doesn't even converge pointwise on $(0,1]$ since $\left\{f_{n}(1)\right\}=\{1\} \rightarrow 1 \neq 0$, for $f_{n}(x)=x^{n}$.
(b) $\sin \left(x^{2}\right) \cos \left(x^{2}\right)=\frac{1}{2}\left(x^{2}-\frac{2^{3}}{3!} x^{6}+\frac{2^{5}}{5!} x^{10}-\frac{2^{7}}{7!} x^{14}+\cdots\right)$ for all x.

Answer:

False, though it's almost correct $\operatorname{since} \sin (2 x)=2 \sin (x) \cos (x)$, we have

$$
\sin \left(x^{2}\right) \cos \left(x^{2}\right)=\frac{1}{2} \sin \left(2 x^{2}\right)=\frac{1}{2}\left(2 x^{2}-\frac{2^{3}}{3!} x^{6}+\frac{2^{5}}{5!} x^{10}-\frac{2^{7}}{7!} x^{14}+\cdots\right)
$$

So, the statement is false as stated, but would be correct if the first term were $2 x^{2}$ instead of x^{2}.
(c) $\sin (i \theta)=i \sinh (\theta)$.

Answer:

True.

$$
\begin{aligned}
\sin (i \theta)=i \theta-\left(i^{3}\right) \frac{1}{3!} \theta^{3}+\left(i^{5}\right) \frac{1}{5!} \theta^{5}-\left(i^{7}\right) \frac{1}{7!} & \theta^{7}+-\cdots \\
& =i \theta+i \frac{1}{3!} \theta^{3}+i \frac{1}{5!} \theta^{5}-i \frac{1}{7!} \theta^{7}+-\cdots=i \sinh (\theta)
\end{aligned}
$$

(d) If $\sum_{n=0}^{\infty} a_{n}(-4)^{n}$ converges absolutely, then $\sum_{n=0}^{\infty} a_{n} 4^{n}$ converge absolutely.

Answer:
True. $\sum_{n=0}^{\infty} a_{n}(-4)^{n}$ converging absolutely means that $\sum_{n=0}^{\infty}\left|a_{n}(-4)^{n}\right|=\sum_{n=0}^{\infty}\left|a_{n}\right|(4)^{n}$ converges, which means that $\sum_{n=0}^{\infty} a_{n} 4^{n}$ converge absolutely.
(e) Suppose that a_{n} is a decreasing sequence of positive numbers. Then the sequence $\left\{t_{n}\right\}$, defined by $t_{n}=a_{1}-a_{2}+a_{3}-+\cdots+a_{2 n-1}-a_{2 n}$, converges.

Answer:

False. It is necessary that $a_{n} \rightarrow 0$. For example, if $a_{n}=1-\frac{1}{n}$, then t_{n} is the $2 n$-th partial sum of $\sum_{k=1}^{\infty}(-1)^{n+1}\left(1-\frac{1}{n}\right)$ which diverges.

Problem 7. Continued.

(f) If $a_{n}>0$ for all n and $\sum_{n=1}^{\infty} \frac{a_{n}}{1+a_{n}}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges too.

Answer:

True by the ordinary comparison test since if $a_{n}>0$ we have

$$
0<\frac{a_{n}}{1+a_{n}}<a_{n}
$$

(g) If $\left\{u_{k}\right\}$ is a sequence of increasing functions converging uniformly to f on a set S, then the sequence of numbers $\left\{u_{k}^{\prime}(x)\right\}$ converges to $f^{\prime}(x)$ for each $x \in S$.

Answer:

This is false. For example the sequence $\left\{u_{k}\right\}$ given by $u_{k}(x)=\frac{\sin (k x)}{k}$ converges uniformly to 0 on $(0, \pi)$, but the sequence $\left\{u_{k}^{\prime}(x)\right\}=\{\cos (n x)\}$ does not converge on $(0, \pi)$.

