Problem 1. [2 points] Here's a picture of the elliptic curve $y^{2}=x^{3}-5 x+8$. The coordinates of the black point are $(1,2)$. What are the coordinates of the red point?

Problem 2. [2 points] Factoring the identity function.
(a) Find two functions f and g satisfying $f(0)=0, g(0)=0$ and $x=f(x) g(x)$.
(b) Prove that there do not exist two differentiable functions f and g with $f(0)=0, g(0)=0$ and $x=f(x) g(x)$.

Problem 3. [2 points] Suppose that $f:[0,1] \rightarrow[0,1]$ is differentiable and that $f^{\prime}(x) \neq 1$ for any x. Prove that there is one and only one number $c \in[0,1]$ with $f(c)=c$.

Problem 4. [2 points] The standard normal curve is given by

$$
y=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

Give a good sketch of this curve. Be sure to indicate the points at which the curve changes concavity.

Problem 5. [2 points] For any $x>0$, let $A(x)=\int_{2}^{x} f(t) d t$ where f is the function whose graph is sketched below:

Give a good sketch of the graph of A. Indicate the value of A and A^{\prime} at $x=0,1,2,3,4,5,6,7,8$ and indicate on which intervals A is concave up and concave down.

Problem 6. [2 points] Suppose $a<b<c<d<e$.
(a) Find the minimum of $f(x)=(x-a)^{2}+(x-b)^{2}+(x-c)^{2}+(x-d)^{2}+(x-e)^{2}$
(b) Find the minimum of $g(x)=|x-a|+|x-b|+|x-c|+|x-d|+|x-e|$
(c) [Bonus point] Prove that if $a+\frac{b}{2}+\frac{c}{3}+\frac{d}{4}+\frac{e}{5}=0$ then $a+b x+c x^{2}+d x^{3}+e x^{4}=0$ for some $x \in[0,1]$.

Problem 7. Here is the unit circle $x^{2}+y^{2}=1$.

(a) $[1$ point $]$ Express the area of the sector $O A C$ in terms of t.
(b) [1 point] Suppose the point A is moving counterclockwise around the circle so that the area of the sector $O A C$ is increasing at a constant rate. Determine the rate is the area of triangle $O A C$ changing at the moment that it is isoceles.

Problem 7. Continued. Here is the unit hyperbola $x^{2}-y^{2}=1$.

(b) [1 point] Express the area of the hyperbolic sector $O A C$ in terms of t.
(c) [Bonus point] Suppose the point A is moving away from the origin so that the area of the sector $O A C$ is increasing at a constant rate. Determine the rate is the area of triangle $O A B$ changing at the moment that it is isoceles.

Problem 8. [2 points] Compute $\int_{0}^{\pi} \sin ^{n}(x) d x$ for $n=0,1,2, \ldots$.

Problem 9. [All correct: $\mathbf{3}$ points. Eight correct: $\mathbf{1}$ points] Compute. Interpret any integrals above as limits if necessary. For example,

$$
\int_{0}^{1} \frac{d t}{\sqrt{1-t^{2}}}=\lim _{x \rightarrow 1^{-}} \int_{0}^{x} \frac{d t}{\sqrt{1-t^{2}}}
$$

(a) $\int_{0}^{1} \frac{t d t}{\sqrt{1+t^{2}}}$
(b) $\int_{0}^{1} \frac{t d t}{\sqrt{1-t^{2}}}$
(c) $\int_{0}^{1} \frac{t d t}{1+t^{2}}$
(d) $\int_{0}^{1} \frac{t d t}{1-t^{2}}$
(e) $\int_{0}^{1} \frac{d t}{\sqrt{1+t^{2}}}$

Problem 9. Continued.

(f) $\int_{0}^{1} \frac{d t}{\sqrt{1-t^{2}}}$
(g) $\int_{0}^{1} \sqrt{1-t^{2}} d t$
(h) $\int_{0}^{1} \sqrt{1+t^{2}} d t$
(i) $\int_{0}^{1} \frac{d t}{1+t^{2}}$
(j) $\int_{0}^{1} \frac{d t}{1-t^{2}}$

EXAM

Take Home Exam 1
Math 158: Spring 2013
Due: Tuesday, March 11

- This exam is due at the beginning of class on Tuesday, March 11.
- You are allowed to use your book or your notes, but you may not consult with any person about the exam.

Success!

