EXAM

Take Home Exam 1
Math 158: Spring 2013
Due: Tuesday, March 11

ANSWERS

Problem 1. [2 points] Here's a picture of the elliptic curve $y^{2}=x^{3}-5 x+8$. The coordinates of the black point are $(1,2)$. What are the coordinates of the red point?

Answer:

First, differentiate to find the slope of the tangent line to the curve:

$$
2 y \frac{d y}{d x}=3 x^{2}-5 \Rightarrow \frac{d y}{d x}=\frac{3 x^{2}-5}{2 y} .
$$

So, the tangent line at $(1,2)$ has slope $-\frac{1}{2}$ and equation

$$
y-2=-\frac{1}{2}(x-1) .
$$

Since the red point lies both on the line and on the curve, its coordinates satisfy both $y^{2}=$ $x^{3}-5 x+8$ and $y-2=-\frac{1}{2}(x-1)$. I solved these equations by writing $y=-\frac{1}{2}(x-1)+2$ and substituting it into $y^{2}=x^{3}-5 x+8$ to get

$$
\left(-\frac{1}{2}(x-1)+2\right)^{2}=x^{3}-5 x+8 \Rightarrow 4 x^{3}-x^{2}-10 x+7=0 .
$$

Realizing that $x=1$ is a solution to this equation helps to factor this cubic

$$
4 x^{3}-x^{2}-10 x+7=(x-1)^{2}(4 x+7)=0
$$

and we find the x coordinate of the red point is $-\frac{7}{4}$. It follows that the y coordinate is $\frac{27}{8}$. So, the answer is $\left(\frac{7}{4}, \frac{27}{8}\right)$

Problem 2. [2 points] Factoring the identity function.
(a) Find two functions f and g satisfying $f(0)=0, g(0)=0$ and $x=f(x) g(x)$.

Answer:

There are many ways to do this. Here's one: $f(x)=x^{\frac{1}{3}}$ and $g(x)=x^{\frac{2}{3}}$.
(b) Prove that there do not exist two differentiable functions f and g with $f(0)=0, g(0)=0$ and $x=f(x) g(x)$.

Answer:

If $x=f(x) g(x)$ and f and g were differentiable, we'd have $1=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$. Setting $x=0$ yields $1=f^{\prime}(0) g(0)+f(0) g^{\prime}(0)$. If $f(0)=g(0)=0$, we get a contradiction $1=0$.
Note: Neither $x^{\frac{1}{3}}$ nor $x^{\frac{2}{3}}$ are differentiable at $x=0$.

Problem 3. [2 points] Suppose that $f:[0,1] \rightarrow[0,1]$ is differentiable and that $f^{\prime}(x) \neq 1$ for any x. Prove that there is one and only one number $c \in[0,1]$ with $f(c)=c$.

Answer:

First, we prove there is a number $c \in[0,1]$ with $f(c)=c$. We only need continuity for this. If $f(0)=0$ or $f(1)=1$, we're done. So, assume $f(0)>0$ and $f(1)<1$. Since f is differenitable on $[0,1]$, it is continuous, hence $g(x)=f(x)-x$ is continuous. Since $g(0)=f(0)-0>0$ and $g(1)=f(1)-1<0$, the intermediate value theorem implies that there exists a number $c \in[0,1]$ with $g(c)=0$. That is, $f(c)=c$.
Now suppose f is differentiable and $f^{\prime}(x) \neq 1$ for any x. Assume that $f(c)=c$ and $f(d)=d$. If $c \neq d$, the mean value theorem says there exists a number x between c and d with $f^{\prime}(x)=$ $\frac{f(d)-f(c)}{d-c}=1$, which isn't possible if there are no numbers x with $f^{\prime}(x)=1$. Therefore $c=d$.

Problem 4. [2 points] The standard normal curve is given by

$$
y=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

Give a good sketch of this curve. Be sure to indicate the points at which the curve changes concavity.

Answer:
Let $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}$. Note that $f(x)>0$ for all x. We compute

$$
f^{\prime}(x)=-\frac{1}{\sqrt{2 \pi}} x e^{-\frac{x^{2}}{2}} .
$$

Note that $f(0)=0, f(x)>0$ if $x<0$ and $f(x)<0$ if $x>0$. Therefore,

- f is increasing on the interval $(-\infty, 0)$
- f attains a maximum value of $f(0)=\frac{1}{\sqrt{2 \pi}}$ at $x=0$, and
- f is decreasing on the interval $(0, \infty)$

We compute

$$
f^{\prime \prime}(x)=-\frac{1}{\sqrt{2 \pi}}\left(e^{-\frac{x^{2}}{2}}-x^{2} e^{-\frac{x^{2}}{2}}\right)=\frac{1}{\sqrt{2 \pi}}\left(x^{2}-1\right) e^{-\frac{x^{2}}{2}} .
$$

Since the exponential function is always positive, the sign of $f^{\prime \prime}(x)$ equals the sign of $x^{2}-1$, which is negative on $(-1,1)$ and positive elsewhere. Therefore

- f is concave up on $(\infty,-1) \cup(1, \infty)$, and
- f is concave down on the interval $(-1,1)$.
- f changes concavity at the points $\left(-1, \frac{1}{\sqrt{2 e \pi}}\right)$ and $\left(1, \frac{1}{\sqrt{2 e \pi}}\right)$.

Problem 5. [2 points] For any $x>0$, let $A(x)=\int_{2}^{x} f(t) d t$ where f is the function whose graph is sketched below:

Give a good sketch of the graph of A. Indicate the value of A and A^{\prime} at $x=0,1,2,3,4,5,6,7,8$ and indicate on which intervals A is concave up and concave down.

Answer:

From the fundamental theorem of calculus, $A^{\prime}(x)=f(x)$, which can be read from the graph. Then, we can determine concavity by looking at $A^{\prime \prime}(x)=f^{\prime}(x)$ and see that A is concave up when f is increasing (on the intervals $(0,2)$ and $(6,8)$) and see that A is concave down when f is decreasing (on the intervals $(2,6)$.)
To find the values of A, I computed areas of triangles, keeping care with the signs. Here's a table, and a sketch:

x	0	1	2	3	4	5	6	7	8
$A^{\prime}(x)$	0	1	2	0	DNE	$\frac{1}{2}$	0	$\frac{1}{2}$	1
$A(x)$	-2	$-\frac{3}{2}$	0	1	0	$\frac{3}{4}$	1	$\frac{5}{4}$	2

Problem 6. [2 points] Suppose $a<b<c<d<e$.
(a) Find the minimum of $f(x)=(x-a)^{2}+(x-b)^{2}+(x-c)^{2}+(x-d)^{2}+(x-e)^{2}$

Answer:

f is a degree two polynomial, it has one minimum where $f^{\prime}(x)=0$. A computation shows the minimum is at the average of the numbers a, b, c, d, e :

$$
\begin{aligned}
& f^{\prime}(x)=2(x-a)+2(x-b)+2(x-c)+2(x-d)+2(x-e)=0 \\
& \Rightarrow 5 x=(a+b+c+d+e) \Rightarrow x=\frac{1}{5}(a+b+c+d+e)
\end{aligned}
$$

So, the minimum value is

$$
f\left(\frac{1}{5}(a+b+c+d+e)\right) .
$$

(c) [Bonus point] Prove that if $a+\frac{b}{2}+\frac{c}{3}+\frac{d}{4}+\frac{e}{5}=0$ then $a+b x+c x^{2}+d x^{3}+e x^{4}=0$ for some $x \in[0,1]$.

Answer:

Note if f is continuous on $[a, b]$ and $\int_{a}^{b} f=0$, then there must exist a number $x \in[a, b]$ with $f(x)=0$. If $f(x)>0$ and continuous, then $\int_{a}^{b} f(x)>0$. Similarly, if $f(x)<0$ and continuous, $\int_{a}^{b} f(x)<0$. Thus, if $\int_{a}^{b} f=0$ and f is continuous, we know f can't be strictly positive, nor strictly negative, and so by the intermediate value theorem, f must be zero for at least one $x \in[a, b]$.
Now, applying this to

$$
\int_{0}^{1} a+b x+c x^{2}+d x^{3}+e x^{4} d x=a+\frac{b}{2}+\frac{c}{3}+\frac{d}{4}+\frac{e}{5}
$$

proves the statement.

Problem 6. Continued.

(b) Find the minimum of $g(x)=|x-a|+|x-b|+|x-c|+|x-d|+|x-e|$

Answer:

The graph of g is continuous and piecewise linear-it's a straight line with nonzero slope on each subinterval $(-\infty, a),(a, b),(b, c),(c, d),(d, e),(e, \infty)$. The minimum of g must occur where the derivative doesn't exist; i.e. one of the points $\{a, b, c, d, e\}$. To figure out which, we'll evaluate g at each point.

$$
\begin{aligned}
g(a) & =(b-a)+(c-a)+(d-a)+(e-a) \\
g(b) & =(b-a)+(c-b)+(d-b)+(e-b) \\
g(c) & =(c-a)+(c-b)+(d-c)+(e-c) \\
g(d) & =(d-a)+(d-b)+(d-c)+(e-d) \\
g(e) & =(e-a)+(e-b)+(e-c)+(e-d)
\end{aligned}
$$

Since $a<b$, the last three terms of $g(a)$ are greater than the last three terms of $g(b)$, so we find that

$$
g(a)>g(b)
$$

Since $d<e$, the first three terms of $g(e)$ are greater than the first three of $g(d)$, so we find that

$$
g(e)>g(d)
$$

Now, by combining the first two terms of $g(b)$, the first and third terms of $g(c)$, and last two terms of $g(d)$ we find that

$$
\begin{aligned}
& g(b)=(c-a)+(d-b)+(e-b) \\
& g(c)=(c-a)+(d-a)+(e-c) \\
& g(d)=(d-a)+(d-b)+(e-c)
\end{aligned}
$$

Comparing $g(b)$ with $g(c)$, we find that

$$
g(b)>g(c)
$$

becasue the last two terms of $g(b)$ are greater than the last two terms of $g(c)$. Comparing $g(c)$ with $g(d)$, we find that

$$
g(c)<g(d)
$$

because the first two terms of $g(d)$ are greater than the first two terms of $g(c)$.
Conclusion: The minimum of g occurs at c and the minimum value is $d+e-a-b$.

Problem 7. Here is the unit circle $x^{2}+y^{2}=1$.

(a) $[1$ point $]$ Express the area of the sector $O A C$ in terms of t.

Answer:

First, we compute the area of the region $A B C$ (with the circular part):

$$
\begin{aligned}
\operatorname{Area}(A B C) & =\int_{x=\cos (t)}^{x=\cos (0)} y d x=\int_{t}^{0} \sin (u)(-\sin (u) d u) \\
& =\int_{0}^{t} \sin ^{2}(u) d u \\
& \left.=\frac{u}{2}-\frac{\cos (2 u)}{4}\right]_{0}^{t} \\
& =\frac{t}{2}-\frac{\cos (2 t)}{4}
\end{aligned}
$$

Now, we add the area of the triangle $O A B$ which is $\frac{1}{2} \sin (t) \cos (t)$ to get the area of sector $O A C$

$$
\operatorname{Area}(O B C)=\operatorname{Area}(A B C)+\operatorname{Area}(O A B)=\frac{t}{2}-\frac{\cos (2 t)}{4}+\frac{1}{2} \sin (t) \cos (t)=\frac{t}{2}
$$

To make the last simplification, recall that $\cos (2 t)=2 \sin (t) \cos (t)$.

Problem 7. Continued.

(b) [1 point] Suppose the point A is moving counterclockwise around the circle so that the area of the sector $O A C$ is increasing at a constant rate. Determine the rate is the area of triangle $O A C$ changing at the moment that it is equilateral.

Answer:

It will be helpful to have some notation. Let a be the area of triangle $O A C$ and let b be the area of sector $O A C$. Let s represent time, expressed in some units. The quantities a and b depend on time and so they are functions of s.
The area a (as a function of t) is given by $a(t)=\frac{1}{2}(\overline{O C})(\overline{A B})=\frac{1}{2} \sin (t)$. The rate at which a is changing is given by

$$
\frac{d a}{d s}=\frac{d a}{d t} \frac{d t}{d s}=\frac{1}{2} \cos (t) \frac{d t}{d s} .
$$

The area b as a function of t was computed above to be $b(t)=\frac{t}{2}$. The rate at which b is changing (which we are told is constant) is given by

$$
\frac{d b}{d s}=\frac{d b}{d t} \frac{d t}{d s}=\frac{1}{2} \frac{d t}{d s} .
$$

Putting these together, we see that $\frac{d a}{d s}=\cos (t) \frac{d b}{d s}$. At the moment that the triangle is equilateral, $\cos (t)=\frac{1}{2}$ and we find that the rate at which the area of the triangle is increasing is $\frac{d s}{d t}=\frac{1}{4} \frac{d t}{d s}$, which is half the rate at which the area of the sector is increasing.

Problem 7. Continued. Here is the unit hyperbola $x^{2}-y^{2}=1$.

(c) [1 point] Express the area of the hyperbolic sector $O A C$ in terms of t.

Answer:

First, we compute the area of the region $A B C$ (including the curved piece):

$$
\begin{aligned}
\operatorname{Area}(A B C) & =\int_{x=\cosh (0)}^{x=\cosh (t)} y d x=\int_{t}^{0} \sinh (u)(\sinh (u) d u) \\
& =\int_{0}^{t} \sinh ^{2}(u) d u \\
& \left.=-\frac{u}{2}+\frac{\sinh (2 u)}{4}\right]_{0}^{t} \\
& =-\frac{t}{2}+\frac{\sinh (2 t)}{4}
\end{aligned}
$$

The area of the triangle $O A B$ is $\frac{1}{2} \cosh (t) \sinh (t)$. To get the answer, we subtract $\operatorname{Area}(O B C)=\operatorname{Area}(O A B)-\operatorname{Area}(A B C)=\frac{1}{2} \sinh (t) \cosh (t)-\frac{t}{2}+\frac{\sinh (2 t)}{4}=\frac{t}{2}$.

To make the last simplification, recall that $\sinh (2 t)=2 \sinh (t) \cosh (t)$.

Problem 7. Continued.

(d) [Bonus point] Suppose the point A is moving away from the origin so that the area of the sector $O A C$ is increasing at a constant rate. Determine the rate is the area of triangle $O A B$ changing at the moment that it is isoceles.

Answer:

The triangle $O A B$ will never be isoceles since $\overline{O B}=\cosh (t)$ and $\overline{A B}=\sinh (t)$ are never equal (and the hypotenuse $\overline{O A}$ is always longer than both $\overline{O B}$ and $\overline{A B}$.)
So, instead, we'll compute the rate at which the area of triangle $O A C$ is changing at the moment that it is isoceles.
It will be helpful to have some notation. Let a be the area of triangle $O A C$ and let b be the area of sector $O A C$. Let s represent time, expressed in some units. The quantities a and b depend on time and so they are functions of s.
The area a (as a function of t) is given by $a(t)=\frac{1}{2}(\overline{O C})(\overline{A B})=\frac{1}{2} \sinh (t)$. The rate at which a is changing is given by

$$
\frac{d a}{d s}=\frac{d a}{d t} \frac{d t}{d s}=\frac{1}{2} \cosh (t) \frac{d t}{d s} .
$$

The area b as a function of t was computed above to be $b(t)=\frac{t}{2}$. The rate at which b is changing (which we are told is constant) is given by

$$
\frac{d b}{d s}=\frac{d b}{d t} \frac{d t}{d s}=\frac{1}{2} \frac{d t}{d s} .
$$

Putting these together, we see that $\frac{d a}{d s}=\cosh (t) \frac{d b}{d s}$. At the moment that the triangle is isoceles,

$$
\overline{A C}=\overline{O C} \Leftrightarrow \sqrt{\left.(\cosh (t)-1)^{2}+\sinh (t)^{2}\right)}=1 .
$$

Solving for $\cosh (t)$:

$$
\begin{aligned}
\sqrt{\left.(\cosh (t)-1)^{2}+\sinh (t)^{2}\right)}=1 & \Rightarrow(\cosh (t)-1)^{2}+\sinh (t)^{2}=1 \\
& \Rightarrow(\cosh (t)-1)^{2}+\cosh (t)^{2}-1=1 \\
& \Rightarrow 2 \cosh (t)^{2}-2 \cosh (t)-1=0 \\
& \Rightarrow \cosh (t)=\frac{1}{2}(1 \pm \sqrt{3})
\end{aligned}
$$

Since $\cosh (t)>0$, we find that $\cosh (t)=\frac{1}{2}(1+\sqrt{3})$ at the moment that the triangle $O A C$ is isoceles.
Therefore, $\frac{d a}{d s}=\frac{1}{2}(1+\sqrt{3}) \frac{d b}{d s}$.

Problem 8. [2 points] Compute $\int_{0}^{\pi} \sin ^{n}(x) d x$ for $n=0,1,2, \ldots$.
Answer:
First, let us record a formula for integrating powers of the sine function:

$$
\int \sin ^{k}(t) d t=-\frac{1}{k} \sin ^{k-1}(t) \cos (t)+\frac{k-1}{k} \int \sin ^{k-2}(t) d t .
$$

A way to deduce this formula is outlined as exercise 8 in section 5.10 in Apostol's book, and I do it as a footnote to this problem. Integrating over $[0, \pi]$ yields nice reduction formula:

$$
\begin{equation*}
\int_{0}^{\pi} \sin ^{k}(t) d t=\frac{k-1}{k} \int_{0}^{\pi} \sin ^{k-2}(t) d t \tag{1}
\end{equation*}
$$

Let $c_{n}=\int_{0}^{\pi} \sin ^{n}(t) d t$. Notice that

$$
c_{1}=\int_{0}^{\pi} \sin (t)=2
$$

and

$$
c_{2}=\int_{0}^{\pi} \sin ^{2}(t) d t=\int_{0}^{\pi} \frac{1-\cos (2 t)}{2} d t=\frac{\pi}{2} .
$$

Applying the reduction (1), one finds that c_{n} satisfies the recursion

$$
c_{n}=\frac{n-1}{n} c_{n-1}
$$

which allows us to determine c_{n} for every $n \in \mathbb{N}$:

$$
\begin{aligned}
c_{1} & =2 \\
c_{2} & =\frac{\pi}{2} \\
c_{3} & =\frac{2}{3} c_{1}=\frac{4}{3} \\
c_{4} & =\frac{3}{4} c_{2}=\frac{3}{8} \pi \\
c_{5} & =\frac{4}{5} c_{3}=\frac{16}{15} \\
c_{6} & =\frac{5}{6} c_{4}=\frac{5}{16} \pi \\
\vdots & \\
c_{k} & = \begin{cases}2\left(\frac{2}{3}\right)\left(\frac{4}{5}\right)\left(\frac{6}{7}\right) \cdots\left(\frac{k-1}{k}\right) & \text { if } k \text { is odd } \\
\left(\frac{\pi}{2}\right)\left(\frac{3}{4}\right)\left(\frac{5}{6}\right)\left(\frac{7}{8}\right) \cdots\left(\frac{k-1}{k}\right) & \text { if } k \text { is even. }\end{cases}
\end{aligned}
$$

Problem 9. [All correct: $\mathbf{3}$ points. Eight correct: $\mathbf{1}$ points] Compute. Interpret any integrals above as limits if necessary. For example,

$$
\int_{0}^{1} \frac{d t}{\sqrt{1-t^{2}}}=\lim _{x \rightarrow 1^{-}} \int_{0}^{x} \frac{d t}{\sqrt{1-t^{2}}}
$$

(a) $\int_{0}^{1} \frac{t d t}{\sqrt{1+t^{2}}}=\sqrt{2}-1$

Answer:

Let $u=1+t^{2}$. Then $d u=2 t d t \Rightarrow t d t=\frac{1}{2} d u$ and \int_{0}^{1} becomes \int_{1}^{2}. We have

$$
\left.\int_{0}^{1} \frac{t d t}{\sqrt{1+t^{2}}}=\int_{1}^{2} \frac{\frac{1}{2} d u}{\sqrt{u}}=\sqrt{u}\right]_{1}^{2}=\sqrt{2}-1
$$

(b) $\int_{0}^{1} \frac{t d t}{\sqrt{1-t^{2}}}=1$

Answer:

Here, the integral is only defined over intervals contained in $(-1,1)$, so we interpret $\int_{0}^{1} \frac{t d t}{\sqrt{1-t^{2}}}$ as $\lim _{x \rightarrow 1^{-}} \int_{0}^{x} \frac{t d t}{\sqrt{1-t^{2}}}$. Now, we use the substitution $u=1-t^{2}$ which leads to $d u=-2 t d t \Rightarrow t d t=-\frac{1}{2} d u$ and $\lim _{x \rightarrow 1^{-}} \int_{0}^{x}$ becomes $\lim _{y \rightarrow 0^{+}} \int_{1}^{y}$.

$$
\begin{aligned}
\int_{0}^{1} \frac{t d t}{\sqrt{1-t^{2}}} & =\lim _{x \rightarrow 1^{-}} \int_{0}^{x} \frac{t d t}{\sqrt{1-t^{2}}} \\
& =\lim _{y \rightarrow 0^{+}} \int_{1}^{y}-\frac{\frac{1}{2} d u}{\sqrt{u}} \\
& =-\sqrt{u}]_{1}^{y} \\
& =\lim _{y \rightarrow 0^{+}}-\sqrt{y}-(-1) \\
& =1 .
\end{aligned}
$$

(c) $\int_{0}^{1} \frac{t d t}{1+t^{2}}=\log (\sqrt{2})$

Answer:
Here, we use the same substitution as in part (a): $u=1+t^{2}$. Then

$$
\left.\int_{0}^{1} \frac{t d t}{1+t^{2}}=\int_{1}^{2} \frac{\frac{1}{2} d u}{u}=\frac{1}{2} \log (u)\right]_{1}^{2}=\frac{1}{2} \log 2 .
$$

Problem 9. Continued.

(d) $\int_{0}^{1} \frac{t d t}{1-t^{2}}=\infty$

Answer:
First, we must interpret this integral as $\lim _{x \rightarrow 1^{-}} \int_{0}^{x} \frac{t d t}{1-t^{2}}$. Then, we make a substitution as in part (b):

$$
\begin{aligned}
\int_{0}^{1} \frac{t d t}{1-t^{2}} & =\lim _{x \rightarrow 1^{-}} \int_{0}^{x} \frac{t d t}{1-t^{2}} \\
& =\lim _{y \rightarrow 0^{+}} \int_{1}^{y}-\frac{\frac{1}{2} d u}{u} \\
& \left.=-\frac{1}{2} \log (u)\right]_{1}^{y} \\
& =\lim _{y \rightarrow 0^{+}}-\frac{1}{2} \log (y)-\left(-\frac{1}{2} \log (1)\right) \\
& =\infty
\end{aligned}
$$

(e) $\int_{0}^{1} \frac{d t}{\sqrt{1+t^{2}}}=\ln (1+\sqrt{2})$.

Answer:

If you remember that $\operatorname{arcsinh}^{\prime}(t)=\frac{1}{\sqrt{1+t^{2}}}$, then this problem is very simple. If you don't, you can make the substitution $t=\sinh (u)$. Here, we change variables in the limit of integration: $t=0 \Rightarrow u=0$, and $t=1 \Rightarrow u=\operatorname{arcsinh}(1)$. So, we get

$$
\int_{0}^{1} \frac{d t}{\sqrt{1+t^{2}}}=\int_{0}^{\operatorname{arcsinh}(1)} \frac{\cosh (u) d u}{\cosh (u)}=\int_{0}^{\operatorname{arcsinh}(1)} d u=\operatorname{arcsinh}(1)
$$

It's not necessary, but one can rewrite $\operatorname{arcsinh}(1)$ as $\ln (1+\sqrt{2})$.
Remark: If you want to express the $\arcsin (t)$ in terms of logs but can't remember the formula, here's how to invert the hyperbolic sine. Write $u=\operatorname{arcsinh}(t) \Leftrightarrow t=\sinh (u)=$ $t=\frac{1}{2}\left(e^{u}-e^{-u}\right)$. Multiply by e^{u} and simplify to get $\left(e^{u}\right)^{2}-2 t e^{u}-1=0$ and use the quadratic formula to get $e^{u}=t+\sqrt{1+t^{2}}$.

Problem 9. Continued.

(f) $\int_{0}^{1} \frac{d t}{\sqrt{1-t^{2}}}=\frac{\pi}{2}$

Answer:

First note that this integral is only defined over intervals within $(-1,1)$, so we interpret the integral as a limit: $\int_{0}^{1} \frac{d t}{\sqrt{1-t^{2}}}$ as $\lim _{x \rightarrow 1^{-}} \int_{0}^{x} \frac{d t}{\sqrt{1-t^{2}}}$. If you remember that $\arcsin ^{\prime}(t)=$ $\frac{1}{\sqrt{1-t^{2}}}$, then this problem can be solved as follows:

$$
\int_{0}^{1} \frac{d t}{\sqrt{1-t^{2}}}=\lim _{x \rightarrow 1^{-}} \int_{0}^{x} \frac{d t}{\sqrt{1-t^{2}}}=\lim _{x t o 1^{-}} \arcsin (x)-\arcsin (0)=\frac{\pi}{2}
$$

If you don't remember that $\arcsin ^{\prime}(t)=\frac{1}{\sqrt{1-t^{2}}}$, use the substitution $t=\sin (u)$. Then $d t=\cos (u) d u$ and $\lim _{x \rightarrow 1^{-}} \int_{0}^{x}$ becomes $\lim _{y \rightarrow \frac{\pi}{2}-} \int_{0}^{y}$.

$$
\begin{aligned}
\int_{0}^{1} \frac{d t}{\sqrt{1-t^{2}}} & =\lim _{x \rightarrow 1^{-}} \int_{0}^{x} \frac{d t}{\sqrt{1-t^{2}}} \\
& =\lim _{y \rightarrow \frac{\pi}{2}^{-}} \int_{0}^{y} \frac{\cos (u) d u}{\cos (u)} \\
& =\lim _{y \rightarrow \frac{\pi}{2}-} \int_{0}^{y} d u \\
& =\lim _{y \rightarrow \frac{\pi}{2}} y \\
& =\frac{\pi}{2}
\end{aligned}
$$

(g) $\int_{0}^{1} \sqrt{1-t^{2}} d t=\frac{\pi}{2}$

Answer:

This is the area of the upper half of the unit circle, which is $\frac{\pi}{2}$. If you didn't realize this, you could make the substitution $t=\cos (u)$ and proceed (this will lead to a computation just like the one in 7(a)).

Problem 9. Continued.

(h) $\int_{0}^{1} \sqrt{1+t^{2}} d t=\frac{\sqrt{2}}{2}+\frac{\log (1+\sqrt{2})}{2}$.

Answer:

I recommend using the substitution $t=\sinh (u)$. Then, $1+t^{2}=\sin ^{2}(u)+1=\cosh ^{2}(u)$ and $d t=\cosh (u) d u$. Let's find the general antiderivative first, then compute the definite integral:

$$
\begin{aligned}
\int \sqrt{1+t^{2}} d t & =\int \sqrt{\cosh ^{2}(u)} \cosh (u) d u \\
& =\int \cosh ^{2}(u) d u \\
& =\int\left(\frac{e^{2 u}+2+e^{-2 u}}{4}\right) d t \\
& =\frac{e^{2 u}+4 u-e^{-2 u}}{8}+C
\end{aligned}
$$

To finish, and put things in terms of t again, use the fact that $t=\sinh (u) \Rightarrow u=$ $\ln \left(t+\sqrt{1+t^{2}}\right)$ and use a little algebra

$$
\begin{aligned}
& =\frac{\left(t+\sqrt{1+t^{2}}\right)^{2}+4 \ln \left(t+\sqrt{1+t^{2}}\right)-\left(t+\sqrt{1+t^{2}}\right)^{-2}}{8}+C \\
& =\frac{t \sqrt{1+t^{2}}}{2}+\frac{\ln \left(t+\sqrt{1+t^{2}}\right)}{2}+C
\end{aligned}
$$

So, we have

$$
\left.\int_{0}^{1} \sqrt{1+t^{2}} d t=\frac{t \sqrt{1+t^{2}}}{2}+\frac{\ln \left(t+\sqrt{1+t^{2}}\right)}{2}\right]_{0}^{1}=\frac{\sqrt{2}}{2}+\frac{\log (1+\sqrt{2})}{2}
$$

(i) $\int_{0}^{1} \frac{d t}{1+t^{2}}=\frac{\pi}{4}$.

Answer:

Let $t=\tan (u)$. Here $t=\tan (u) \Rightarrow 1+t^{2}=\sec ^{2}(u)$ and $d t=\sec ^{2}(u) d u$. Changing the limits of integration, $t=0 \Rightarrow u=0$ and $t=1 \Rightarrow u=\frac{\pi}{4}$. We compute:

$$
\left.\int_{0}^{1} \frac{d t}{1+t^{2}}=\int_{0}^{\frac{\pi}{4}} \frac{\sec ^{2}(u)}{\sec ^{2}(u)} d u=u\right]_{0}^{\frac{\pi}{4}}=\frac{\pi}{4}
$$

Problem 9. Continued.

(j) $\int_{0}^{1} \frac{d t}{1-t^{2}}=\infty$

Answer:
First note that this integral is only defined over intervals within $(-1,1)$, so we interpret the integral as a limit: $\int_{0}^{1} \frac{d t}{1-t^{2}}$ as $\lim _{x \rightarrow 1^{-}} \int_{0}^{x} \frac{d t}{1-t^{2}}$. Then, use the fact that

$$
\begin{aligned}
& \frac{1}{1-t^{2}}=\frac{\frac{1}{2}}{1+t}+\frac{\frac{1}{2}}{1-t} \\
\int_{0}^{1} \frac{d t}{1-t^{2}} & =\lim _{x \rightarrow 1^{-}} \int_{0}^{x} \frac{d t}{1-t^{2}} \\
& =\lim _{x \rightarrow 1^{-}} \int_{0}^{x} \frac{\frac{1}{2} d t}{1+t}+\frac{\frac{1}{2} d t}{1-t} \\
& \left.=\lim _{x \rightarrow 1^{-}} \frac{1}{2} \log (1+t)-\frac{1}{2} \log (1-t)\right]_{0}^{x} \\
& =\infty
\end{aligned}
$$

